Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

бромом свойства

    Водород проявляет и восстановительные, и окислительные свойства. В обычных условиях благодаря прочности молекул он сравнительно мало активен и непосредственно взаимодействует лишь со фтором. При нагревании же вступает во взаимодействие с многими неметаллами — хлором, бромом, кислородом и пр. Восстановительная способность водорода используется для получения некоторых простых веществ из оксидов и галидов  [c.274]


    Твердые растворы замещения образуются в том случае, если кристаллические решетки компонентов однотипны и размеры частиц компонентов близки. Необходимым условием образования твердых растворов является также и известная близость химических свойств веществ (одинаковый тип химической связи). Так, в кристалле КС1 ионы хлора могут быть постепенно замещены ионами брома, т. е. можно осуществить практически непрерывный переход вещества от состава КС1 к составу КВг без заметного изменения устойчивости кристаллической решетки. Свойства образующихся твердых растворов непрерывно меняются от КС1 к КВг. Ниже приведены примеры ионных, атомных, молекулярных и металлических твердых растворов замещения. [c.134]

    Галогенированные бутилкаучуки — это продукты взаимодействия бутилкаучука с хлором или бромом, содержащие около одного атома галогена на изопреновое звено. Галогенированные бутилкаучуки, сохраняя все ценные свойства бутилкаучука, имеют ряд преимуществ, основными из которых являются совулканизация с высоконепредельными каучуками, высокая скорость вулканизации, возможность получения теплостойких резин с относительно простыми вулканизующими группами. [c.352]

    Соединения мышьяка (V), сурьмы (V) и висмута (V). В ряду As(V) — Sb(V) — Bi(V) устойчивость соединений в целом падает. При этом в изменении свойств проявляется внутренняя периодичность (см. рис. 131). При рассмотрении подгрупп брома и селена (см. рис. 137) было показано, что высшая степень окисления в этих подгруппах наиболее характерна для р-элементов 5-го периода, т. е. для и Те. Наименее устойчива высшая степень окисления для р-элементов 6-го периода, т. . для At и Ро. Подобная закономерность, хотя и выраженная менее отчетливо, проявляется и в подгруппе мышьяка степень окисления +5 наиболее характерна для Sb, менее характерна для As и неустойчива у В1. [c.387]

    По химическим свойствам это активнейший металл. На воздухе тотчас окисляется, образуя рыхлые продукты окисления. При обычной температуре самовоспламеняется в атмосфере фтора и хлора. При небольшом подогревании энергично взаимодействует с жидким бромом, серой, иодом, водородом и др. [c.488]

    Наиболее ценное свойство алюминия — его легкость (алюминий в 3 раза легче стали). Именно по этой причине он так широко используется в авиационной промышленности. В этих же целях потребляются и большие количества магния — еще более легкого металла. В 30-х годах были разработаны практически осуществимые методы извлечения магния из его солей, растворенных в морской воде, так что на сегодняшний день мы располагаем поистине неистощимым источником этого металла. (В настоящее время из морской воды получают и бром, и иод, и, конечно же, поваренную соль. Важной задачей, значение которой в будущем еще более возрастет, является получение пресной воды из океана.) [c.140]


    Органические сульфиды образуют стабильные комплексные соединения с галогенами, органическими галоидпроизводными, галогенидами - тяжелых металлов и некоторыми другими веществами. Природа сил взаимодействия при комплексообразовании сульфидов с этими соединениями изучена недостаточно. Полагают [47], что донорно-акцепторная связь осуществляется за счет передачи неподеленной пары электронов атома серы на свободную валентную орбиталь атома металла (ртути, алюминия, олова, титана и др.). На структуру и свойства комплексных соединений влияют условия их образования, химическое строение сульфида и соединения, вступающего с ним в реакцию [48]. При взаимодействии сульфидов с бромом или иодом иногда образуются кристаллические комплексные соединения, а при взаимодействии с йодистыми алкилами и галогенированными жирными кислотами — кристаллические сульфониевые соли. Наиболее стабильны комплексные соединения сульфидов с галогенидами ртути, ацетатом ртути, солями платины, олова, титана, палладия, алюминия. В зависимости от химического строения и условий комплексообразования сульфиды могут присоединять различное число молекул одного и того же комплексообразователя (акцептора). [c.118]

