Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний отделение

    Осаждение гидроокисей. Осаждение гидроокисей широко применяется и в качественном, и в количественном анализе для открытия, отделения и определения катионов. В некоторых случаях разделение катионов основано на амфотерном характере некоторых окислов металлов. Так, например, железо отделяют от ванадия, молибдена, алюминия и т. п. элементов, обрабатывая раствор избытком ш,елочи. В других случаях разделение элементов основано на различной растворимости гидроокисей. Так, при анализе многих руд, металлов, шлаков, известняков и т. п. материалов, для отделения алюминия и железа от марганца, магния, кальция и других элементов используют то обстоятельство, что гидроокиси большинства трехвалентных металлов значительно менее растворимы, чем гидроокиси многих двухвалентных металлов. Слабые основания, как, например, гидроокись аммония, пиридин (С Н Н) и др., количественно осаждают гидроокиси алюминия и железа, тогда как ионы кальция, магния и многих Других двухвалентных элементов остаются в растворе. [c.94]


    Осаждение оксихинолином применяют для определения магния в присутствии алюминия и железа без предварительного отделения этих элементов, а также для определения магния в присутствии кальция. В первом случае магний осаждают оксихинолином из щелочного (N OH) раствора, содержащего виннокислые соли. Железо и алюминий образуют в щелочном растворе с виннокислым натрием устойчивые комплексные соединения, из раствора которых оксихинолин не осаждает этих элементов. Отделение от кальция основано на сравнительно хорошей растворимости оксихинолината кальция в горячем аммиачном растворе, в то время как оксихинолинат магния при этих условиях не растворяется. Последний метод не имеет особых преимуществ по сравнению с обычным методом отделения магния от кальция, так как и в этом случае требуется двукратное [c.398]

    Очевидно, что для каждого элемента наименьшим будет первый ионизационный потенциал, так как отделение второго электрона производится уже не от нейтрального атома, а от положительно заряженного иона, что требует затраты большего количества энергии. Поэтому каждый следующий ионизационный потенциал всегда будет больше предыдущих. Однако, наряду с таким постепенным возрастанием их, можно легко обнаружить и наличие резких скачкообразных увеличений, как, например, при переходе от первого ко второму потенциалу для лития или натрия, при переходе от второго к третьему потенциалу для бериллия или магния. В табл. I эти скачки показаны жирными вертикальными линиями. [c.34]

    К сухому остатку приливают соляную кислоту и нагревают до полного растворения безводных сернокислых солей. Полученный раствор содержит сернокислые и хлористые соли всех металлов, входивших в состав силиката. В случае необходимости этот раствор можно использовать для определения суммы полуторных окислов, железа, титана, кальция и магния обычными методами, описанными выше, а в фильтрате после отделения магния определить щелочные металлы. [c.470]

    В производстве микросферических природных и синтетических катализаторов и адсорбентов суспензию получают при осаждении гелеобразующего раствора жидкого стекла раствором сернокислого алюминия (или сернокислого магния). Эмульсией является водный раствор нейтрализованных контактов. Приготовлением суспензии занимается формовочно-промывочное отделение, эмульсии — узел регенерации. [c.35]

    Раствор кислоты, подлежащий анализу, количественно переносят в мерную колбу, доводят раствор до метки и тщательно перемешивают. С помощью пипетки отбирают пробу кислоты и переносят в катодное отделение ячейки для титрования. Предварительно в оба отделения ячейки наливают по 20 мл раствора КС1 и добавляют 4—5 капель индикатора в катодное отделение. Опускают рабочий и вспомогательный электроды, устанавливают ячейку на магнитную мешалку. Включают ее, выбирают скорость вращения такой, чтобы магнит равномерно вращался в центре катодного отделения (центровка ячейки). Присоединяют ячейку к общей цепи (при разомкнутом ключе), соблюдая полярность (катод — ), с помощью зажимов ( крокодилов ). [c.265]


    При разложении смешанного алкоголята магния водой с выделением спирта образуется нерастворимая в воде осно ная соль магния. Это затрудняет отделение эфирного раствора спирта и последуюш,ую экстракцию эфиром водного слоя. Для перевода основной соли в растворимую среднюю обычно при разложении пользуются разбавленными растворами (5—10%) серной или соляной кислот. В случае третичных спиртов необходимо учитывать легкость замеш,ения гидроксильной группы на галоген при взаимодействии их с галогеноводородными кислотами, а также легкую дегидратацию под действием серной кислоты. Поэтому при синтезе третичных спиртов разложение реакционного комплекса рекомендуется проводить насыщенным раствором хлористого аммония. [c.216]

