Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулы деформационные

    Коэффициент пропорциональности а называют поляризуемостью молекул (деформационной поляризуемостью). Поляризуемость — это способность атомов и молекул приобретать момент диполя Цин,1 в электрическом поле напряженностью Е. В СИ размерность [а]Кл-м /В. Чем больше а, тем больше молекула поддается деформации. Наведенный момент диполя сразу же исчезает, как только поле снимается. [c.252]


    При выпрямлении молекулы (рис. 1.1, г) валентные колебания остались бы полностью определенными, в то время как деформационные колебания могли бы быть с одинаковой вероятностью как в плоскости диаграммы, так и в любой другой плоскости, содержащей (уже линейную) молекулу. Деформационное колебание можно представить как комбинацию двух колебаний одинаковой частоты в любых двух расположенных под прямым углом плоскостях, линия пересечения которых совпадает с осью [c.15]

    Атомы могут колебаться либо вдоль линии химической связи (валентные колебания), либо за счет изменения валентных углов (деформационные колебания), как это показано на примере молекулы воды  [c.146]

    Возрастание емкости конденсатора (за счет уменьшения силы электрического поля в е раз) обусловливается тем, что энергия тратится на деформационную поляризацию молекул и их ориентацию в поле. [c.156]

    Все кислородсодержащие функциональные группы, входящие в состав органических молекул, интенсивно поглощают в инфракрасной области спектра и поэтому могут быть идентифицированы с большой легкостью и достоверностью. Валентным и деформационным колебаниям групп ОН, СООН, С=0, С—О—С, —0—0—, [c.143]

    Пространственная структура. Изучение параметров пространственной структуры полиуретанов важно с той точки зрения, что дает возможность прогнозировать свойства для различного деформационного режима [36]. Для уретановых эластомеров целесообразно применять в качестве определяющего параметра сетчатого строения концентрацию эффективных цепей [55]. Если поперечные связи короткие, то две цепи сетки приходятся на одну сшивку. В полиуретанах, однако, такое соотношение не всегда соблюдается, так как для образования поперечной структуры довольно часто применяются протяженные функциональные молекулы. [c.542]

    Для / -атомной нелинейной молекулы число колебательных степеней свободы равно 2п — 6, из них п — 5 деформационных и п—1 валентных. Если ограничиться рассмотрением только валентных колебаний, предельное число которых 8 = п—1, но поскольку (как будет показано ниже) обычно для расчета приходится пользоваться так называемым числом эффективных осцилляторов, то 5оф- — 1. [c.168]

    Тетраэдрические пятиатомные молекулы имеют 9 колебательных степеней свободы. Можно рассматривать следующие четыре типа колебания (рис. 13) VI — валентное симметричное, V2 — деформационное симметричное, — валентное асимметричное, — деформационное асимметричное. Два колебания Уа не отличаются друг от друга по энергиям. Это — дважды вырожденное колебание. Колебания Уз и У4 — трижды вырожденные. [c.19]


    Ориентационная поляризация молекул происходит только в вешествах, молекулы которых полярны. Она заключается в-том, что такие молекулы под действием поля стремятся расположиться в пространстве так, как показано на рис. 19. Тепловое движение молекул приводит к беспорядочному расположению их в пространстве. Поэтому с повышением температуры ориентационная поляризация всегда уменьшается в отличие от обеих деформационных поляризаций, которые от температуры не зависят. Очевидно, ориентационная поляризация будет тем больше, чем сильнее полярность молекулы. [c.76]

    Деформационная поляризация характерна для всех молекул. Полярные молекулы помимо деформационной поляризации испытывают во внешнем поле еще и ориентационную поляризацию, т. е. стремятся ориентировать свой постоянный диполь в направлении силовых линий поля. Этот эффект характеризуется ориентационной поляризуемостью ор- обратно пропорциональной абсолютной температуре  [c.87]

