Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электропроводность аминов

    Один из распространенных методов заключается в том, что обоим материалам сообщают электропроводность . Этого можно достигнуть, вводя в полимер электропроводящие добавки, такие, как технический углерод или этилированные амины. Этим методом пользуются для таких изделий, как топливные трубопроводы, топливные баки, конвейерные ленты, токопроводящие обувные подошвы. В производстве синтетических волокон применяют нанесение тонкого токопроводящего слоя антистатика. Этот способ не столь надежен, как предыдущий, поскольку непрерывность слоя антистатика легко нарушить в процессе обработки или промывки волокна. [c.94]


    При помощи ЯМР- и УФ-спектроскопии, а также измерениями электропроводности доказано образование сг-ком-плекса при взаимодействии нитробензола со вторичными алифатическими аминами в диметилсульфоксиде [c.199]

    О таком индивидуальном характере взаимодействия свидетельствуют прежде всего данные Вальдена, систематически исследовавшего электропроводность солей, т. е. сильных электролитов в ряду растворителей (спирты, кетоны, углеводороды, галоидоуглеводороды, эфиры, амины, нафтолы, нитро-замещенные и т. д.). Этими работами было показано, что поведение солей в различных растворителях зависит не только от диэлектрической проницаемости растворителя, как это следует из теории Фуосса и Крауса, но и от химической природы растворителя и соли. Вальден показал, что одинаково [c.9]

    В большинстве растворителей окислительно-восстановительные реакции идут по нормальной схеме, но в жидком аммиаке и некоторых алифатических аминах щелочные и щелочноземельные металлы ведут себя совершенно аномально. В свободном виде элементы обеих групп легко растворяются в жидком аммиаке, и после испарения аммиака получаются исходные щелочные металлы, а щелочноземельные металлы образуют аммиакаты состава М(ЫНз)в- Разбавленные растворы всех этих металлов имеют характерную синюю окраску. Спектры поглощения растворов равных концентраций одинаковы для всех этих металлов, это означает, что синяя окраска обусловлена одинаковыми частицами. Оказалось, что эти растворы обладают необычайно высокой электропроводностью. Эквивалентная электропроводность этих растворов любой концентрации более высокая, чем электропроводность любой известной соли н любом растворителе, а для больших концентраций она приближается к электропроводности металлов. Структура этих растворов детально изучена, основные сведения [c.352]

    Определение анилина основано на реакции нейтрализации его в среде безводной уксусной кислоты, в которой усиливаются основные свойства аминов. В процессе нейтрализации анилина электропроводность раствора изменяется в точке эквивалентности наблюдается резкий скачок титрования, свидетельствующий об окончании нейтрализации и появлении в титруемом растворе избытка титранта. [c.456]

    Интересным свойством щелочных металлов является их способность растворяться в жидком аммиаке, некоторых аминах и эфирах. В разбавленном состоянии эти растворы имеют голубую окраску и обладают значительной электропроводностью. Свойства таких растворов объясняются наличием в них сольва-тированных электронов, которые образуются за счет ионизации атомов металла. Например, [c.229]


    Указанные соединения можно приготовить взаимодействием хлорной кислоты с соответствующим амином илп обменной реакцией галоидного соединения амина с перхлоратом щелочного металла или серебра. Электропроводность перхлоратов аминов была измерена в органических растворителях, в которых они обычно Б значительной степени, диссоциированы. [c.72]

    О таком индивидуальном характере взаимодействия свидетельствуют прежде всего данные Вальдена, систематически исследовавшего электропроводность солей, т. е. сильных электролитов в ряду растворителей (спирты, кетоны, углеводороды, галоидоуглеводороды, эфиры, амины, нафтолы, нитрозамещенные и т. д.). Этими работами было показано, что поведение солей в различных растворителях зависит не только от диэлектрической проницаемости растворителя, как это следует из теории Фуосса и Крауса, но и от химической природы растворителя и соли. Вальден показал, что одинаково диссоциированные в воде соли по-разному ведут себя в неводных растворителях с одинаковой диэлектрической проницаемостью. Некоторые соли остаются сильными электролитами во всех растворителях. Вальден их называет сильными солями, а сила других заметно изменяется в неводных растворах—это средние и слабые соли. Установлено также, что в ряде растворителей, главным образом в спиртах, соли всех трех классов имеют близкую проводимость—это нивелирующие растворители в других растворителях (кетоны, нитрилы, нитросоединения) различные группы солей резко отличаются по своей электропроводности— это дифференцирующие растворители. [c.33]