    В этом случае свойства водородных связей растворителя облегчают разрыв связей бром—бром. [c.447]

    При хранении на рассеянном свету полиизобутилен практически не изменяет своих свойств. На прямом солнечном свету и под действием ультрафиолетового облучения происходит частичная деструкция макромолекул, сопровождаемая снижением молекулярной массы и ухудшением физико-механических свойств в массе полимера образуются включения низкомолекулярных фракций. Введение в полиизобутилен очень малых добавок стабилизаторов фенольного типа, а также наполнителей (сажа, тальк, мел, смолы) значительно увеличивает его светостойкость. При комнатной температуре он устойчив к действию разбавленных и концентрированных кислот, щелочей и солей. Под действием концентрированной серной кислоты при 80—100°С полиизобутилен обугливается, а под действием концентрированной азотной кислоты деструктирует до мономера и жидких продуктов. Под действием хлора, брома и хлористого сульфурила подвергается гало-генированию с частичным снижением молекулярной массы. [c.338]

    Какие же вещества являются элементами Первыми правильно установленными элементами были металлы-золото, серебро, медь, олово, железо, платина, свинец, цинк, ртуть, никель, вольфрам, кобальт, И вообще из 105 известных к настоящему времени элементов только 22 не обладают металлическими свойствами. Пять неметаллов (гелий, неон, аргон, криптон и ксенон) были обнаружены в смеси газов, остающейся после удаления из воздуха всего имеющегося в нем азота и кислорода. Химики считали эти благородные газы инертными до 1962 г., когда было показано, что ксенон дает соединения со фтором, наиболее активным в химическом отнощении неметаллом. Другие химически активные неметаллы представляют собой либо газы (например, водород, азот, кислород и хлор), либо хрупкие кристаллические вещества (например, углерод, сера, фосфор, мыщьяк и иод). При обычных условиях лишь один неметаллический элемент-бром-находится в жидком состоянии, [c.271]

    М-р Джон Ньюлендс зачитал статью, озаглавленную Закон октав и причины численных соотношений между атомными весами . Автор заявил об открытии им закона, согласно которому элементы, аналогичные по своим свойствам, связаны особыми соотношениями, подобными существующим в музыке между произвольной нотой и ее октавой. Исходя из атомных весов элементов в шкале Канниццаро, автор располагает известные элементы в определенной последовательности, начиная с элемента с минимальным атомным весом (водород) и кончая торием (атомный вес 231,5) однако он помещает никель и кобальт, платину и иридий, церий и лантан и т. д. как абсолютно сходные элементы в одной и той же строке. Расположенные таким образом пятьдесят шесть элементов охватывают восемь октав, и автор отмечает, что в результате хлор, бром, иод и фтор оказываются на одной строке, т. е. занимают аналогичные места в его таблице. Азот и фосфор, кислород и сера и т.д. также рассматриваются как элементы, образующие подлинные октавы. Предположения автора иллюстрируются таблицей, представленной на заседании общества и воспроизводимой ниже  [c.326]

    Первым, кому удалось уловить некоторые проблески порядка, был немецкий химик Иоганн Вольфганг Дёберейнер (1780—1849). В 1829 г., изучая свойства брома — элемента, открытого тремя годами ранее французским химиком Антуаном Жеромом Баларом (1802—1876), Дёберейнер установил, что бром по своим свойствам занимает промежуточное положение между хлором и иодом. [Иод был открыт другим французским химиком Бернаром Куртуа (1777— 1838) в 1811 Г.1 В ряду хлор — бром — иод наблюдалось не только постепенное изменение цвета и реакционной способности, но и постепенное изменение атомного веса. Случайное совпадение  [c.93]


    Таковы сложные переплетения судеб нефти и воды при добыче нефти. Выше было сказано отнюдь не обо всех сторонах этого переплетения. Иногда (к сожалению, далеко еще не всегда ) добываемую попутно с нефтью воду используют не только для заводнения залежей. Некоторые воды идут на лечебные нужды, так как все (именно все, без исключения ) воды из нефтеносных пластов обладают целебными свойствами. Из них добывают особо ценные вещества, например йод, бром. Неред- , , .  [c.69]