    При поглощении кванта молекулой обычно возбуждается лишь одно какое-нибудь нормальное колебание, например, с частотой Здесь так же, как и в спектрах двухатомных молекул, наиболее вероятен переход с До = 1, в результате чего в спектре должна появиться частота V = Поскольку газ, поглощающий или рассеивающий излучение, содержит множество молекул, в каждой из которых возбуждается то или иное нормальное колебание, вероятно, что все нормальные колебания будут проявляться в спектре с большей или меньшей интенсивностью. Некоторые колебания вообще не проявятся в спектре в соответствии с правилами отбора. Эти правила для многоатомных молекул связаны с симметрией молекулы и симметрией колебаний. В качестве примера рассмотрим две трехатомные молекулы НаО и СОа. На рис. 80 представлены формы нормальных колебаний этих молекул. Стрелки показывают направление скорости при колебаниях атомов и величину соответствующей амплитуды (в приближенном масштабе). Молекула НгО имеет три нормальных колебания (3 3 — 6 = 3). При колебании с частотой VI преимущественно изменяется длина связей О —Н, поэтому его называют валентным колебанием. Колебание с частотой — деформационное, так [c.171]

    Весьма важной для всех молекул является классификация колебаний по типам симметрии. Если колебание имеет форму, при которой сохраняются все свойства симметрии молекулы, все операции симметрии данной точечной группы возможны, его относят к симметричному типу, если какая-либо операция симметрии утрачивается — к антисимметричному типу. У молекул, имеющих ось более высокого порядка, чем Са, существуют так называемые дважды вырожденные колебания, совпадающие по форме и частоте, но совершающиеся в двух взаимно перпендикулярных направлениях (деформационное колебание у молекулы СОа, "табл. 16). Оно не является симметричным, как и все вырожденные колебания. [c.172]

    I вязей С-Н, С—Р и Н—Р аппроксимируются потенциалами Морзе с введен ными в эти потенциалы переключающими функциями. Эти функции обеспечивают усиление и разрыхление связей при перегруппировке атомов. Например, С—Н и С—Р разрыхляются, когда входящие в них атомы Н и Р образуют связанную молекулу НР. Это дает возможность описать образование и отлет молекулы НР. В потенциал включены члены, описывающие энергию деформационных колебаний. Использовалось квадратичное по углу приближение энергии деформационных колебаний с силовыми постоянными, экспоненциально убывающими с ростом соответствующих расстояний. Это приближение аналогично приближению, применяемому в методе "порядок связи — энергия связи" [295]  [c.119]

    Молек ла углеводорода обладает определенным запасом внутренней энергии. Эта энергия слагается из энергии взаимодействия электронов с ядрами, из энергии колебательного движения атомов (линейного и деформационного), энергии вращательного движения атомов или групп атомов. Энергия взаимодействия электронов с ядрами (энергия электронных переходов) в 10—20 раз превышает энергию колебательных движений и в тысячу раз превышает энергию вращательного движения внутри молекулы. [c.32]

    Число колебательных степеней свободы (п) радикала, естественно, на три меньще, чем у молекулы Н (два деформационных и валентное колебания Н). [c.189]

    Спектры молекул обычно хорошо известны. Колебательный спектр радикалов в первом приближении можно получить из спектра молекулы путем исключения из известного спектра молекулы трех колебаний (одного валентного и двух деформационных), связанных с колебаниями исчезнувшей С—Н связи при условии, конечно, если известна интерпретация спектров соответствующих молекул. [c.190]

    Поскольку для валентных колебаний молекул значения со обычно превышают 1000 см , суммы по состояниям для валентных колебаний в простых молекулах при не слишком высоких температурах близки к 1, а их составляющие в термодинамических функциях, зависящие от 1п кол, очень малы. Для деформационных колебаний величины со могут быть заметно меньшими, а многие нормальные колебания сложных молекул характеризуются очень малыми значениями о). Например, для деформационных колебаний В2О3 соСЮО см . В последнем случае колебательные суммы по состояниям достаточно велики даже при низких температурах. Точно так же для сложных органических молекул деформационные колебания дают заметный вклад в энергию, энтропию и теплоемкость вещества при всех температурах. [c.224]


    Конфигурация цикла, С геометри 1есКой тбЧКИ зрения цикл, состоящий из четырех атомов С, имеет две возможности быть плоским или изогнутым. Теоретически общая проблема геометрического строения решается в квантовой механике с учетом всех взаимодействий ядер и электронов. Минимум (или любой из нескольких минимумов) потенциала этого взаимодействия соотБет-ствует определенной равновесной геометрической конфигурации молекулы в целом. Однако приближенно рассматривая такой потенциал молекулы циклобутана, обычно выделяют два основных взаимодействия в терминах силового поля молекулы деформационное взаимодействие, связанное с изменением валентных углов атома С в молекуле, и крутильные взаимодействия, определяющие вращение одних групп относительно других вокруг связи С—С, [c.429]

