Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стерический примеры

    Интересный пример стерического затруднения при каталитической гидрогенизации представляют углеводороды (I) — (V). 1-(1-нафтил)-цикло-гексен-1 (I) гидрогенизируется в 2 раза медленнее, чем углеводороды (II) — (V). Было предложено несколько объяснений этого явления. Самое последнее предположение основано на признании, что гидрогенизации предшествует плоскостная адсорбция на катализаторе. Молекула (I) лишена копланарности вследствие отталкивания между атомами водорода, находящимися у углеродных атомов 2 и 8, которое препятствует свободному вращению вокруг связи между 1 и 1 атомами углерода [91]  [c.246]


    Молекула Стерическое Предсказываемая геометрия Пример число [c.492]

    Пространственные стерические) препятствия, обусловленные неравноценностью отдельных частей молекул, могут резко снизить скорость реакции. Вот несколько примеров. [c.116]

    Обратимся теперь к молекулам первой группы — дифенилу и его замещенным в мета- и лара-положениях к связи между бензольными кольцами, когда заместитель не может оказывать заметного стерического эффекта, т. е. не может заметно увеличить угол мин по сравнению с дифенилом. Из рис. 10.8, а на примере [c.195]

    В качестве примера можно рассмотреть ионообменные свойства монтмориллонита таким образом, что составляющие его поочередно расположенные пластинки оксида кремния и оксида алюминия связаны одно- и двухзарядными катионами Ыа+, К+, Са +, Mg +. В гидратированном состоянии между этими слоями диффундируют и другие катионы, обменивающиеся с перечислен ыми. Считают, что способность замещения ионов зависит от природы сил, связывающих ионы в кристалле, концентрации, заряда и размеров обмениваемых ионов, стерической доступности ионов решетки, механизма растворения. [c.118]

    Другими ионами кальций в этой системе заменить нельзя. Ионы ртути, цинка, кадмия связываются в областях фиксации кальция и вызывают ингибирование ферментной активности этот эффект исчезает при добавлении в смесь ионов кальция. При замещении иона кальция на ион стронция сохраняется активность по отношению к гидролизу ДНК, но замещение ионом бария ведет к полной инактивации, как считают, вследствие геометрических искажений центра связывания кальция, которые передаются и на область связывания нуклеотида. Стерическое соответствие фермент — субстрат при этом утрачивается и активность резко падает. Эти примеры говорят о большом значении геометрической структуры, создаваемой и поддерживаемой ионом в системе фермент—ион—субстрат для правильного протекания ферментативной реакции. [c.364]

    Приведем пример, свидетельствующий о необходимости большой осторожности при использовании химических превращений для установления цис-транс-конфигурации соединений. Причина в том, что нередко химические превращения, которые формально протекают, как простые реакции замещения, не затрагивающие стерического центра (в частности, двойной связи), на самом деле осуществляются за счет последовательно протекающих реакций присоединения и отщепления. [c.178]

    Причин отклонений скоростей реакций от расчетных значений может быть несколько и самых разнообразных. И, на первый взгляд, наиболее простой случай относится к медленным реакциям. Для таких реакций можно допустить, что столкновения, кото-р ые считаются эффективными, оказываются в действительности неэффективными. Энергия столкнувшихся молекул достаточна, а реакция не осуществляется. Это происходит чаще всего со сравнительно сложными молекулами. Для такого типа молекул следует допустить, что имеет значение не только энергия столкнувшихся молекул, но и направление столкновения, угол, под которым произошло столкновение, место соприкосновения молекул и т. п. Иначе говоря, здесь должен проявляться так называемый стерический или пространственный фактор. Особенно часто такого типа реакции наблюдаются при взаимодействии органических молекул. В качестве простого примера, поясняющего влияние стерического фактора, можно привести реакции гидролиза галоидоалкилов щелочами  [c.16]


