Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парамагнитный резонанс в металлах

    СПЕКТРЫ ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА КОМПЛЕКСОВ ИОНОВ ПЕРЕХОДНЫХ МЕТАЛЛОВ [c.203]

    Изучение парамагнитного резонанса в металлах и полупроводниках позволяет получить информацию о взаимодействии электронов между собой и с решеткой. [c.533]

    Электронное состояние металла исследовалось методом электронного парамагнитного резонанса. Спектры снимались как для твердых веществ, так и для их растворов в различных растворителях, что позволило получить более полную информацию об электронном состоянии хелатного узла и влиянии на него замещающих донорных групп. [c.205]


    Электронный парамагнитный резонанс и другие методы магнитохимии приобретают в последние годы широкое распространение для изучения молекулярного строения и изменения конфигураций молекул нефтяных систем, определения структуры входящих в них соединений, оценки уровня межмолекулярных взаимодействий. Методом ЭПР-спектросконии установлено [126, 127, 128], что асфальтены являются концентратами парамагнитных молекул — стабильных свободных радикалов и комплексов парамагнитных металлов, Вследствие большой энергии взаимодействия друг с другом и с диамагнитными молекулами парамагнетики нефтей и остатков объединены в ассоциаты. Сверхтонкая структура спектров ЭПР свободных радикалов нефтей и остатков, впервые полученная авторами работ [126, 127], позволила установить новую химическую характеристику этих соединений, представляющую в виде асфальтенов осадок, получаемый вследствие отторжения парафиновыми растворителями при их взаимодействии с парамегнетиками нефтей и нефтепродуктов, В работе [129] установлено, что с увеличением глубины залегания [c.115]

    Таким образом, прямыми измерениями, с использованием метода рентгеновской спектроскопии и электронного парамагнитного резонанса, показано, что не только ближнее окружение металла, но и удаленные ог металла органические радикалы лиганда оказывают влияние на электронное состояние металла, изменяя кристаллическое ноле и одновременно каталитическую активность. [c.206]

    Парамагнитные вещества обнаруживают интенсивное резонансное поглощение высокочастотной энергии при строго определенных значениях напряженности постоянного магнитного поля (при перпендикулярной ориентации переменного и постоянного магнитных полей). Это явление получило название электронного парамагнитного резонанса (ЭПР). Электронным парамагнетизмом обладают атомы с нечетным числом электронов, свободные радикалы органических веществ, центры окраски в виде электронов или дырок, локализованных в различных местах кристаллической решетки, металлы или полупроводники, имеющие свободные электроны, ионы переходных металлов и некоторые другие ионы. [c.160]

    Электронный парамагнитный резонанс электронов проводимости (энергия которых отличается от энергии Ферми не более чем на величину кТ), по-видимому, легче наблюдать для дисперсных частиц, чем для массивных металлов, т. е. собственная ширина линии для небольших частиц меньше. Примером тому служат исследования методом ЭПР дисперсных частиц 18  [c.275]


    На выходящем пз регенератора катализаторе металлы находятся в виде окислов. Это было доказано на примере ванадия. В пор-фирине ванадий находится в четырехвалентной форме (У +). При отложении ванадия из такого соединения на катализатор валентность его не изменяется, что установлено по спектрам электронного парамагнитного резонанса катализаторов крекинга, отравленных ванадием [337]. После обработки загрязненных ванадием катализаторов крекинга воздухом в условиях, обычно применяемых для выжига, четырехвалентный ванадий переходит в другое окисленное состояние, вероятно, в пятивалентное, и не обнаруживается методом электронного парамагнитного резонанса. В связи с тем, что активность отравленного катализатора сильно зависит от вида соединения, в котором металл присутствует на катализаторе [217], для восстановления первоначальной активности и селективности отравленных катализаторов металлы следует либо совсе.м удалять, либо перевести в новые, неактивные соединения. [c.212]

    Электронный парамагнитный резонанс, используют как метод изучения парамагнитных соединений переходных металлов и свободных радикалов и сравнительно редко — как аналитический метод для обнаружения подобных веществ. [c.197]

    Реакции переноса электрона обычно исследуются путем использования меченого центрального атома металла комплекса в одном из окислительных состояний и измерения скорости переноса меченого изотопа в другое окислительное состояние. Кроме того, для очень быстрых реакций сейчас для этой цели используются методы парамагнитного резонанса и ядерного магнитного резонанса. В отдельных случаях может быть использован обмен лиганда, например обмен с (инерт- [c.147]

