Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотохимические реакции и выделение Ог

    Озон образуется в процессах, сопровождающихся выделением атомарного кислорода (радиолиз воды, разложение перекисей и др.), а также при действии на молекулярный кислород потока электронов, протонов, коротковолнового излучения, т. е. за счет радиохимических и фотохимических реакций. Цепную реакцию образования озона из кислорода можно представить схемой [c.321]


    Фотохимические реакции весьма распространены. Достаточно указать на так называемую реакцию фотосинтеза, протекающую в растениях при участии зеленого пигмента — хлорофилла — при поглощении солнечной радиации. Фотосинтез сводится к ассимиляции оксида углерода (IV) с образованием углеводов и выделением кислорода. Это многостадийный процесс, суммарное уравнение которого можно записать в виде [c.269]

    Химические реакции, протекающие под воздействием света, называются фотохимическими, а сам раздел физической химии, занимающийся их изучением, получил название фотохимии. Примеров фотохимических реакций можно привести очень много. Так, смесь газов водорода и фтора на свету взрывается, аммиак разлагается на водород и азот, бромид серебра разлагается с выделением металлического серебра, что широко используется в фотографии, процесс отбелки тканей кислородсодержащими соединениями хлора также протекает под воздействием света и т. д. К числу фотохимических процессов относятся и реакции фотосинтеза, в результате которых в зеленых растениях из оксида углерода (IV) и воды образуются различные органические соединения, главным образом углеводы. [c.172]

    К фотохимическим относятся реакции, протекающие под действием квантов света. Такие реакции многочисленны, а некоторые из них имеют жизненно важное значение. Фотохимическими являются реакции выделения кислорода и ассимиляции диоксида углерода в процессе фотосинтеза, образование озона из кислорода под действием ультрафиолетового излучения Солнца, природный синтез хлорофилла и т. п. Фотохимическое разложение бромистого серебра лежит в основе фотографического процесса. С фотохимическими реакциями связано явление люминесценции, выцветание красок и т. п. [c.200]

    Рентгеновские лучи обладают сильным химическим действием, однако химическая специфика его, по-видимому, большей частью обусловлена вторичными процессами. Первичными же являются процессы отделения электронов, часто сопровождающиеся разрушением связей между атомами в молекулах с образованием свободных радикалов и валентно ненасыщенных атомов. Последующие превращения нередко приводят к выделению электромагнитных колебаний ультрафиолетовой области или области видимого света, вызывающих своим действием новые уже фотохимические реакции. Образование же свободных радикалов и атомов может приводить к той или другой цепи последующих превращений. [c.551]


    Измерив теплоты реакций, Меги и Даниэльс показали, что фотохимические реакции бромирования толуола, дифенилметана и трифенилметана в растворе в четыреххлористом углероде являются цепными процессами, которые тормозятся кислородом. Выделение большого количества тепла свидетельствует о том, что протекает конкурирующая реакция фотоокисления с гораздо меньшей длиной цепи, вследствие чего уменьшается равновесная концентрация таких активных радикалов, как РЬ — СНг-. [c.193]

    Образующийся озон поглощает УФ-радиацию Солнца в области 250—260 нм, губительно действующую на живые организмы. К другой важной фотохимической реакции относится реакция выделения кислорода и ассимиляция диоксида углерода в процессе фотосинтеза. Фотохимическое разложение бромида серебра лежит в основе фотографического процесса. [c.269]

    Фотохимические реакции. К фотохимическим относятся реакции, обусловливаемые лучистой энергией главным образом видимой части спектра электромагнитного излучения. Например, смесь газон водорода и фтора при ее освещении взрывается бромистое серебро на свету разлагается с выделением металлического серебра, что широко используется в фотографии синтез сложных органических веществ растениями в процессе их жизнедеятельности также имеет фотохимическую основу (фотосинтез) многие краски на солнечном свету блекнут, выцветают и т. д. [c.143]