    Указания о базисном состоянии веществ, принимаемом для величин Яг — Нш, 5г — 5298, даны в дополнениях к соответствующим таблицам. Базисное состояние может быть неодинаковым для разных форм данного элемента или вещества. Так, для свойств Вг2(г) оно будет состоянием газообразного брома с двухатомными молекулами при 298,15 К для свойств одноатомного брома оно будет состоянием одноатомного газа при 298,15 К, а для основного стандартного состояния брома оно будет состоянием жидкого брома с двухатомными молекулами при 298,15 К (независимо от молекулярного состава его при Т К). [c.316]

    С 1810 г. Гей-Люссак и Тенар работали над цианидом водорода H N, который, как они показали, представляет собой кислоту, хотя и не содержит кислорода. (Это открытие, как и открытие Дэви установившего примерно в то же время, что хлорид водорода — кислота, опровергали представление Лавуазье о том, что кислород является характерным элементом кислот.) Гей-Люссак и Тенар обнаружили, что группа N (цианидная группа) может переходить от соединения к соединению, не разлагаясь на отдельные атомы углерода и азота. Группа N ведет себя во многом как единичный атом хлора или брома, поэтому цианид натрия Na N имеет некоторые общие свойства с хлоридом натрия Na l и бромидом натрия NaBr .  [c.76]

    Содержание серы. Повышенное содержание серы в коксе создает неблагоприятные условия в помещении цеха прока-лива1шя удаление серы при высокотемпературных процессах прокаливания и графитирования ухудшает структуру и прочностные свойства изделий (электродов, конструкционных материалов). Содержание серы в коксе можно определить методом двойного сожжения. В случае высокой зольности более точные результаты дает метод Эшка . Сущность последнего метода заключается в сплавлении навески кокса, помещенной в фарфоровый тигель, с окисью магния и углекислым натрием. При этом сера в коксе переходит в неорганические соли, растворимые в воде. При помощи насыщенного раствора брома (илп перекиси водорода) сульфиты переводят в сульфаты, затем раствор обрабатывают хлористым барием (при этом выпадает в осадок образовавшийся сернокислый барий). Осадок переводят па фильтр, промывают и высушивают и фарфоровом тигле до достижения постоянной массы. Содержание серы в коксе рассчитывают по формуле  [c.139]

    На этом свойстве основано [83] объемное определение степени разветвленности парафиновых углеводородов. При этом методе треххлористую сурьму, обр азова вшую ся и результате иэбирагельного хлор И рова-НИ5Г третичных атомов водорода, титруют броматом калия в присутствии бром-иона и метилоранжа. [c.184]

    Пг- электронной конфигурации, а следовательно и по свойствам водорэд занимает в главной подгруппе VII группы особое положение (ом. ниже). Согласно электронной конфигурации атомов (одинаковая ip/ктура внешнего и пргдвнешнего электронных слоев) бром, иод м астат объединяют в подгруппу брома фтор и хлор относят к типи- [c.271]

    Среди исследованных соединений фосфора, бора, брома, хлора, кремния, хрома, кобальта, бария, цинка и других наиболее эффективными для бензинов оказались фосфорсодержащие вещества [176]. Эффективность действия фосфорсодержащих присадок проявляется не в уменьшении количества нагара, а в изменении его состава и свойств, способствующем устранению неполадок в работе двигателя. Например, нагары, содержащие вместо оксидов свинца его фосфаты, имеют более высокую температуру затлевания, °С  [c.175]

    Например, раствор иода в ароматических соединениях показывает закономерные изменения в ультрафиолетовых спектрах поглощения, которые могут быть связаны с основными свойствами ароматических соедине-НИ11. Так, например, максимум поглощения меняется от 297 ш,м для бензола до 306 для толуола, до 319 для. дi-к илoлa и до 333 для мезнтилена [20, 21]. Предложена теоретическая обработка реакции взаимодействия иода с бензолом, которая, как оказалось, вполне удовлетворительно объясняла полосу поглощения при 297 тц образованием иод-бензольного комплекса [231]. Аналогичное смещение в спектрах наблюдается и у растворов брома и хлора в ароматических соединениях [2, 175].  [c.397]