    В случае неорганических реакций в твердом состоянии механизм необходимой при этом диффузии через кристаллическую решетку достаточно хорошо изучен. Атомы металлов или небольшие ионы реагирующих веществ перемещаются из своих положений либо в междуузлия решетки, либо в вакансии решетки. Интересно, например, что в реакциях окислов щелочноземельных элементов с различными солями скорость процесса зависит только от природы окисла [56]. Это можно объяснить тем, что такие анионы, как СОд , S0 , РО4 , слишком велики, чтобы в значительной мере участвовать в процессе диффузии. Следует поэтому ожидать, что в случае органических молекул, более крупных и сложных, чем эти анионы, энергия активации для диффузии в кристаллическом состоянии должна быть весьма высокой. Некоторым доказательством в пользу этого может служить постоянство (в течение нескольких месяцев) анизотропии спектра электронного парамагнитного резонанса различных органических кристаллов, таких, как глицин [c.245]

    История закрепления в научных исследованиях теории парамагнетизма нефтяных систем характерна следующими особенностями. Наиболее активные исследования стали возможными после 1944 года, поскольку, в этот год Е.К. Завойским [37], в СССР, был открыт метод электронного парамагнитного резонанса, явившийся прямым методом регистрации свободных радикалов и любых молекул и атомов, содержащих один или несколько неспаренных электронов в электронной оболочке. Ряд монографий был посвящен исследованию свободных радикалов [19, 59, 31, 56, 9, 61, 21, 50] как стабильных, так и возникающих и рекомбинирующих в реакциях, как возбужденных излучениями в твердых телах, так и парамагнитных комплексов переходных металлов, ферромагнетиков и электронов проводимости [97]. Позже Н.С. Гарифьянов и Б.М. Козырев обнаружили в спектре электронно - парамагнитного резонанса (ЭПР) нефтей и битумов сигнал поглощения, что свидетельствовало о наличии в этих веществах парамагнитных молекул [30]. Таким образом, в 1956 г. был открыт парамагнетизм нефтей. К концу пятидесятых годов утвердился тот факт, что парамагнетизм нефтей и нефтепродуктов концентрируется в асфальтенах - в 1958 г. Г.С. Гутовский с соавторами [94] сообщили, что парамагнетизм нефтей концентрируется в асфальтеновой фракции. [c.74]

    Проведенное выше обсуждение ограничивалось исключительно рассмотрением влияния лигандов на энергии -орбит центрального атома. При этом предполагалось, что взаимодействие между лигандами и центральным атомом является полностью электростатическим, соответствующим типу 2 на стр. 162. В действительности всегда имеет место некоторое перекрывание орбит лигандов и металла на это указывают многочисленные и разнообразные экспериментальные данные, как, например, исследования электронного парамагнитного резонанса (см. стр. 364). При дальнейшем развитии теории к электростатическим представлениям теории кристаллического поля были добавлены идеи о перекрывании орбит. Такая теория обыч- [c.169]

    Состав и химическое состояние поверхности имеют очень важное значение, особенно в гетерогенном катализе, когда, как правило, используются смешанные поверхности. Поскольку в катализе широко применяются переходные металлы, целесообразно определить их валентное состояние в изучаемой системе. Наиболее вероятное валентное состояние переходных металлов определяют по магнитной восприимчивости [33], электронному парамагнитному резонансу [34] и спектрам поглощения рентгеновских лучей, тонкая структура которых зависит от химической природы среды, окружающей попы металла [35]. Ионы переходных металлов характеризуются наличием низких энергетических электронных состояний, обусловленных расшенленнем уровней -электронов, характер которого зависит от заряда иона и симметрии возмущающего поля ближайшего окружения. Вследствие [c.424]


    Если окрашенные соли действительно содержат электроны, распределенные по одному в анионных вакансиях, то эти неспаренные электроны должны обладать магнитным моментом. Возникновение обусловленного /-центрами парамагнитного момента было установлено Дженсеном [44] в 1939 г., но открытие в окрашенных галогенидах щелочных металлов [45] линий поглощения, возникающих в результате электронного парамагнитного резонанса, дало новый способ изучения /-центров, который позволил подтвердить правильность основной модели. [c.105]

    Успехи химии гидридов переходных металлов стали возможны лишь после того, как метод построения изотерм и изобар абсорбции был дополнен современными средствами изучения кристаллической структуры — методами рентгенографии, электронографии, нейтронографии, в особенности за последнее время — методами инфракрасной спектроскопии и парамагнитного резонанса, позволяющими определить характер электронного распределения и природу химической связи металл — водород. [c.188]