    Последующее осаждение. В некоторых случаях выделение малорастворимых осадков возможно только в присутствии осадка другой соли. Так, при отделении кальция от магния действием оксалата можно легко превысить произведение растворимости оксалата магния, но осадок не будет выпадать. Только после осаждения оксалата кальция происходит медленное образование осадка соли магния. [c.206]

    Раствор, приготовленный из ацетата целлюлозы, растворителя (ацетона и воды) и агента набухания (перхлората магния, иногда формамида) в соотношении 22,2 66,7 10,0 и 1,1% (масс.), поливается тонким слоем на стеклянную пластину, подсушивается в течение нескольких минут и затем погружается в холодную воду при температуре около О °С, где выдерживается в течение 1 ч до отделения пленки от подложки. За это время происходит практически полное формование мембраны. В начальной стадии формования ацетон быстро испаряется с поверхности отлитой пленки и на ней образуется гелеобразный слой, препятствующий испарению растворителя с более глубоких слоев раствора полимера Таким образом, в момент погружения в воду, являющуюся осадителем для данного раствора, система представляет собой желированную оболочку, внутри которой находится раствор. В момент соприкосновения с водой гель затвердевает, сохраняя очень тонкую структуру пор поверхностного слоя. Раствор полимера, находящийся внутри оболочки, коагулирует медленнее, так как диффузия воды сквозь поверхностный слой затруднена. При этом водой вымывается как растворитель, так и порообразователь. [c.48]

    Кроме хроматографического разделения ионов одного и того же знака заряда методом ионного обмена в динамических условиях можно отделять ионы одного знака от ионов другого знака. Примером такого разделения является отделение на катионите катионов железа(1И), алюминия(П1), кальция (И) и магния (И), мешающих определению фосфат-ионов при анализе природных фосфатов. [c.322]

    Атомы магния и кальция (вторая группа периодической системы) легко переходят в состояние двухзарядных положительных ионов, т. е. сравнительно легко отделяют по два электрона, но отделение от них третьих и следующих электронов требует затраты гораздо больших количеств энергии и не достигается при химических реакциях. Очевидно, что более легко отделяемые электроны расположены в атоме дальше от ядра. [c.32]

    Прн сульфировании фенола получается смесь о- и н-фенолсульфо кислот, которые можно разделить с помощью их бариевых и магние вых солей. Бариевая соль орто-кислоты менее растворима, чем соот ветствующая соль пара-кислоты, и выкристаллизовывается первой после ее отделения пара-соединение выделяют в виде магниевой соли [c.559]

    Используя различие в величинах pH, требуемых для осаждения разных оксихинолинатов, можно проводить разделение некоторых катионов. Например, для разделения алюминия и магния осаждение 8-оксихинолином ведут сначала в присутствии ацетатной буферной смеси (СНзСООН + Hs OONa), поддерживающей постоянный pH раствора, равный Как видно из приведенных данных, при этом pH будет осажден только оксихинолинат алюминия, тогда как останется в растворе. После отделения осадка в фильтрате создают аммиачную среду, в этих условиях осаждается оксихинолинат магния. [c.127]

    Осадок гидроокиси железа, полученный при действии избытка N1 , адсорбирует гидроксильные ионы, которые, в свою очередь, могут притягивать катионы кальция, магния и др. Поэтому осадок оказывается загрязненным названными ионами. При осаждении гидроокиси железа (без применения избытка NH OH) в слабокислой среде осадок адсорбирует Нойоны ионы водорода обусловливают положительный заряд частиц. Такой осадок слабо адсорбирует катионы, поэтому для отделения железа от кальция и магния лучше вести осаждение без избытка гидроокиси аммония. Наоборот, осадок, полученный в слабокислой среде, сильнее адсорбирует анионы, как, например, 80 . Поэтому для отделения железа от ионов 50 - следует применять избыток гидроокиси аммония. [c.61]


    Гидроокись аммония обычно применяют в присутствии аммонийных солей, которые значительно уменьшают ее диссоциацию. Наиболее часто этот метод применяется при отделении алюминия, железа и титана от кальция, магния и ряда других катионов. Значительные затруднения при этом вызывает марганец, который при малом избытке гидроокиси аммония не осаждается в виде Мп(0Н)2, однако под влиянием кислорода воздуха окисляется и частично осаждается в виде гидрата окисла высшей валентности. Поэтому при большом количестве марганца осаждение его гидроокисью аммония ведут в присутствии окислителей, например надсернокислого аммония. В этом случае марганец количественно переходит в осадок вместе с алюминием и железом. Осадок гидроокисей алюминия и железа обычно захватывает часть кальция и магния. Поэтому при точных анализах осадок, после отделения его фильтрованием, растворяют в соляной кислоте и повторяют осаждение. Чтобы уменьшить переход в осадок кальция и магния, при осаждении лучше избегать значительного избытка гидроокиси аммония с этой целью осаждение удобно вести в присутствии индикатора, например метилкрасного, который при pH 5 изменяет цвет от красного к желтому. [c.96]