    Стерическое направление ферментативных реакций, протекающих стереоспецифично, начиная от исходных веществ и кончая оптически чистыми хиральными продуктами, также можно объяснить с помощью аналогичных представлений, поскольку трехмерная структура комплекса фермент — субстрат задает определенное направление, по которому реагент атакует адсорбированную молекулу и, следовательно, определяет абсолютную стереохимию продукта. В качестве примера можно привести стереоспецифическое восстановление пировиноградной кислоты до и-молочной кислоты, катализируемое лактатдегидрогеназой. Процесс изображен на приведенной ниже схеме  [c.342]

    Малая чувствительность NO2 к стерическим препятствиям приводит к тому, что он может атаковать не только свободные положения ароматического кольца, но и те, которые, уже заняты заместителем, в результате чего происходит так называемое ипс о-за-м е щ е н и е. Примером может служить используемое в пром.ыш-ленности нитрование 4-гидрокси-1,3-бензолдисульфокислоты, в результате которого вытесняются сульфогруппы и получается [c.83]

    На примере присоединения H N подробно исследована кинетика присоединения анионов к карбонильным соединениям, а на примере реакции с бисульфитом — стерическое влияние заместителей при атоме углерода карбонильной группы на реакцию присоединения. Имеются доказательства того, что атакующим агентом при образовании производных бисульфита в [c.205]

    На следующем этапе исследования высказанные выще соображения были проверены на примере таких циклобутанов, строение которых способствует преобладанию одного из обсуждаемых типов адсорбции. Одним из таких соединений является гел -диметилциклобутан [127]. Из-за стерических препятствий, создаваемых геминаль-ной группировкой, плоскостная адсорбция геж-диметил-циклобутана четырьмя атомами цикла без сильной деформации молекулы практически невозможна. Поэтому можно ожидать, что не только на так называемых дублетных катализаторах (Ru, Rh, Ir), но и на Pt и Pd гидрогенолиз геж-диметилциклобутана по связи а будет незначительным или не будет проходить вообще. В то же время гидрогенолиз по связи б представляется столь же незатрудненным, как и в случае моноалкилциклобу-танов. Эксперимент показал, что действительно единственным продуктом первичного гидрогенолиза геж-диме-тилциклобутана на всех изученных катализаторах является 2,2-диметилбутан, т. е. расщепляется лишь неэкра-нированная связь б. Таким образом, подтвердился прогноз, сделанный при рассмотрении моделей Стюарта — Бриглеба, о том, что связь а геж-диметилциклобутана недоступна для гидрогенолиза. [c.116]

    Это исследование было задумано для проверки одного из положений мультиплетной теории Баландина, согласно которому циклогексановое кольцо может дегидрироваться только при его плоском расположении на поверхности платинового катализатора. Однако для 2-ме-тилбицикло [2.2.1] гептана это невозможно по стерическим соображениям. При 300°С водород действительно не выделялся, а поглошался. Поэтому предположили [135], что в исследуемой бициклической системе разрывается пятичленное кольцо. Это было подтверждено экспериментально на примере самого циклопентана. [c.122]

    Применение метода ОВЭП к конкретным многоатомным молекулам начинается с подсчета числа неподеленных электронных пар их цедтраль-ного атома и числа связанных с ним атомов., Будем называть суммарное ч"исло атомов, связанных с центральным атомом молекулы, и его неподеленных электронных пар стерическим числом (СЧ). Если у центрального атома А нет неподеленных пар электронов и его СЧ определяется просто числом связанных с А атомов X, то наблюдаемое геометрическое строение молекул согласуется с указанным на рис. 11-2. В каждом из примеров, при- [c.491]

    Примерами молекулярных систем со стерическим числом 8 и 9 являются Тар8 и РеНд" . Эти комплексные ионы имеют предсказываемое для них методом ОВЭП строение квадратной антипризмы и тригональной призмы с тремя шляпками соответственно. Стерические числа выше 9 встречаются редко и не обсуждаются здесь. [c.498]