    К сильным окислителям принадлежат неметаллы верхней части VI и Vn групп периодической системы. Сильные окислительные свойства этих веществ объясняются больщой электроот-рицательностью их атомов. Сильнее всего окислительные свойства выражены у фтора, но в практике чаще пользуются в качестве окислителей кислородом, хлором и бромом. [c.270]

    Медь, железо, олово и многие другие мегу, л1,. сгорают в хлоре, обрпзуя соответствующие соли. Подобным же образом вза 1мод й ствуют с металлами бром н иод. Во всех этих случаях атомы металла отдают электроны, т. е. окисляются, а атомы галогенов присоединяют электроны, т. е. восстанавливаются. Эта способность присоединять электроны, резко выраженная у атомов галогенов, является их характерным химическим свойством. Следовательно, галогены — очень энергичные окислители. [c.355]

    Бромэтиленсульфокислота обнаруживает ряд интересных свойств [410]. Несмотря на то, что 6%-ный раствор свободной кислоты почти не разлагается при кипячении, попытки приготовить чистую кислоту концентрированием ее водного раствора приводят к выделению двуокиси серы и бромистого водорода. По отношению к окисляющим агентам эта кислота ведет себя подобно этиленсульфокислоте. При восстановлении цинком или магнием в кислом растворе бром легко обменивается на водород, причем сульфогруппа не вступает в реакцию  [c.191]

    К середине XIX века было известно около 60 элементов., Пять хорошо известных элементов-неметаллов - водород (И), кис/юрод (О), азот (Ы), фтор (Р) и хлор (С1) — существуют при комнатной температуре в виде газов. Два элемента являются жидкостями - металлическая ртуть (Н ) и неметаллический бром (Вг). Остальные известные к пзму времени элементы представляют собой твердые вещества с самыми разнообразными свойствами. [c.124]

    В последней работе этюй серии Шмидт и Борд описывают получение и свойства гептенов. Если синтез через бром-эфиры дал возможность получить 11. из 13 возможных гексенов, причем два углеводорода, поводимому, являлись is- и trans-изомерами, то тот же си н гез в приложениях к гептенам дал 17 из 27 возможных гептенов. При этом 10 изомеров из этого числа были получены впервые. Два из 17 также О казались суш,есТЕуюпщми в двух модификациях. [c.62]

    Этот продукт не обладал свойствами ненасыщенных кислот ряда олеиновой кислоты, и его кислотность была относительно слабой. Отшсление азотной или хромовой кислотами дало уксусную кислоту и кислоту состава ОеНгеОг, не реагирующую с бромом. Тем не менее точного строения этих продуктов дано не было. [c.152]

    В 1829 г. немецкий химик Иоганн Дёберейнер обнаружил существование нескольких групп из трех элементов (триад) со сходными химическими свойствами. В каждой триаде атомная масса среднего элемента оказалась приблизительно равной среднему арифметическому из атомных масс двух крайних элементов. Парь каждого элемента в триаде хлор, бром и иод окрашены и состоят из двухатомных молекул. Каждый из этих трех элементов соединяется с металлами и имеет соединительный вес, равный атомному весу (массе) этого элемента. Каждый элемент образует с кислородом ионы, обладающие одним отрицательным зарядом СЮ", IO3", BrOj и lOj. Атомная масса брома (80) приблизительно совпадает со средним арифметическим из атомных масс хлора (35,5) и иода (127). В табл. 7-1 указано сходство между элементами этой и других триад. [c.303]

    Особенно хорошими бакте рицидными и гербицидными свойствами обладают третичные алкилгалоидфенолы [12], такие, например, как 4-трет.бутил-2-хлорфенол, 4-трет.амил-2-хлорфепол, 4-трет.алкил-2,6-дихлорфенолы [И, 12], 4-этил-2-хлор- и 4-этил-2-бромфеноксиуксусные кислоты, 2-бутил-4-хлор- и 4-бутил-2-бром-феноксиуксусные кислоты [1]. [c.199]