    Действие щелочных металлов на различные ненасыщенные системы приводит в результате передачи одного электрона к отрицательно заряженным радикалам, которые можно обнаружить при помощи электронного парамагнитного резонанса. [c.192]

    Во-первых, -фактор для этой линии близок к -фактору свободного электрона. Отметим, что -фактор сигнала ЭПР в случае аммиачных растворов щелочных металлов, для которых наличие сольватированных электронов показано многими методами, также близок к -фактору свободного электрона [94]. Линии парамагнитного резонанса таких растворов чрезвычайно узки порядка десятых долей э). Однако их ширина зависит от концентрации раствора и температуры. Согласно [91], ширина линии сигнала ЭПР в натрпй-аммиачном растворе при температуре —196° С равна И э. [c.27]

    В разбавленных растворах основными частицами являются ионы металлов М+ и электроны. Обе частицы сольватированы. Широкая полоса поглош,ения в области около 15000 А, которая и объясняет синий цвет, типичный для всех растворов, обусловлена сольватированными электронами. Магнитные измерения и исследование этих растворов с помощью метода электронного парамагнитного резонанса указывают на существование отдельных электронов, но уменьшение парамагнетизма при увеличении концентрации свидетельствует о том, что электроны могут ассоциировать с образованием диамагнитных пар. Эти данные можно объяснить осуществлением следующей системы равновесий, хотя могут протекать и другие процессы  [c.261]

    Большие возможности изучения свойств гидридов и открытия связей переходный металл — водород выявились также с применением методов инфракрасной спектроскопии [306] и парамагнитного резонанса [ЗОв], особенно при изучении гидридов, синтезируемых обменными реакциями их солей в растворах. [c.13]

    Ценную информацию о строении молекул в разл. квантовых состояниях дает изучение углового распределения Э., выбиваемых из молекул при разл. физ. воздействиях, нат. при облучении квантами достаточно высокой энергии либо при столкновениях с Э. (см. Фотоэлектронная спектроскопия). Наличие у Э. спина, приводящее к существованию электронных состояний молекул разл. мультиплетности, и связанного со спином магн. момента позволяет изучать расщепление мультиплетных состояний в магн. поле (см. Электронный парамагнитный резонанс). Со спином Э. связаны и различие св-в диа- и парамагнетиков в магн. поле, ферромагнетизм, антиферромагнетизм и т. д. Св-ва мн. материалов, в частности металлов и им подобньге соед., определяются системой электронов, образующих сюего рода электронный газ (см. Металлическая связь). С коллективными состояния- [c.438]

    Образование связей С— Ме взаимодействием галогеноалкилов с металлами — одной из основных реакций металлоорганических соединений — протекает через стадию анион-радикалов. Реакция начинается с переноса электрона с поверхности решетки металла на адсорбированную молекулу галогенопроизводного с образованием анион-радикала (легко идентифицируемого методом электронного парамагнитного резонанса). После разрыва связи С—Гал образуется свободный радикал и анион галогена, которые закрепляются на поверхности металла. Далее радикал принимает с металла второй электрон, превращаясь в карбанион одновременно катион металла переходит в раствор, образуя металлоорганическое соединение. [c.324]

    Кинетика процесса и характер влияния кислорода и кумола на спектры электронного парамагнитного резонанса активного углерода дают основание предполагать следующий механизм каталитического действия углей кумол хемосорбируется на зольных центрах угля, содержащих ионы переходных металлов, причем образуется хемосорбционный я-комплекс с ароматическим кольцом. Это ослабляет прочность С—Н-связи третичного атома изопропильного радикала или приводит к диссоциации на R (хем.) и Н (хем.). Хемосорбированный радикал СбН5С(СНд)2 с хемосорбированным кислородом дает радикал СвНБС02(СНз)з, завязывающий объемную цепь [стадии 1) и 2) схемы] после предварительной десорбции или по обменной реакции  [c.62]

    С последующим воздействием ионизирующей радиации на бесцветный синтетический кварц были выращены кристаллы с дымчатой, аметистовой и радиационной цитриновой окраской. Как рассмотрено подробно в гл. 3, дымчатая окраска характеризуется широкой дихроичной полосой поглощения с максимумом 460 нм. Наблюдается также менее четко выраженный максимум в области 620 нм. Опытами по выращиванию кварца в особо чистых условиях, а также в условиях избыточной концентрации примеси алюминия были подтверждены данные электронного парамагнитного резонанса о примесной природе (А1 + + Ме +) центров дымчатой окраски металла, расположенных в структурном канале по соседству с германиевым тетраэдром. [c.180]