    Изучение процесса термической диссоциации на примере таких простых по химическому строению и составу соединений, какими являются алканы, важно для выяснения величин энергий индивидуальных химических связей органических соединений, а также решения тонкого вопроса о взаимном влиянии связей в молекуле с различной длиной и строением углеродной цепи. Весьма заманчиво использовать изучение термического распада регулярно построенных алканов в целях химической кинетики — выяснения влияния длины углеродной цепи и ее строения на динамические параметры реакций распада (энергия активации, стерический фактор и др.) и построения моделей или механизма превращений. Дястаточно напомнить, что учение о мономолекулярных реакциях и теория этих процессов — большой раздел химической кинетики, который в значительной степени опирается на экспериментальное изучение реакций термической диссоциации различных соединений, в том числе и углеводородов. [c.3]


    Затруднения при реакциях, возникающие вследствие введения заместителей в молекулу и приводящие к сниженик> скорости реакции, справедливо связывали, геометрически с фактом, что атомы и радикалы занимают определенный объем в пространстве и в силу этого способны экранировать функциональные группы, непосредственно участвующие в реакции. Так, например, действуют заместители в орто-положении. Позднее нашли кинетическое проявление внутренней водородной связи, которое состояло в том, что нитрогруппа в о-положении к гидроксильной группе в бензольном кольце, полностью парализует реакционную способность последней за счет образования внутренней водородной связи. Таким образом, стерические препятствия могут выражаться не только в пространственной экранировке, но и в более толком взаимодействии, как в вышеериведенном примере. [c.165]

    Помимо эффекта сближения и эффекта ориентации следует учитывать также третий фактор — стерическое сжатие. Тем не менее эти факторы не объясняют повыщення констант скорости реакций ио крайней мере еще в 10 —10 раз. Среди возможных объяснений следует упомянуть электростатическую стабилизацию переходного состояния и снятие напряжения в основном состоянии. Следует учесть и такой фактор, указанный Бендером, как замораживание субстратной специфичности . Примером этого служит ароматическая полость в, а-химотрипсине (см. ниже), создающая благоприятную стерическую ситуацию для боковой цепи аминокислоты субстрата. [c.215]

    Пример 1. Определить общее число столкновений молекул Аи 3 в I см за 1 сек. Мольное содержание компонент в смеси равное. Массы молекул и тд также одинаковы и составляют тл = тв= 5,3.10 кг (например, сера 5 и кислород О2) одинаковы и- радиусы молекул = гд = 3,5-10 сж. Давление в смеси Р = = 1 атм я 10 н/м , температура 2000° К- Выделить долю активных соударений при значениях энергии активации = 40 ООО ккал1моль и Е = 20 ООО ккал/кмоль и определить соответствующие скорости реакции (считая стерический фактор равным 0,1). [c.120]

    И, наконец, п-диметоксибензол (IX), не содержащий нуклеофильных групп, способных катализировать сольволиз ангидрида (VII) по нуклеофильному или общеосновному механизмам, ингибирует реакцию вследствие образования КПЗ с константой устойчивости 1,1 М" . Вероятные причины этого — стерические затруднения для взаимодействия метанола с реакционным центром в молекуле ангидрида (VII), находящейся в комплексе, а также уменьшение эффективного положительного заряда на карбонильном углероде в сольволизуемой молекуле (VII) при переносе электрона от донора (IX). (Аналогичный пример, показывающий общность данного явления, — это ингибирование [c.77]

    Однако реакция разложения HI — это один из немногих примеров реакций, для которых теория столкновений дает удовлетворительное истолкование экспериментально найденным константам скорости. Для многих других газовых реакций, а также для реакций в растворах теория столкновений зачастую дает неудовлетворительные результаты, иногда отличающиеся от эксперим ентальных данных чуть ли не в 10 раз. Некоторое уточнение теории столкновений достигается введением так называемого стерического фактора Р (фактора вероятности). Фактор Р отражает то обстоятельство, что столкновение является эффективным, только если оно происходит при некотором критическом взаимном расположении молекул (например, для простых молекул перпендикулярно оси связи). Значение Р особенно мало для больших молекул, так как вероятность попадания в реакционный центр тем меньше, чем больше размеры молекулы. В рамках теории столкновений точный количественный расчет стерического фактора Р невозможен. [c.171]