    Четко установлена (хотя и остается непонятной) потребность рассматриваемой нами системы в ионах марганца [58], а также в ионах хлора. Эта система чувствительна к старению, кратковременному нагреванию (в течение 5 мин при 50°), а также к действию целого ряда ингибиторов. Наиболее сильнодействующим из них является ДХММ (сообщалось, что ДХММ в концентрации 2 10 М уменьшает активность системы вдвое [91]). Гидроксиламин, о-фенан-тролин, уретаны, салицилальдоксим, аминотри-азины и некоторые другие соединения оказывают подобное же влияние, но в более высокой концентрации. В то же время цианид действует лишь в очень высоких концентрациях( 10 М). Сильное воздействие на фотосистему II оказывают также видимый свет (фотоингибирование) и относительно слабый ультрафиолетовый свет. Чувствительность к столь разнородным в химическом отношении соединениям наглядно свидетельствует о сложности фотохимической реакции выделения кислорода. [c.563]

    Выделение света. Использование света достаточно узкого интервала длин волн имеет большие преимущества при проведении фотохимических реакций. В этих условиях оказывается возможным непосредственно и точно определить величины, необходимые для вычисления квантового выхода, интенсивности падающего и доли поглощенного света. Узкий спектральный интервал позволяет также устранять нежелательные фотохимические превращения продуктов реакции. Выделение света определенной длины волны из спектра источника излучения может осуществляться при помощи монохроматоров и светофильтров. [c.141]

    Если рассматривать фотохимические реакции с точки зрения синтетических возможностей, то возникает множество проблем. Из них наиболее важны три проблемы необходимое облучение, масштаб проведения реакции и выделение из смеси соединений, весьма близких по своим физическим свойствам. Несмотря на все вышесказанное, эти процессы представляют огромный интерес, так как открывают доступ к соединениям необычной структуры. [c.149]

    Количество определяемого вещества может быть найдено также по количеству продукта реакции, если этот продукт окрашен. В этом случае измеряют оптическую плотность реакционной смеси в области поглощения продукта. Окончание фотохимической реакции устанавливают по прекращению увеличения оптической плотности реакционной смеси. Если определяемое вещество разлагается в результате фотохимической реакции с выделением газообразных продуктов, то прекращение их выделения может быть использовано как индикатор окончания реакции. Измеряя электропроводность или окислительно-восстановительный потенциал реакционной смеси во время облучения, можно установить момент окончания фотохимической реакции по прекращению изменения этих величин [268, 365, 380]. Окончание реакции может быть установлено по прекращению изменения pH. В ряде случаев окончание фотохимической реакции может быть установлено по исчезновению или появлению люминесценции, а также по другим физико-химическим характеристикам реагирующих веществ или продуктов реакции. [c.8]

    Эта группа методов имеет сходство с методами, основанными на переведении определяемого элемента или вещества в осаждаемую форму. Разница состоит только в том, что в реакционной смеси отсутствует осадитель, в котором нет необходимости, так как вещество в результате фотохимической реакции выделяется в нерастворимом элементном состоянии. По-видимому, таким путем могут быть выделены из растворов немногие элементы. К ним следует отнести серебро, золото, медь, ртуть, мыщьяк, палладий, платину, селен, теллур. В основном для выделения вещества в элементном состоянии используют фотохимическое восстановление. Однако не исключена возможность использования фотохимического окисления (например, выделение иода фотохимическим окислением иодидов или серы фотохимическим окислением растворимых сульфидов). [c.120]


    Взаимное перекрытие контуров резонансных линий, соответствующих изотопам и делает метод прямого возбуждения целевых изотопов излучением монохроматического источника света недостаточным для обогащения их до высоких концентраций. Однако это не означает, что выделение изотопов с перекрывающимися спектрами фотохимическим методом невозможно. Существуют приёмы, проверенные на практике, позволяющие выделять фотохимическим методом все изотопы ртути. К таким приёмам, прежде всего, следует отнести фильтрацию излучения источника света с целью подавления излучения, снижающего селективность процесса. Выбрав оптимальными изотопный состав ртути, помещённой в фильтр, вид буферного газа и газа-тушителя, их давление, температуру холодной точки фильтра, можно существенно повысить селективность фотохимический реакции. [c.491]