    Взаимодействие кислот с ароматическими аминами изучал еще Д. П. Коновалов путем систематического исследования электропроводности двойных систем. Была измерена электропроводность смесей уксусной кислоты с анилином, метиланилином, диметиланилином и толуидином, а также смесей анилина с пропионовой и масляной кислотами. [c.279]

    Кристаллическое соединение в виде призм белого цвета. Растворимость в воде 0,0575 вес.% при 20° С. В щелочных растворах растворимость не увеличивается соединение не реагирует с аммиаком и аминами. Гидроксиламин и гидразин в кислом растворе не диазотируют нитрогрупп. Электропроводность не зависит от времени и разбавления = 2,4—4 [2]. [c.46]

    Растворы алюминийалкилов в углеводородах очень слабо проводят электрический ток (их электропроводность — величина порядка 10" ом См ). При образовании комплексных соединений электропроводность возрастает в несколько десятков раз. Если электроно-донорный агент (амины, эфиры и др.) добавлять непрерывно, то в эквивалентной точке появляется ярко выраженный максимум электропроводности. Алюминийорганические соединения, как правило, образуют комплексы с аминами в молярном соотношении 1 1, Исключение составляют диалкилалюминийгидриды, которые образуют неэлектропроводный комплекс с изохинолином при соотношении этих компонентов 1 1. При молярном соотношении диалкилалюминийгидрид изохинолин 1 2 образующийся комплекс обладает повышенной электропроводностью. При титровании диэтилалюминийгидрида электропроводность остается неизменной, пока не будет добавлен 1 моль изохинолина на 1 моль диэтилалюминийгидрида. Затем электропроводность растет, но при добавлении 2 моль изохинолина наблюдается резкое ее падение. Кривая электрометрического титрования смесей, содержащих триэтилалюминий и диэтилалюминийгидрид, имеет, по крайней мере, два максимума. [c.141]

    Кроме того, в это же время было поколеблено убеждение химиков в простоте определения и интерпретации констант сродства . Так, Меншуткин в 1895 г. показал, что найденные Бре-дигом [180] величины электропроводностей аминов относятся не к аминам, а к их гидратам. Ввиду разноречивых данных относительно отдельных аминов Меншуткин был поставлен в невозможность пользов(аться данными Бредига [103, стр. 141]. [c.45]

    Данные спектрального анализа подтверждают и результаты определения электропроводности аминов, и результаты определения молекулярного веса. Электропроводность азотнокислых солей сильно основных аминов достаточно низка, чтобы означать, что соли ионизованы незначительно, однако она в 10—20 раз превышает электропроводность (А, = 0,02) солей слабо основных аминов. Поскольку последняя совпадает с эквивалентной электропроводностью безводной азотной кислоты в уксусной кислоте, то не удивительно, что понижение точки замерзания растворов азотнокислых солей слабо основных аминов в уксусной кислоте указывает на существование азотной кислоты и амина в виде отдельных частиц. В то же время азотнокислые соли сильно основных аминов в уксусной кислоте, по-види-мому, существуют главным образом в недиссоциированном виде. [c.480]

    Электрохимическое фторирование начало развиваться лишь в последнее время, по оно имеет ряд преимуществ по сравнению с только что описанными методами. Сущность его состоит в следующем при электролизе безводного фтористого водорода (с добавлением фторидов металлов для повышения электропроводности) выделяющийся на аноде фтор немедленно реагирует с растворенным или эмульгированным в жидкости органическим веществом. Благодаря протеканию реакций в жидкой фазе при перемешивании, достигается хороший теплоотвод и суы ествуют широкие возможности регулирования процесса. При этом не приходится предварительно получать и очищать молекулярный фтор, который все равно производят в промыщленности методом электролиза. Наилучшие результаты электрохимическое фторирование дает при синтезе перфторзамещенных карбоновых кислот, простых и сложных эфиров, аминов, сульфидов и других соединений, растворимых в жидком фтористом водороде. [c.162]


    В первый момент раствор приобретает сильнощелочную реакцию и сохраняет высокую электропроводность. Однако при стоянии щелочность и электропроводность раствора быстро уменьшаются, что можно объяснить, по-видимому, тем, что диазоний-катион начинает с измеримой скоростью реагировать г ионом ОН как с нуклеофилом с образованием диазогидрата (77), в результате чего атомы азота переходят из состояния 5р- в состояние 5р2-гибридизации [диазогидрат образуется также в качестве интермедиата при взаимодействии аминов с азотистой кислотой (см. разд. 6.2.1)]. Можно даже предположить, что в первый момент образуется г ис-изомер диазогидрата, так как анион ОН должен координироваться одновременно по крайнему атому азота диазогруппы и одному из электронодефицитных орго-положений бензольного кольца. [c.446]