    Для предсказания свойств простых веществ и соединений Д. И. Менделеев использовал следующий прием он находил неизвестные свойства как среднее а р н ф м е т 1 ч е с к о е нз свойств окружающих элемент соседей в периодической системе, справа и слева, сверху и снизу. Этот способ может быть назван методом Д. И. Менделеева. Так, например, соседями селена слева и справа являются мышьяк-и бром, образующие водородные соединения НзАз н НВг очевидно, селен может образовать соединение НгЗе и свойства этого соединения. (температуры плавления и кипения, растворимость в воде, плотность в жидком и твердом состояниях и т. д.) будут близки к среднему арифметическому из соответствующих свойств НзАз иЛВг. Так же можно определить свойства НгЗе как среднее из свойств аналогичных соединений элементов, расположенных в периодической системе сверху и снизу от селена,— серы и теллура, т. е. НгЗ н НгТе. Очевидно, результат получится наиболее достоверным, если вычислить свойства НгЗе как среднее из свойств четырех соединений НзАз, НВг, Нг5 и НДе. Данный метод широко применяется и в настоящее время для оценки значений свойств неизученных веществ. [c.38]

    В вертикальных столбцах таблицы — группах располагаются элементы, обладающие одинаковой валентностью в высших солеобразующих оксидах (она указана римской цифрой). Каждая группа разделена на две подгруппы, одна из которых (главная) включает элементы малых периодов и четных рядов больших периодов, а другая (побочная) образована элементами нечетных рядов больших периодов. Различия между главными и побочными подгруппами ярко проявляются в крайних группах таблицы (исключая VIII). Так, главная подгруппа I группы включает очень активные щелочные металлы, энергично разлагающие воду, тогда как побочная подгруппа состоит из меди Си,серебра Ag и золота Аи, малоактивных в химическом отношении. В VII группе главную подгруппу составляют активные неметаллы фтор F, хлор С1, бром Вг, иод I и астат At, тогда как у элементов побочной подгруппы — марганца Мп, технеция Тс и рения Re — преобладают металлические свойства. VIII группа элементов, занимающая особое положение, состоит из девяти элементов, разделенных на три триады очень сходных друг с другом элементов, и подгруппы благородных газов. [c.22]

    По-видимому, более обоснована другая точка зрения, согласно которой катализатор функционирует в виде смешанной соли трехвалентного кобальтга, когда бром приобретает свойства радикала  [c.402]

    Между окислительными и металлическими элементами нет резкой границы. Утрата металлического. характера неизбежно сопряжена с появлением окислительных свойств. Однако среди элементов встречаются такие, у которых металлические свойства кра 11с ослаблены, а окислительные свойства з , явлены недостаточно. Для таких элементов промежуточного характера целесообразно использовать название металлоиды. К этому классу элементов относятся по два элемента из каждого периода, а иметию бор, углерод, кремний, фосфор, германий, мышьяк, сурьма, сл.тур, висмут, полоний. У всех этих элементов проявляются если неметаллические, то во всяком случае ясно выраженные восстановительные свойства. Следует отметить, что у окислительных элементов (сера, селен, бром, под, астат) проявляются также и восстановительные свойства, и в этом отношении от них резко не отличаются следующие за ними инертные элементы—криитон, ксенон, радон. Однако инертные элементы характеризуются йодным отсутствием окислительных свойств. [c.109]

    Окислительная способность элементарных веществ. Окислительная способность веществ обусловлена способностью составляющих пх атомов притягивать к себе электроны. Окислительная активность атомов элементов является функцией энергии сродства к электрону чем она выше, или чем больше элекгроотрицатель-ность элементов, тем сильнее выражены окислительные свойства атомов. Среди различных окислительных элементов самыми энергичными окислителями являются фтор, кислород, азот, хлор и бром, атомы которых характеризуются самыми большими значениями энергии сродства к электрону. Окислительными свойствами элементарных веществ обусловлена их способность вступать в реакции взаимодействия с различными восстановнтеля.ми, в качестве которых могут выступать элементарные вещества, а также различные соединения. [c.119]