    Одним из примеров таких реакций, где одновременно имеют место и сольватационные эффекты, являются реакции Меншуткина, т. е. реакции моногалогенидных алкилов с аминами, которые проводятся в различных растворителях. Роль давления в изменении констант скоростей реакций Меншуткина, где исходные компоненты отличались по своей молекулярной конфигурации и, следовательно, реакции между ними обладали различными стерическими факторами, была изучена при 60°С и давлениях до 303,9 МПа в растворе ацетона. Из этих опытов выявилась четкая закономерность относительно ускорения реакции и пространственной затрудненностью ее осуществления. [c.190]

    Рассмотрим влияние внутреннего вращения молекул на константу Генри при их адсорбции на графитированной термической саже и возможности решения соответствующей хроматоскопической задачи — определения параметров потенциальной функции внутреннего вращения на основе хроматографических измерений константы Генри при разных температурах. Сделаем это на примере семейств молекул, сходных по строению их фрагментов, способных к внутреннему вращению, или по природе связи между этими фрагментами, но различающихся влияющими на внутреннее вращение стерическими факторами. Рассмотрим гакже влияние природы связи, вокруг которой происходит внутреннее вращение. [c.190]

    Пример 12. Рассчитать предэкспоненциальный мнол<итель и стерический фактор для реакции С2Н4 + С1- С2Н4С1, протекающий при температуре 298 К, используя модель активированного комплекса и [c.320]

    Пример. Обсуждается пространственное расположение заместителей в замещенном стироле. Спектр (рис. 5.27, б) имеет сигнал двух эквивалентно связанных ароматических протонов с б = 6,6 м. д., два сигнала одного олефинового протона с б = 6,22 м. д. и б = 5,73 м. д. Сигналы в области алифатнчески связанных протонов вызваны четырьмя СНз-группами. Три из них связаны с ароматическим кольцом и не претерпевают расщепления. Тем не менее, очевидно, две СНз-группы эквивалентны, а третья экранирована иначе. Сигнал четвертой СНз-группы расщепляется прежде всего на дублет (У = 6 Гц) и указывает на соседство протона. Вот почему эта СНз-группа должна находиться в Р-по-ложении к олефиновой части молекулы стирола. Дополнительное заметное расщепление порядка 1 Гц вызвано дальним взаимодействием протонов СИд-группы с а-протоном олефиновой части молекулы. цис-транс-Положеиие заместителей относительно винильной группы стирола находят при рассмотрении значения константы расщепления для взаимодействия двух олефиновых протонов. Сигнал а-протона вследствие взаимодействия с Р-протоном расщепляется на дублет (У 11 Гц). Это свидетельствует о цис-положении (см. рис. 5.26). Дальнее взаимодействие с Р-СНз-группой (квадруплет с У = 1 Гц) здесь не разрешается, но делается заметным по уширению обеих линий дублета. Олефиновое цис-взаимодействие также находит свое отражение в сигнале олефинового Р-протона, однако на него накладывается происходящее одновременно взаимодействие с Р-СНз-груп-пой (квадруплет), так что в совокупности появляются восемь линий (см. схему расщепления в увеличенном масштабе на рис. 5.27, б). Далее, интересен необычный сдвиг сигналов СНз-групп, связанных с олефиновой частью молекулы, в сторону более сильного поля. Он вызван анизотропным влиянием бензольного кольца. Вследствие нахождения двух СНз-групп в ор/по-положении здесь (в отличие от обычного стирола) копланарное расположение олефинового радикала и бензольного кольца стерически затруднено. Из-за поворота плоскостей радикала и кольца относительно друг друга Р-СН,-группа оказывается вне плоскости бензольного кольца (под ней). При этом она попадает в область положительных сдвигов ароматического кольца, т. е. ее сигнал сдвигается в сторону более сильного поля. В изомерном транс-соединении, несмотря на этот поворот, Р-СНз-группа находится вне положительного конуса анизотропии кольца, и поэтому ее сигнал сдвинут в сторону более сильного поля примерно на 0,5 м. д. В рассматриваемом случае установить цис-транс-положение заместителей можно на основании этого различия сдвигов.. Это различие позволяет также просто и уверенно определить количественное соотношение цис-транс-изомеров в смеси. Соотношение интенсивностей сигналов Р-СНз-группы непосредственно дает мольные соотношения изомеров в смеси. [c.263]