    Спектры электронного парамагнитного резонанса (ЭПР).Спектры электронного парамагнитного резонанса позволяют получить, пожалуй, самые непосредственные доказательства перекрывания орбиталей металла и лигандов. Природа электронного парамагнитного резонанса кратко описана в предыдущей главе (см. стр. 29). При изучении спектров ЭПР было обнаружено, что во многих случаях вместо единственного сигнала, который должна была дать группа d-электронов, локализованных на атоме металла, наблюдается сложная совокупность многих линий, приведенная на рис. 26.22 для ставшего уже классическим случая иона [Ir lgl . Такую совокупность линий, называемую сверхтонкой структурой, удается удачно объяснить, предположив, что некоторые орбитали иридия и некоторые орбитали координированных с ним ионов хлора перекрываются так, что единственный неспаренный электрон иридия не локализуется на этом ионе, а делокализуется приблизительно по 5% на каждый ион хлора. Сверхтонкая структура спектра ЭПР обусловлена магнитным моментом ядер ионов хлора, а величина сверхтонкого расщепления пропорциональна степени делокалнза- [c.86]

    Проведенные исследования показывают, что для коксов, прокаленных при 1400—1600° С, характерен асимметричный синглет (на фр. 0,3—0,4 мм) (см. рис. 3), не встречающийся при более низких температурах. Асимметрия линии ЭПР чаще всего бывает обусловлена скин-эффектом, связанным с парамагнитным резонансом на электронах проводимости (ПРЭП) в металлах [13] и углеродистых веществах [П].Теория формы линий ЭПР, обусловленных электронами проводимости в металлах, разработана Дайсоном [13]. Сравнение экспериментальных асимметричных линий (степень асимметрии 2,2—3,0) с теоретическими линиями по Дайсону (степень асимметрии 3,0) позволило установить, что спектр ЭПР исследуемых коксов представляет собой линию Дайсона и вызван диффузией парамагнитных центров внутри скин-слоя. [c.111]

    Для изучения гомогенного гидрирования успешно применялись различйые методы кинетический, ядерного магнитного резонанса, спектроскопии в инфракрасной, ультрафиолетовой и видимой областях, адектронного парамагнитного резонанса и метод меченых атомов. Одна из проблем гомогенного катализа заключается в обеспечении условий, гарантирующих истинную гомогенность реакций. Во многих системах, в особенности тех, которые не содержат лигандов, способных стабилизировать восстановленные валентные состояния или металй-гидридные связи, может происходить осаждение свободного металла. В этом случае необходимо специально доказывать, что раствор действительно гомогенный. Катализатор Р1С12(С Н4)2 [26], как было показано, является истинно гомогенным при низких температурах [27]. В то же время недавно выяснилось, что в случае гидрирования олеиновой кислоты при 200°С и 250 атм, катализируемого смесью олеатов меди и кадмия, действительным катализатором Служит коллоидная металлическая медь, стабилизированная кадмиевым мылом [27]. Ранее же эта каталитическая система считалась гомогенной [3, 8]. [c.14]

    Поверхность твердого тела отличается от его объема значительно большим развитием дефектных структур и большим содержанием примесей. Все атомы совершенно чистой поверхности как бы граничат с огромным макроскопическим пробелом, и поэтому в предельном случае у каждого атома, по-меньшей мере, одна ненасыщенная валентность. Исследо- ание хемосорбции на тщательно обезгаженных поверхностях металлов подтверждает близость к действительности этой модели. Однако для ак-ти.зного угля измерения парамагнитного резонанса говорят скорее о вза-имкэм насыщении этих валентностей, и, вероятно, понятие свободной валентности и для металлов представляет слишком крайнюю модель. Иссл дование влияния адсорбции на электропроводность и работу выхода по. азывает наличие на поверхности акцепторных и донорных центров. [c.375]