    Для определения щелочных металлов после разложения плавиковой и серной кислотами сначала необходимо отделить соли железа, алюминия, титана, кальция и магния. Для отделения солей первых четырех элементов раствор нагревают до кипения и приливают к нему смесь растворов гидроокиси аммония и углекислого аммония. При этом образуется осадок, [c.470]

    Работа описанными выше методами.довольно длительна. Много времени затрачивается на многократное удаление аммонийных солей, так как присутствие последних мешает количественному отделению кальция и магния. Значительно быстрее можно выполнить определение следующим образом. Силикат разлагают плавиковой кислотой (без приливания серной кислоты). При выпаривании досуха большая часть кремния удаляется в виде щелочные металлы остаются в виде кремнефтористых солей, а остальные—в виде фтористых солей. Остаток обрабатывают водой и гидроокисью кальция. При этом кремнефтористые соли щелочных металлов превращаются в гидроокиси  [c.474]

    Следовательно, для полноты осаждения Ре(ОН)з необходимо поддерживать в растворе pH > 3,6. Однако задача заключается не просто в количественном осаждении железа, а в отделении его от магния, присутствующего в растворе. [c.157]

    Например, для отделения алюминия от магния с помощью 8-окси-хинолина осаждение А1 (И1) проводят в слабокислой среде ацетатного буфера, в которой Mg(II) оксихинолином не осаждается. После отделения алюминия раствор нейтрализуют аммиаком и осаждают оксихинолинат магния. [c.163]

    Для максимального сокрашения объема илов, пульп после коагуляции и регенерационных растворов предназначалось специальное отделение дополнительной переработки. В этом отделении производились следую-шие операции нейтрализация растворов и осаждение солей кальция и магния отделение осадков после нейтрализации упаривание нейтрализованного раствора кристаллизация упаренного раствора отделение кристаллов NaNOa на центрифуге цементирование жидких и твердых остатков для захоронения. [c.216]

    Определение цинка в хлориде олова. 1 —10 г соли хлорида олова растворяют в возможно малом количестве 6 iV H l, затем припивают избыток 2 N раствора NaOH до растворения осадка. Дальнейший порядок прибавления сульфата магния, отделения и растворения осадка, колориметрирования раствора такой же, как и при анализе свинца. [c.273]

    В качестве метода изоляции хлоргидринов Brooks предложил добавление к их водному раствору нейтральных солей (хлоридов или сульфатов натрия или магния), отделение образовавшегося маслянистого слоя, а затем экстракцию последнего с помощью растворителя, не смешивающегося с водой, например бензола или четыреххлористого углерода. Применение бензола для отделения от воды предлагал также Kirst [c.534]

    Если нужно определить только один свинец, то можно поступать следующим образом. Навеску в 1—5 г тонкоизмельченного шлака обрабатывают в платиновой чашке смесью плавиковой и серной кислот, вторичным выпариванием удаляют всю плавиковую кислоту, остаток извлекают водой, отфильтровывают нечистый сернокислый свинец, очищают его уксуснокислым аммонием и определяют любым методом. При полном анализе к 1—5 г измельченного в агатовой ступке материала прибавляют концентрированной соляной кислоты (плотн. 1Д9), дважды выпаривают досуха, чтэбы перевести кремнекислоту в нерастворимое состояние, затем извлекают водой, фильтруют и промывают горячей водой до удаления свинца. В фильтрате осаждают свинец, медь и т. д. сероводорэдом и полученный осадок, при желании, исследуют дальше. В фильтрате кипячением удаляют сероводород, окисляют перекисью водорода, точно нейтрализуют и в охлажденном растворе известным образом осаждают железо и алюминий в виде основных уксуснокислых солей. Осадок отфильтровывают, прокаливают и взвешивают в виде окисей. В уксуснокислом или слабокислом растворе минегальной кислоты осаждают цинк сероводородом в виде сернистого цинка и после фильтрования определяют его отдельно (см. стр. 556). В фильтрате, после удаления сероводорода кипячением и окисления бромной водой, осаждают аммиаком и щавелевокислым аммонием кальций и марганец, фильтруют и прокаливают. В фильтрате еще остается определить магний. Отделение окиси кальция от закись-окиси марганца достигается растворением окислов в соляной кислоте и осаждением марганца сернистым аммонием в слабоаммиачном растворе. После прокаливания осажденного и отфильтрованного серии- [c.307]