    Наблюдения над изолированными хлоропластами, бактериями, адаптированными к водороду водорослями, описанные в главах IV, V, VI, а также кинетические измерения указывают, что фотосинтез — не прямая реакция между двуокисью углерода и водой, а сложная цепь физических, химических и фотохимических процессов. Одна из наболее важных проблем в изучении механизма фотосинтеза — установление первичной фотохимической реакции (или реакций) и выделение ее из нефотохимических процессов последние могут предшествовать фотохимической реакции или следовать за ней. [c.155]

    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Фотохимические реакции происходят под воздействием световой энергии (или сопровождаются выделением световой энергии). Примерами фотохимических реакций, проходящих с поглощением световой энергии, являются фотосинтез в зеленых растениях (см. 14.3), присоединение хлора к бензолу с образованием гексахлорцнклогексана (см. 37.1) и сульфохлорирование алканов при получении алкнлсульфонатов (см. 35.2). Многие процессы горения протекают с выделением световой энергии. [c.165]

    Изучая квантовые выходы фотосинтеза, пытаются исследовать механизм использования энергии в процессе фотосинтеза, вопросы энергетики, а тем самым и природы световых и темновых реакций определить число первичных фотохимических актов, необходимых для восстановления одной молекулы СОд или выделения одной молекулы О2 выяснить характер последующих превращений энергии, усвоенной в первичных фотохимических реакциях, и решить вопрос о возможном участии в фотосинтезе других пигментов, кроме хлорофилла. [c.6]

    Прежде всего флуоресценция конкурирует только с первичной фотохимической реакцией, а не со всем процессом фотосинтеза. Скорость фотосинтеза, измеренная по выделению кислорода или поглощению углекислоты, часто определяется не только эффективностью первичного фотопроцесса, но также и скоростью одной или нескольких связанных с этим процессом темновых каталитических реакций. К их числу относятся реакции, которые превращают первичные фотопродукты в стабильные конечные продукты фотосинтеза. Когда эти завершающие реакции слишком слабы, чтобы идти наравне с первичным фотохимическим процессом (что может иметь место, например, в очень сильном свете, или при низких температурах, или в присутствии некоторых ядов), первичные фотопродукты будут накопляться до определенной концентрации и вновь исчезать при обратных реакциях. Вследствие этого квантовый выход фотосинтеза уменьшится, однако на интенсивности флуоресценции это не отразится, так как первичный фотохимический процесс, конкурирующий с флуоресценцией, продолжается с неизменной скоростью. Этим можно объяснить существование светового насыщения в фотосинтезе, без одновременного возрастания выхода флуоресценции (явление, о котором мы упоминали выше). [c.234]

    Со смогом над Лос-Анджелесом связано неожиданное, но очень важное открытие, проливающее свет на природу частиц смога. В 1952 году химик Эри Дж. Хааген-Смит занимался выделением вещества, ответственного за запах ананаса. В один из дней, когда был сильный смог, он зарегистрировал в своих экспериментах высокую концентрацию озона, большую, чем в нормальном чистом тропосферном воздухе. Ученый прервал свои исследования, чтобы найти его источник. Спустя год он опубликовал революционную работу Химия и физика лосанджелесского смога , в которой описал важную роль солнечного света в химии смога, и предложил термин фотохимический смог. (Любая реакция, инициируемая светом, - это фотохимическая реакция.) [c.418]

    За скоростью фотохимической реакции На -f lj = 2НС1 следили по изменению давления реакционной смеси, связанному с выделением теплоты в ходе реакции [1]. В таблице приведена зависимость прироста давления kpi после включения освещения, а также падения давления Ара после выключения освещения. [c.49]