    Резкое понижение скорости может быть связано со стерическим затруднением, прямой преградой нуклеофильной атаке. Другим примером стерического затруднения служат 2,6-диза-мещенные бензойные кислоты, которые с трудом поддаются этерификации независимо от того, проявляют ли заместители в положениях 2 и 6 резонансный эффект или эффект поля. Если же 2,6-дизамещенпую бензойную кислоту удается этерифи-цировать, полученный сложный эфир трудно гидролизовать. [c.362]

    Группа O OR может замещать и другие уходящие группы. Алкилхлорсульфиты R0S0 1 и другие производные серной, сульфоновых и других неорганических кислот при обработке карбоксилат-ионами дают соответствующие эфиры. Использование диметилсульфата [572] или триметилфосфата [573] позволяет метилировать стерически затрудненные группы СООН. В случае некоторых субстратов карбоновые кислоты оказываются достаточно сильными нуклеофилами, чтобы реакция пошла примерами таких субстратов могут служить триалкил-фосфиты P(0R)3 (574] и ацетали диметилформамида [575]. [c.133]

    Здесь также образуется енол, который таутомеризуется в конечный продукт. Механизм показан на примере р-кетокислоты [357], но вполне вероятно, что реакция идет аналогичным образом и в случаях малоновых кислот, а-цианокислот, а-нитро-кислот и р,7-ненасыщенных кислот [358], для которых можно представить подобное шестичленное переходное состояние. Некоторые а,р-ненасыщенные кислоты также декарбоксилируются по указанному механизму, предварительно изомеризуясь в р.у-изомеры [359]. Имеются доказательства того, что соединение 30 и сходные бициклические р-кетокислоты устойчивы к декарбоксилированию [360]. В подобных соединениях образование шестичленного циклического переходного состояния невозможно по стерическим причинам, а если бы оно и было возможно, то [c.471]

    Известны также примеры инверсии при А [13]. Однако во многих других случаях происходит рацемизация как при А или В, так и при обоих атомах [14]. При этом не всегда необходимо, чтобы в продукте имелись две стерические возможности для того, чтобы исследовать стереохимию при атомах А или В. Так, в большинстве перегруппировок Бекмана (реакция 18-20) мигрирует группа, находящаяся в гране-положении по отношению к гидроксильной группе (называемая обычно антм-груп-пой)  [c.114]

    Мы говорили выше об эффективности простьк качественных концепций (типа стерических препятствий, индутсгивного эффекта, эффектов сольватации/десольватации и т.п.), повседневно применяемых в органической химии. Наиболее распространенные из них появились на свет как обобщения обширного эмпирического материала, накапливавшегося на протяжении десятилетий трудами поколений химиков всего мира. Квантовая. х]4мия способна на теоретической, неэ.мпирической основе порождать концепции такого же уровня простоты и удобства в применении. Выразительными примерами могут служить концепция ароматичности Хюккеля (правило 4л +2 ) и правила Вудворда—Хоффмана (сохранение орбитальной симметрии). Мы беремся утверждать, что вклад этих результатов в развитие органической химии несравненно более значителен, чем вклад всех достижений расчетных методов, вместе взятых. Их сила именно в простоте и общедоступности применения, в том, что они позволяют с единой точки зрения не только интерпретировать огромный фактический материал, но и уверенно предсказывать новые явления. Прийти к подобным концепциям на чисто эмпирической основе, а тем [c.547]


Смотреть страницы где упоминается термин Стерический примеры: [c.290]    [c.108]    [c.286]    [c.84]    [c.30]    [c.100]    [c.141]    [c.363]    [c.66]    [c.319]    [c.337]    [c.390]    [c.351]    [c.114]    [c.486]    [c.486]    [c.80]    [c.127]    [c.212]    [c.271]    [c.386]   
Кинетика и катализ (1963) -- [ c.95 , c.99 ]




ПОИСК





Смотрите так же термины и статьи:

Пример расчета стерического фактора по теории переходного состояния

Стерическое ускорение ионизации примеры



© 2025 chem21.info Реклама на сайте