    Смеси кальция с магнием. Отделение кальция от магния можно проводить различными способами. Разделение [61(87)] всегда возможно, но отнимает много врёмени. Для целей разделения целесообразно применять ионообменные смолы [54(8)]. Герке [54(5)] предлагает отделять Са в виде сульфита. Можно осаждать Са классическим способом в виде оксалата и после озоления и растворения осадка комплексонометрически оттитровывать. В случае очень малого содержания Са осадок оксалата кальция можно растворить в кислоте, прибавить ЭДТА и после подщелачивания раствора оттитровать избыток ЭДТА. Однако после осаждения кальция в виде оксалата изменение окраски эриохрома черного Т при титровании Mg в фильтрате бывает недостаточно резким, поэтому количество применяемых оксалат-ионов ограничивают до минимума. [c.165]

    Более того, малая вероятность его вытекает из слоистого характера решетки доломита [136]. Как видно из рис. 135, здесь каждый слой ионов магния отделен от слоя катионов кальция прослойкой анионов С0 . Поэтому распад доломита на Mg Os и СаСОз, если он и происходит, то может осуществляться только в очень тонких поверхностных слоях порядка молекулярных размеров. [c.434]

    В качестве примера описывается оп-ределение магния в доломитизи-рованном известняке или доломите. Растворение навески и отделение кальция описано в 41. Для определения магния используют соединенные фильтраты после первого и второго осаледения щавелевокислого кальция. [c.170]

    Катиониты КБ-2-7П и КБ-2-1 ОН выпускаются в Na+ -форме. Они предназначены для сорбщш антибиотиков из нативных растворов, разделения аминокислот, очистки никелевых и кобальтовых растворов от железа, извлечения никеля из полупродуктов, сорбции поливалентных металлов 1з растворов и пульп в гидрометаллургической промышленности, очистки рассолов хлористого натрия от ионов кальция и магния, отделения катионов высшей валентности от катионов щелочных металлов и для ряда других процессов, основанных на обмене катионов на карбоксильных катионитах. [c.14]

    После отделения осадка весь присутствовавший в анализируемом растворе Mg + находится в фильтратах после обоих осаждений Са2+ и в промывных водах. Непосредственно вести осаждение ею из такого сильно разбавленного раствора нельзя. Этому мешает также и то обстоятельство, что при осаждении Са в раствор вводят очень много солей аммония, в частности оксалата. Поэтому перед осаждением магния раствор упаривают в стакане до начала кристаллизации солей, прибавляют концентрированную HNOa, закрывают стакан часовым стеклом (во избежание разбрызгивания) и продолжают нагревать до прекращения бурной реакции (соли аммония разлагаются, СгО -ионы окисляются до СОз). [c.186]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Катализатор получают пропиткой носителя водным насыщенным раствором нитрата никеля, содержащим растворенную в нем соль магния, с последующими кипячением его в течение 5—30 мин, отделением избытка раствора и теплообработкой воздухом [c.82]

    Рассол, полученный в результате подземного выщелачи- ния каменной соли, поступает в отделение очистки рассол. для удаления солей кальция и магния. В отделении абсорб  [c.256]

    Отделение мешающих элементов. Практическое значение имеют методы определения алюминия, в присутствии железа и титана, разделение алюминия и магния, алюминия и меди и др. Для определения алю , иния в первом случае предварительно осаждают железо оксихинолином из сильно уксуснокислого раствора (20% СН3СООН), содержащего винную кислоту. Винную кислоту приливают для того, чтобы связать титан в ком плекс и предотвратить гидролиз его солей. После отделения железа осаждают оксихинолином титан. Осадок оксихинолината титана образуется только в слабокислом растворе при рН>5, однако в этом случае может также осаждаться и алюминий. Для удержания алюминия в растворе туда приливают раствор щавелевокислого аммония (или малоновой кислоты). К фильтрату после осаждения титана приливают избыток гидроокиси аммония (до щелочной реакции) и осаждают алюминии оксихинолином. Этим методом можно определить все три элемента при их совместном присутствии. [c.185]