    Взаимодействие между электромагнитным излучением и молекулами распространяется в ИК-области спектра (Х 4000— 20 см- ) на колебания атомных ядер (Х.ж4000—200 см- ) и вращение молекул (Х<200 см- ), т. е. при поглощении излучения с соответствующей длиной волны возбуждаются колебания и происходят изменения вращения молекул. Особенно важным для качественного и количественного анализа является спектр валентных колебаний, который делится на колебания в направлении связи (валентные и 4000—1500 см- ) и колебания, перпендикулярные направлению связи (деформационные, 0 1500 см- ). Валентные колебания характеризуют связь в молекуле, особенно в том случае, если они достаточно изолированы, т. е. не взаимодействуют с другими колебаниями (рис. 11). При взаимодействии между колебаниями частоты изменяются и могут стать типичными для определенных групп атомов в молекуле. Деформационные колебания дают информацию скорее о молекуле в целом, чем об отдельных связях (область отпечатков пальцев молекулы). [c.224]

    Деформационная поляризация Яд, наблюдаемая независимо от типа молекулы (полярная или неполярная), заключается в том, что иод действием электрического поля в молекуле наводится ди-иольный момент. Для не очень сильных полей можно считать, что наведенный (индуцированный) дипольный момент пропорционален напряженности электрического поля Е  [c.156]

    Область 1000—000 см В этой области проявляются внеплоскостные деформационные колебания СН-группы и деформационные плоскостные колебания кольца. Число полос и их интенсивность зависят от симметрии молекул. Влияние природы заместителей на интенсивность не определено. Подобно моно-и л-дизвмещенным бензола, имеющим близ 700 см полосы внеплоскостных деформационных колебаний кольца, соответствующие гетероароматические соедиртепия также поглощают в этой области спектра. [c.139]

    Еслн идентифицирсваны все активные основные частоты бензола, то частоты девяти неактивных колебаний все еще остаются f еопределенными. Эта задача может быть решена при помощи соответствующих математических расчетов. Рассмотрим теперь применение этих соображений к молекуле бензола. Из рис. 3 следует, что колебания молекулы бензола могут быть представлены при помощи внутренних координат шести типов валентных, деформационных в плоскости и деформационных, связанных с выходом из плоскости молекулы как С—С, так и С—Н связей. Каждая из этих координат связана с определенной силовой постоянной. Вильсон [12] ццел следующие обозначения для этих силовых постоянных  [c.304]

    Любая молекула состоит из двух или более атомов, связанных между собой различными электрическими силами. Атомы в свою очередь могут рассматриваться как сочета ше ядер и электронов. Хорошо известно, что молекулы не являются жесткими структурами, т. е. в, них существуют колебания атомов друг относительно друга около некоторого положения равновесия. Эти колебания могут происходить параллельно направлению валентной силы, связывающей два атома, в результате чего изменяется расстояние между ними. Такие колебания называются колебаниями валентного типа. Колебания атомов в многоатомной молекуле в направлении, перпондикуляриом к направлению валентной силы, вызывают изменения валентного угла. Такие колебания принадлежат к деформационному типу. Существуют также вибрационные частоты, возникающие в результате сложного движения, влияющего на первоначальный скелет молекулы или на часть этого скелета. Они могут включать как валентные, так и деформационные колебания. [c.315]

    ВИТЬ в виде двух колебаний в двух взаимно-перпендикулярных плоскостях. Такие колебания не отличаются по энергиям и, следовательно, в спектре будет наблюдаться только одна полоса. Это — дважды вы-рол<денное колебание. Р-Гелинейные трехатомные молекулы имеют три стененн свободы колебательного движения (рис. 12). Колебание V, — валентное симметричное, колебание Уз — деформационное, колебание Уз — вале1ггп0е асимметричное. [c.19]

    Деформацио[П[ое колебание концевой метильной группы дает две полосы симметричного колебания 1375—1385 и асимметричного колебания 1450—1460 сл Ч В нормальных парафинах наблюдаются только две полосы. При разветвлении в конце [tenu, т. е. при наличии изопропильной группы —СН(СНз)2, в результате резонанса наблюдается расщепление полосы симметричного деформационного колебания в метильной группе на две полосы примерно одинаковой интенсивности 1368—1370 и 1381—1389 см . Появление дублета в этой области спектра, состоящего из полос примерно одинаковой интенсивности, является доказательством присутствия в молекуле изо-пропильной группы. Подтверждением этого служит полоса, которую относят к деформационному колебанию С—С—С 919—922 см .В спектрах соединений, содержащих мэо-пропильную группу, всегда наблюдается полоса 1175 см . Интенсивность этой полосы меньше интенснв-ности полосы симметричного деформационного колебания. [c.64]