    НОРРИША РЕАКЦИЯ, см. Фотохимические реакции. НОСИТЕЛИ в радиохимии, нерадиоактивные или слабо радиоактивные компоненты в системах, содержащих микро-количества радиоактивных в-в. Концентрации Н. значительно превышают содержание радиоактивных в-в, и при выделении радионуклидов из р-ра, ш. разделении, очистке (путем дистилляции, осаждения и др.) радиоактивные атомы следуют за Н. (сокристаллизуются, соосаждаются и т.п.). Использование Н. позволяет избежать значит, потерь радионуклидов при хранении р-ров, т.к. в отсутствие Н. на стенках посуды адсорбируются только радиоактивные атомы, а в присутствии Н. с ними конкурируют за активные места на пов-сти стабильные атомы Н. в результате доля адсорбир. радиоактивных атомов резко уменьшается. В отличие от макрокомпонента, к-рый может изначально присутствовать в системе наряду с радиоактивным микрокомпонентом (см. Макро- и микрокомпоненты), Н. специально вводят в р-р (или пар) для обеспечения требуемых св-в. [c.296]

    Реакция. Выделение и идентификация интермедиата при фотохимическом цревращении изоксазола в оксазол. [c.369]

    Фотохимические методы развиваются преимущественно с ориентацией на разделение изотопов одного элемента в препаративных и технологических целях. В качестве источника монохроматического электромагнитного излучения обычно используют лазеры. В этом случае относительная сложность процесса разделения компенсируется уникальной селективностью метода, определяемой малой спектральной шириной лазерного излучения. Для эффективного разделения необходимо, чтобы в спектре поглощения выбранного газообразного соединения или паров элемента наблюдался изотопный сдвиг, т.е. различие положений линий в спектрах отдельных изотопов. С максимальной точностью также должна совпадать длина волны лазерного излучения и длина волны, соответствующая энергии перехода из основного в возбужденное состояние одного из изотопов. Дополнительным обязательным условием является необратимое превращение исходного соединения изотопа в новую химическую форму в результате индуцированной фотохимической реакции или достаточное время жизни изотона, возникшего в результате фотовозбуждения, следствием чего может бытьреализован процесс последующего выделения изотопа под действием электрического поля. [c.246]

    С другой стороны, фотохимические реакции исследовались в интервале температур 160—190°. При температурах около 160 полимер находится в полутвердом состоянии или представляет собой очень вязкую жидкость поэтому для диффузии осколков мономерных размеров в газовую фазу понадобятся десятки или даже сотни секунд. Такая задержка в выделении летучих из полутвердого полимера иллюстрируется (рис. 2 [9]) данными о поведении сшитого полиметилметакрилата, в котором поперечные связи образованы при помощи гликольдиметакрилата, при быстром нагревании до 250° и последующей выдержке при этой температуре. Для достижения макси- [c.21]

    Применение фотохимических реакций весьма перспективно в волюмометрических методах анализа, поскольку многие вещества под действием света разлагаются с выделением газообразных продуктов. Этими методами можно определять диазосоединения, в особенности такие, как о-диазофенолы и о-диазонафтолы, высокочувствительные к свету [85]. Определение этих соединений обычными методами отличается значительными трудностями [73]. Волюмометрическим методом определяют карбоновые кислоты, в том числе уксусную, щавелевую, муравьиную, малоновую, ЭДТА, винную, лимонную, а также ацетон, ацетальдегид, формальдегид, некоторые эфиры и многие другие органические соединения. [c.12]

    Бензофенон также способен восстанавливаться спиртами при облучении ультрафиолетовым светом [180]. Реакция протекает с высоким квантовым выходом и используется для получения бензопинакона. В изопропиловом спирте при облучении ультрафиолетовым светом в атмосфере инертного газа бензофенон образует кетиль-ные радикалы, восстанавливающие медь(1Г), висмут, палладий, кобальт, никель, свинец, кадмий и ртуть до металлов [397]. Эта интересная фотохимическая реакция весьма перспективна для разделения смесей и для количественного выделения металлов (см. гл. VI). [c.86]