    При действии избытка фторсульфоновой кислоты [27 а] на / -ксилол при комнатной температуре образуется 4-сульфофторид. По некоторым данным, при нагревании последнего до 100° с дополнительным количеством фторсульфоновой кислоты получается с выходом 70% 2,4-дисульфофторид, однако такое строение продукта этой реакции маловероятно, так как при применении других сульфирующих агентов образуется 4,6-изомер. Пагревание / -ксилола с пиросерной кислотой ведет к образованию дисульфокислоты, которую раньще также принимали за 2,4-иаомер [87], так как ее свойства сходны со свойствами кислоты, полученной восстановлением 6-бром-ж-ксило л-2,4-дисз льфокис лоты цинком в водном растворе аммиака. Обработка указанной дисульфокислоты пятихлористым фосфором и сплавление с щелочью также приводило к 2,4-соединениям. Эта кислота получается также при сульфировании ж-ксилол-2- и 4-сульфокислот [81]. В более поздних работах [86, 88, 89], однако, показано, что дисульфокислота и соответствующий дисульфохлорид, полученный при действии на / -ксилол хлорсульфоновой кислоты, фактически являются 4,6-изомерами. Реакции же, приведшие к принятию 2,4-строения, были удовлетворительно объяснены перегруппировкой. [c.20]

    Бромная кислота в отличие от хлорной и йодной в свободном виде неустойчива, и окислительные свойства у нее проявляются гораздо сильнее, чем у хлорной, хотя по силе эти кислоты примерно одинаковы. Йодная же кислота является слабой кислотой, кристаллизуется в виде дигидрата Н104 2И20 и обнаруживает свойства многоосновной кислоты, поскольку образует соли, отвечающие замещению всех пяти атомов водорода атомами металла, например NasIOe. Это неудивительно, так как крупный атом иода координирует вокруг себя больше атомов кислорода, чем бром или хлор (6 вместо 4). Такая же тенденция проявляется в других группах периодической системы химических элементов Д. И. Менделеева (ср., например, серную и теллуровую кислоты). [c.108]

    В отличие от самого фенантрена его 9-хлор- и 9-бром-про-изводные дают с серной кислотой при 100° [822] 65—75%-ный выход одной кпслоты, а именно 3-(или 6-)сульфокислоты. Последнее доказывается восстановлением ее посредством цинка и ам-литака в феиантрен-З-сульфокислоту. Бромсульфокислота, известная под названием ЫО-бромфенантрен-З- (или 6-) сульфокислоты, подробно исследована благодаря любопытным свойствам ее водных растворов. Разбавленные растворы ведут себя, как растворы обычных электролитов, тогда как в более концентрированных растворах обнаруживаются коллоидные или анизатронные свойства, зависящие от концентрации и температуры. Переход от коллоидного состояния в жидко-кристаллические происходит в растворе данной концентрации при определенной температуре [823]. Действие света на водный раствор кислоты [824] приводит к изменению вязкости, объясняемому образованием нового соединения, строение которого неизвестно. [c.126]

    Тетрабромпроизводное (IV) также сильно окрашено, так как в этом случае атомы брома увеличивают ионизацию фенольного водорода [306]. Интенсивная окраска соответствующего тетранитросоединения, повидимому, обусловлена не только возрастанием ионизации фенола. Растворы обоих соединений желтеют при добавлении соляной кислоты. Указанные наблюдения, а также свойства замещенных фенолсульфофталеинов, представляют интерес для теории индикаторов, но этот вопрос здесь не рассматривается [307]. [c.396]

    Егце в прошлом веко было выяснено, что основное химическое свойство олсфипон — способность вступать в многочисленные реакции присоединения присоединение по двойной связи вод .[, брома, бромноватистой кислоты, спиртов и т. п. [c.63]

    Изменение состава и свойств нагара может быть достигнуто за счет введения специальных присадок в топлива и масла. В качестве противокалильных присадок были исследованы различные фосфорные соединения (фосфаты, фосфиты, фосфонаты), соединения бора, брома, хлора, кремния, хрома, кобальта, бария, цинка, кальция и др. Наиболее эффективными для топлив оказались фосфорсодержащие соединения. [c.182]

    Большинство хлор-, бром-, а также многие фтор-производные ядовиты, действуют наркотически или обладают канцерогенными свойствами. [c.187]


Смотреть страницы где упоминается термин бромом свойства: [c.202]    [c.458]    [c.294]    [c.35]    [c.148]    [c.383]    [c.199]    [c.102]   
Производство сероуглерода (1966) -- [ c.29 , c.53 , c.54 , c.55 , c.57 ]




ПОИСК







© 2024 chem21.info Реклама на сайте