    Действительно, спектры ЯМР высокого разрешения протонов воды в дисперсиях а- и Ь -монтмориллонита [103] характеризуются сдвигом резонансного сигнала в сторону более сильного поля. Это указывает на то, что под влиянием поверхности часть водородных связей в воде граничных слоев толщиной й 7,5 нм (межчастичное расстояние —15 нм) разрушается. Приведенные результаты нашли независимое подтверждение при изучении ИК-спектров водных дисперсий Ыа-монт-мориллонитрила 20—110%-й влажности в области составной полосы (5200—4900 см ) деформационного и валентного асимметричного колебаний связей ОН (г-2 + з) [Ш]- В цитируемой работе было показано, что вклад высокочастотной составляющей 5200 СМ , относящейся к слабосвязанным молекулам воды, в интегральную интенсивность сложной полосы для дисперсий выше, чем для жидкой воды. ИК-спектры полимолекулярных адсорбционных слоев на поверхности кварца в области валентных ОН-колебаний [112] также обнаруживают увеличение поглощения при 3600 см , характерного для слабо нагруженных ОН-групп молекул воды, хотя основная полоса 3400 см сдвинута по сравнению с аналогичной полосой в спектре жидкой воды в сторону меньших частот. (Последнее, по-видимому, связано с образованием более прочных водородных связей между поверхностными гидроксильными группами кварца и адсорбированными молекулами воды первого слоя.) Таким образом, приведенные выше данные указывают на то, [c.39]

    Ауз = 5 и 7 м соответственно, для Sa Ava = 23 см" при переходе от газа к жидкости, а для Sea — 36 см". Как видно, чем меньше у сходственных молекул частота, т. е. упругость связи, тем сильнее ослабляет связь ван-дер-ваальсово взаимодействие. Изменяется при взаимодейств 1и и вероятность переходов, т. е. интенсивность полос. Нарушение первичной симметрии молекулы в результате взаимодействия ослабляет строгость правил отбора, в спектрах могут проявляться запрещенные частоты. В кристаллах поле симметрично распределенных зарядов может привести к снятию вырождения, например, в кристалле СОа снимается вырождение деформационного колебания V2 = 667 СМ и проявляются две частоты va 660 и 653 см". В спектре кристаллов могут проявляться также колебания решетки. Спектр молекул, изолированных в матрице (область менее 200—300 см" ), может отличаться от спектра свободных молекул, благодаря взаимодействию между ними и кристаллом матрицы, особенно для сильно полярных молекул. [c.178]

    Понижение энтальпии системы при адсорбции вызвано взаимодействием между частяцами адсорбента и адсорбтива. Физическая адсорбция обусловлена дисперсионными, ориентационными и деформационными силами взаимодействия (см. 41). Энергия взаимодействия молекулы с поверхностью твердого тела, обусловленная межмоле-кулярными силами, убывает пропорционально - 1/г , где г — расстояние от центра молекулы до границы раздела фаз. Если принять при / =Го (радиус молекулы) адсорбционный потенциал Вд, то при г =Зго адсорбционный, потенциал уменьшится до 3—4% от Eq. Это дает основание делать вывод о том, что при физической адсорбции газа (не пара), газ адсорбируется в виде мономолекулярного адсорбционного слоя. При адсорбции пара возможно образование полимо-лекулярного адсорбционного слоя [c.638]

    Высокочастотное титроваиие — вариант бесконтактного кондуктометрического метода анализа, в котором анализируемый раствор подвергают действию электрического поля высокой частоты (порядка нескольких мегагерц). При повышении частоты внешнего электрического поля электропроводность растворов электролитов увеличивается (эффект Дебая — Фалькенгагена), поскольку уменьшается амплитуда колебания ионов в поле переменного тока, период колебания ионов становится соизмерим с временем релаксации ионной атмосферы (примерно 10 с для разбавленных растворов), тормозящий релаксационный эффект снимается. Поле высокой частоты деформирует молекулу, по-Л5физуя ее (деформационная поляризация) и заставляет полярную молекулу определенным образом перемещаться (ориентационная поляризация). В результате таких поляризационных эф фектов возникают кратковременные токи, изменяющие электропроводность, диэлектрические свойства и магнитную проницаемость растворов. Измеряемая в этих условиях полная электропроводность высокочастотной кондуктометрпческой ячейки X складывается из активной составляющей >.акт — истинной проводимости раствора — п реактивной составляющей Хреакт — мнимой электропроводности, зависящей от частоты и тппа ячейки  [c.111]