    Избирательность фотохимической реакции может быть в ряде случаев значительно повышена использованием света определенной длины волны. Для выделения излучения с определенной длиной волны обычно применяют светофильтры, поглощающие излучение в других областях спектра. Для выделения нужной области из спектров излучения ртутно-кварцевых ламп применяют стеклянные, жидкостные и газообразные фильтры. Наиболее удобны в обращении стеклянные светофильтры Вуда [4181, представляющие собой черные стекла, прозрачные для ультрафиолетового излучения и непрозрачные для видимой области спектра. Кривые пропускания для некоторых стеклянных фильтров представлены на рис. 36. Для выделения излучения ртутно-кварцевых ламп применяются также комбинированные стеклянные фильтры. Характеристики этих фильтров приводятся в специальной литературе [55, 125]. [c.145]

    В многочисленных кинетических исследованиях фотохимические реакции рассматривались как процессы, идущие через нейтральные свободные атомы или радикалы. Это происходило потому, что измеренные энергии активации хорошо совпадали с теоретическими расчетами прочностей ковалентных связей, без доказательств действительного выделения и независимого существования предполагаемых молекулярных осколков. Однако был обнаружен целый ряд непосредственных экспериментальных фактов, оправдывающих общее утверждение о том, что при фотохимическом разложении рвется ковалентная связь. Эти хи-йгические данные будут рассмотрены подробно в следующих параграфах этой главы. Обширные физические данные собраны в ряде подробных монографий 2, поэтому нет необходимости повторять их здесь. [c.125]

    Эти реакции чрезвычайно похожи на фотохимические реакции, описанные в первом параграфе настоящего раздела. В них наблюдается индукционный период, удлиняющийся при уменьшении дифференциальной дозы и "концентрации мономера, не обнаруживается выделения газа и наблюдается колебательная частота группы ОН в инфракрасном спектре поглощения сухих полимеров. Главное различие между приготовленными нами радиационными и фотохимическими полимерами заключается в большем молекулярном весе и мёньшем отношении интенсивностей поглощения ОН/СН в радиационных полимерах. Следует еще отметить, что ионный выход, там где он был измерен, оказался значительно меньше, чем определяемая из навески степень полимеризации, и что сернокислая закись железа в эквимолекулярной концентрации лишь незначительно замедляет полимеризацию и сама окисляется в этом процессе.  [c.130]

    Введение. Идея выделения изотопов с помощью света давно привлекает внимание разработчиков методов разделения изотопов тем, что принципиально затраты на осуществление собственно физического процесса очень малы. В самом деле, атом или молекула, поглотив один или несколько квантов, могут селективно вступить в фотохимическую реакцию или быть фотоионизованы. Таким образом, на сам процесс селективного выделения атома (молекулы) затрачивается всего несколько электрон-вольт. В дальнейшем фотоионы могут экстрагироваться из потока нейтральных атомов электрическим полем, а образовавшееся в результате фотохимической реакции новое вещество — выделено химическими методами. Причём поскольку спектрально узкий луч лазера настраивается на линию поглощения одного из изотопов смеси, то происходит выделение (выборка) изотопа, а не разделение, как в электромагнитном масс-сепараторе или в механических методах — газодиффузионном и центрифужном. [c.374]

    Важнейшими фотохимическими реакциями являются некоторые природные процессы, использующие энергию солнечного света, например реакции фоггЛсинтеза, происходящие в растениях. Как известно, при сгорании древесины образуются двуокись углерода и вода с выделением значительных количеств тепла. В растениях осуществляется обратный процесс — образование органических соединений из двуокиси углерода и воды, поглощаемых растением из воздуха и почвы (при поглощении энергии солнечного света). Это сопровождается выделением кислорода. Таким образом, в результате различных реакций синтеза исходная система из пСОг и пН О превращается в систему пСНзО-ЬпОз или близкие к ней. Например, различные реакции, приводящие к образованию глюкозы, можно в суммарной форме представить в виде [c.165]