    Присадку ИХП-388 получают, обрабатывая оксидом магния смесь алкилфенола и продукта взаимодействия сульфида фосфора (V) с сополимером изобутилена со стиролом. Процесс состоит из стадий получения сополимера изобутилена со стиролом, обработки сополимера сульфидом фосфора (V) (фосфоросернение), нейтрализации смеси алкилфенола и фосфоросерненного сополимера оксидом магния и отделения механических примесей центрифугированием. В синтезе используют изобутан-изобутиленовую фракцию, стирол, хлорид алюминия (катализатор, сульфид фосфора (V), алкилфенол, оксид магния, масло М-8 (разбавитель). [c.239]

    Окисление проводится в реакторе 1 из нержавеющей стали в интервале температур 160—190 °С и при давлении 4,8 МПа без катализатора или в присутствии солей кобальта, меди, магния, ванадия. Воздух подается в нижнюю часть реактора в таком количестве, чтобы содержание кислорода в отдувочном газе составляло не более 4% (об.). Пары продуктов реакции и непрореагировавшие углеводороды поступают совместно с отработанным воздухом в конденсационную систему 2—4, приспособленную для утилизации теплоты. Отсюда жидкий конденсат возвращается в зону реакции. Отработанный воздух поступает в турбодетандер 5, где охлаждается до —60 °С. Полученный холод используют на установке. Оксидат из реактора поступает в ректификационную колонну 7, в которой отделяются нейтральные кислородсодержащие продукты, возвращаемые на доокис-ление в реактор 1. На колонне 8 происходит отделение воды и кислот С —С4, а тяжелый кубовый остаток, пройдя блок выделения янтарной кислоты 9, поступает на повторное окисление. Вода от кислот отгоняется с помощью азеотропной перегонки (блок 10). Товарные муравьиная, уксусная и пропионовая кислоты выделяются с применением азеотропной и обычной ректификации (блоки 11—13). Суммарный выход кислот С —С и янтарной кислоты в расчете на превращенный бензин находится на уровне 100—110%, причем выход уксусной кислоты составляет 60—75% от товарной продукции и зависит от технологии проведения процесса и используемого для окисления сырья. [c.178]

    Синтез можно проводить, заменив бромистый метил иодистым. В трехгорлую колбу емкостью 1 л, снабженную капельной воронкой, обратным холодильником и мешалкой, помещают 5 г магниевых стружек (0,206 г-атома) и 15 мл абсолютного эфира. Прибавляют 30 г (0,21 моля) иодистого метила, растворенного в 250 мл абсолютного эфира. По окончании приливания раствора иодистого метила перемешивают еще в течение получаса. Прибавляют при перемешивании в течение 1—2 час. 25 г (0,17 моля) 4-М,М-диме-тиламинобензальдегида, растворенного в 400 мл эфира. Магнийорганическое соединение разлагают насыщенным раствором хлористого аммония, к которому прибавлено 5 мл концентрированной соляной кислоты. Эфирный слой отделяют, а водный слой экстрагируют 150 мл эфира. Соединенные эфирные растворы сушат безводным сернокислым магнием, фильтруют, отгоняют эфир, а остаток перегоняют из колбы Кляйзена емкостью 50 мл. Если наблюдается дегидратация после отделения водного слоя, то продукт вновь [c.113]

    Определение щелочных металлов после разложения плавиковой и серной кислотами требует много времени. Особенно трудно избел<ать потерь при удалении аммонийных солей много операций необходимо провести для отделения магния. В связи с этими недостатками метод применяется сравнительно редко. Метод разложения плавиковой и серной кислотой чаще применяется для определения отдельных компонентов (марганец, фосфор, редкие земли и т. п.). [c.471]

    В отсутствие Li+ в анализируемой смеси отделение магния не проводят. Ионы аммония в любом случае нужно удалять выпариванием, как указано выще остаток от выпаривания можно затем растворить в 5 М iH l. [c.77]


Смотреть страницы где упоминается термин Магний отделение: [c.111]    [c.264]    [c.103]    [c.223]    [c.429]    [c.510]    [c.71]    [c.329]    [c.152]    [c.601]    [c.73]    [c.161]    [c.228]   
Химический анализ (1966) -- [ c.197 ]

Практическое руководство по неорганическому анализу (1966) -- [ c.713 , c.730 ]

Курс аналитической химии Книга 1 1964 (1964) -- [ c.100 ]

Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Курс аналитической химии Издание 3 (1969) -- [ c.118 ]

Химико-технические методы исследования Том 1 (0) -- [ c.175 ]

Курс аналитической химии Издание 5 (1981) -- [ c.96 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.654 , c.668 ]

Основы аналитической химии Издание 2 (1965) -- [ c.200 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.695 ]




ПОИСК







© 2025 chem21.info Реклама на сайте