    Из результатов расчета (см. табл. 4.6, рис. 4.23—4.25) видно, что наибольшие значения получены для молекулы 31Н4, меньшие — для СН4 и С04, наименьшие — для Ср4. В обратном отношении находятся коэффициенты жесткости деформационных колебаний перечисленных молекул (см. табл. 4.4). На основании этих результатов и рассчитанной зависимости величины среднего квадрата изменения внутренней энергии молекул от прицельного параметра можно предположить, что реализуется следующий механизм передачи энергии во внутренние и колебательные степени свободы молекул при столкновениях с атомами инертных газов. Первоначально энергия поступательного движения передается во вращательные степени свободы молекулы и ее деформационные колебания, далее за счет сильного взаимодействия колебательных и вращательных [c.109]

    В работах [278, 279, 407] исследовался спонтанный распад молекул X—С = С—X, где X = Н, С1. Для такого типа молекул записан модельнь1й потенциал энергия валентных связей аппроксимировалась потенциалами Морзе, а энергия деформационных колебаний - потенциалами, квадратичными по угловым переменным. Вычислена функция f (7) при различных начальных возбуждениях молекулы. При равновероятном распределении заданной энергии по начальным состояниям функция распределения имеет экспоненциальный вид, т.е. распад носит статистический характер. В случае начального возбуждения отдельных связей f(r) оказалась немонотонной. Как правило, разрывалась одна из первоначально возбужденных связей. Если молекула живет достаточно долго, то специфическое [c.123]

    Варьируемыми параметрами в численных экспериментах были уц. Изменени этих параметров не приводит к изменению равновесной структуры молекулы. Во всех расчетах 7,у делились на две группы 7,у = 7,, связанные с силовыми константами деформационных колебаний, включающих связь С—I, и уц = 72, относящиеся к остальным связям. Параметр 72 полагался равным О, а для 7, принимались значения 0 0,5 0,75 1,79 и 4А . По-прежнему полная энергия = 100 ккал/моль складывалась из потенциальных энергий валентных колебаний, 90 ккал/моль было сосредоточено на связи С—Р, а остальные 20 ккал/моль случайным образом распределялись по друг им связям. [c.126]

    Частоты колебаний молекулы СНзМО приведены ниже. При ереходе к активированному комплексу можно ожидать их существенного изменения уменьшения частот двух маятниковых колебаний, деформационного колебания СМО, одного деформационного колебания НСН, а также увеличения частоты колебания N0  [c.259]

    Деформационные колебания СН наблюдаются в области от 1500 до 600 см (6,7—17 р,) частота их определяется характером колебания и структурой молекулы, в которую входит связь СН. Так, в молекулах парафинов группы СНа испытывают колебание, при котором две связи СН движутся симметрично относительно друг друга в плоскости СН. . Частота этого колебания постоянна и наблюдается обычно при 1460 (6,85 л). Такое же симметричное колебание связей СН групп СНд наблюдается при частоте 1380 см (7,25 В зависимости от характера разветвления (тип изопронила-, трет-бутила и т. д.) положение максимума поглощения несколько изменяется следовательно, по характеру спектра можно судить о структуре молекулы. [c.236]


Смотреть страницы где упоминается термин Молекулы деформационные: [c.103]    [c.192]    [c.198]    [c.169]    [c.27]    [c.20]    [c.156]    [c.129]    [c.34]    [c.303]    [c.23]    [c.63]    [c.75]    [c.94]    [c.172]    [c.111]    [c.235]   
Современная аналитическая химия (1977) -- [ c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Деформационные колебания молекул воды

Кислотные свойства аммиакатов и частоты деформационных колебаний координированных молекул аммиака

Колебания в молекуле деформационные

Поляризуемость молекулы деформационная

Структурная и деформационная ковариантность молекул и графические правила для получения качественных квантовохимических результатов



© 2025 chem21.info Реклама на сайте