    Ван Ниль и Гаффрон считают, что окисление воды представляет собой одну (или даже единственную) из первичных фотохимических реакций обычного фотосинтеза (как в схеме на фиг. 16). Таким об-pa30i[, предположение о неучастии восстановителей-заменителей воды в фотохимическом процессе не исключает логического вывода, что и в бактериальном фотосинтезе первичным фотохимическим процессом является окисление воды. Отсюда отсутствие выделения кислорода на свету пурпурными бактериями можно объяснить двояким образом. Согласно одной гипотезе, предложенной Гаффроном, промелсуточный продукт окисления воды ОН может восстанавливаться у бактерий восстановите.мми-заменителями — водородом, сероводородом и т. д., так как эти организмы содержат активную гидрогеназную систему и не содержат энзима Eq, выделяющего кислород. Вторая гипотеза, предложенная ван Нилем, предполагает, что первичный продукт, получающийся при окислении воды у бактерий ОН , несколько отличен от продукта, получающегося у зеленых растений ОН - , и поэтому он не может превратиться в [c.174]

    Выделение кислорода при фотосинтезе может идти в порядке, обратном какому-либо из этих механизмов. Поэтому рассмотрим следующие возможности 1) промежуточное образование перекиси водорода, нанример при фотохимической реакции, обратной (11.2), за которой следует или окислтение этой перекиси по реакции, обратной (11.1), или, что более вероятно, ее дисмутация по уравнению (11.3) 2) подобный же процесс с органическими перекисями и 3) выделение кис.торода без промежуточного образования свободных перекисей, т. е. реакция, обратная (11.4). [c.291]

    Однако условия в живой клетке могут стабилизировать окисленную форму или сделать менее опасной ее неустойчивость, обеспечивая быстрое возвращение к восстановленному окрашенному состоянию всех молекул оОЫ, которые не используются в реакции выделения кислорода. На стр. 553 высказывалось предположение, что обратный ход первичного фотохимического процесса, например при реакции o lilHX -> СЫХ , в живой клетке идет очень быстро, так как оба продукта остаются в связи с комплексом. [c.564]

    Принс [22] полагает, что квантовый выход флуоресценции хлорофилла а в этаноле при возбзгждении синим светом меньше, чем при возбуждении красным светом это, повидимому, указывает на то, что конверсия молекул хлорофилла из состояния В в состояние У происходит не во всех случах, может быть, по причине фотохимической реакции части молекул с растворителем (см. стр. 165). Однако этот вывод нуждается в подтверждении. Дэттон, Мэннинг и Дэггар [62], изучая ацетоновые растворы хлорофиллов а ти Ь, нашли одинаковые выходы флуоресценции при возбуждении фиолетовым (436 мц) или желтым (578 мц) светом. Несколько позднее Ливингстон с сотрудниками [85] произвели измерения относительного выхода флуоресценции хлорофилла, возбуждаемого линиями ртути 435,8 и 577—579 и узкими полосами с максимумами у 645 и 681 мц (выделенными при помощи интерференционных фильтров). Полученные ими результаты сведены в табл. 26. [c.160]


Смотреть страницы где упоминается термин Фотохимические реакции и выделение Ог: [c.132]    [c.165]    [c.46]    [c.208]    [c.208]    [c.1137]    [c.290]    [c.382]    [c.260]    [c.178]   
Смотреть главы в:

Фотосинтез С3- и С4- растений Механизмы и регуляция -> Фотохимические реакции и выделение Ог




ПОИСК





Смотрите так же термины и статьи:

Фотохимическая реакция



© 2025 chem21.info Реклама на сайте