    Имеется несколько причин, по которым мы не можем удовлетвориться такими корреляциями, какие были обсуждены в предыдущем подразделе и представлены в общем виде на рис. 22—25. Прежде всего в настоящее время по,пучены доказательства [104, 105], позволяющие с большой достоверностью считать, что точная стенень полупроводниковой проводимости окислов металлов может иметь существенно различные значения в объеме и на поверхности этих окислов. Следовательно, отмеченные выше корреляции представляют собой не более чем удачные совпадения. Во-вторых, очевидно, что недостаточно просто искать корреляцию между каталитической активностью и такими свойствами, как проводимость, диффузия и т. п. Остается еще много неясного в природе самих дефектов. Например [106[, такие вопросы, как степень локализации дырок и э.пектронов и тенденция, проявляемая отдельными точечными дефектами к взаимодействию друг с другом, нуждаются в более тщательном выяснении. (Можно только надеяться, что усовершенствование методов измерения магнитной восприимчивости, ядерного магнитного резонанса и электронного парамагнитного резонанса (см. гл. 3) поможет внести ясность в эти вопросы.) Третья трудность, связанная с традиционным подходом к изучению полупроводниковых окисных катализаторов, заключается, по мнению Хабера и Стоуна [107[, в том, что до сих нор обращали слишком много внимания на число и.ли концентрацию дырок и других точечных дефектов в кристаллической решетке. [c.239]

    Дифенилэтилен может восстанавливаться в органических растворителях щелочными металлами с образованием ион-радикала, несущего отрицательный заряд. Полагали, что электронные спектры поглощения соответствующргх катион-аннон-радпкалов будут подобны друг другу. Спектры электронного парамагнитного резонанса (ЭПР) для этих соединений также должны быть аналогичны. В спектре восстановленного дифенилэтилена полоса поглощения находилась при 600 ммк, аналогично положению полосы олефина, адсорбированного на алюмосиликате. Интенсивность полосы поглощения изменялась параллельно изменению [c.206]

    Эти вещества формально являются производными ионов 0 и Оз соответственно. Щелочные металлы, кальций, стронций и барий образуют ионные пероксиды. Пероксид натрия производят в промышленности при окислении натрия кислородом воздуха, при этом сначала образуется N320, а затем агОг. Это желтоватый очень гигроскопичный порошок, устойчивый при температурах до 500 °С и содержащий также по данным электронного парамагнитного резонанса около 10% супероксида. [c.363]

    Образование металл-углеродной связи, например при взаимодействии галогеноалканов с металлами, может протекать через стадию ион-радикалов. Реакция начинается с переноса электрона с решетки металла на молекулу галогеноалкана с образованием анион-радикала (легко идентифицируется методом электронного парамагнитного резонанса), распадающегося на радикал и анион галогена, которые адсорбируются на поверхности металла. Далее радикал принимает второй электрон, превращаясь в карбанион, одновременно катион металла переходит в раствор, образуя металлоорганическое соединение  [c.333]

    Мономеры, имеющие неспаренный электрон, затем, по-видимому, димеризуются с образованием диамагнитных продуктов [М2(ННз)г]. С повыщением концентрации примерно до 0,5 М расстояние между ионами металла сокращается до 10А, так что их внешние орбитали могут перекрываться с образованием зоны проводимости. Следовательно, можно ожидать, что концентрированные растворы будут напоминать расплавленные металлы (разд. 4.8), и это подтверждено наблюдаемыми свойствами этих растворов (например, определением чисел переноса, спектрами ядерного магнитного резонанса и электронного парамагнитного резонанса). Такой раствор поэтому является удобным источником электронов и очень сильным гомогенным восстановителем, имеющим рассчитанный стандартный восстановительный потенциал— 1,95 в при 25° (ср. табл. 8.3 и 8.5). Например, он способен восстанавливать многие соединения до свободных элементов, до интерметаллических соединений (разд. 4.11) или до го-мополиатомных анионов, содержащих восстановленные элементы, например из РЫг получено соединение [Ма(КНз)9][РЬ(РЬ)8]. Эти растворы очень реакционноспособны. Кислород реагирует с ними, образуя высшие окислы, такие, как КО2, окись азота образует гипонитриты МгНгОг. С участием этих растворов можно осуществить многие важные реакции, например [c.329]


Смотреть страницы где упоминается термин Парамагнитный резонанс в металлах: [c.269]    [c.261]    [c.269]    [c.3]    [c.7]    [c.70]    [c.74]    [c.396]    [c.423]    [c.123]    [c.6]    [c.297]    [c.297]   
Смотреть главы в:

Электронная теория металлов -> Парамагнитный резонанс в металлах




ПОИСК





Смотрите так же термины и статьи:

Металлы парамагнитные

Резонанс металлах

Резонанс парамагнитный



© 2025 chem21.info Реклама на сайте