    Поэтому их правильнее назвать полиазофениленами. Этим методом могут быть синтезированы различные олигомеры и полимеры на основе бис-диазотированных ароматических и жирноароматических аминов. В отсутствие кислорода они стойки до 500—700 °С, на воздухе —до 450 °С, обладают парамагнетизмом, по электропроводности близки к по-лифениленам. [c.420]

    Не менее выразительно неводное титрование и смеси оснований. На рис. 5 изображена кривая кондуктометрического титрования, заключающегося в измерении электропроводности растворов, четырехкомпонентной смеси диэтиламин + п-хлоранилин + дифенил-амин + ацетамид. Титровался в данном случае, разумеется, не водный раствор. В воде провести титрование подобной смеси было бы делом еоверщенно безнадежным, так как все ее компоненты в этом растворителе — очень слабые основания. В уксусной же кислоте сила этих оснований существенно возрастает по сравнению с водой. Для мочевины, например, этот рост составляет 7 ( ) порядков. Низкая же ДП уксусной кислоты обеспечивает дифференцирование силы оснований, позволяющее уверенно определить содержание каждого из них в смеси. [c.64]

    Наряду с Э. как проводниками второго рода существуют в-ва, обладающие одновременно электронной и ионной проводимостью. К ним относятся р-ры щелочных и щел.-зем. металлов в полярных р-рителях (аммиак, амины, эфиры), а также в расплавах солей. В этих системах при изменении концентрации металла происходит фазовый переход в металлич. состояние с существенным (на неск. порядков) изменением электропроводности. При этом в электролитич. области образуется самый легкий анчон-сольватированный электрон, придающий р-ру характерный синий цвет. [c.434]

    В химии фосфазенов было проведено несколько кинетических исследований, и все эти работы относились к реакциям аминолиза. Измерением электропроводности в ацетонитриле и этаноле были изучены реакции к-проииламина [140] и анилина [141] с гекса-хлороциклотрифосфазатриеном. Использование спирта для таких исследований вносит определенные осложнения, так как неизвестное количество амина катализирует алкоголиз, который может [c.45]

    Существенный прогресс в этой области связан с использованием в качестве электролитов комплексных солей третичных аминов, особенно пиридина, и фтористого водорода и ацетонитрила в качестве растворителя. В табл. 8 представлены данные по электропроводности таких солей в ацетонитриле. Несмотря на определенные успехи в получении таким путем целевых малофторированных соединений, метод пока экономически нецелесообразен из-за сложности выделения продуктов реакции и недостаточной селективности. Тем не менее мягкие условия реакции, простота и безопасность работы со фторирующей системой делают этот процесс перспективным, особенно для синтеза труднодоступных соединений с одним или двумя атомами фтора [53]. Платина - все еще наиболее часто используемый электрод, но и с анодами из других материалов (например, из графита) получают хорошие результаты. Ацетонитрил -наиболее приемлемый растворитель для проведения процесса электрохимического фторирования, но показаны возможности использования и других растворителей. [c.49]

Таблица 8. Электропроводность растворов солей аминов Et,N ЗНР илиR4NF /1НР[53] в ацетонитриле Таблица 8. <a href="/info/1028307">Электропроводность растворов солей аминов</a> Et,N ЗНР илиR4NF /1НР[53] в ацетонитриле
    СОЛИ ВН" - - - A — НА И предельная электропроводность ее ионов были найдены из данных по электропроводности растворов амина в больших избытках кнслоты. При построении расчетной кривой (рис. 8.2) использовались следующие значения констант / i = l,2-n , /Сц = = 1,7 10, i/Сц1 =3,0-10 . Ясно, что соединение А" - - - НА весьма стабильно при 0,1 М ко центрации оно было бы только на 5% диссоциировано на А и НА. Далее, константа ионной диссоциации сопряж нной соли в 400 раз больше, чем простой соли. В этом типичном примере проявляется общее правило сила да юй водородной связи ослабляется, когда та же акцепт )рная молекула образует дополнительную водородную связь. [c.292]

    Взаимодействие катион — акцептор подтверждается данными такого же характера, что и взаимодействие анион — донор (см. обзор [15], стр. 79—88). Электропроводность соли (СНз)зЫОН+ СвНа(М02)з0 в нитробензоле заметно увеличивается при добавлении воды, пиридина, триэтиламина или пиперидина [10]. Электропроводность пикрата или бромида трибутиламмония в о-дихлорбен-золе или в хлорбензоле увеличивается при добавлении производных пиридина [27] повышение электропроводности происходит в порядке, соответствующем увеличению основности 4-цианпиридин, пиридин, 4-метилпи-ридин. Проведенные в ацетонитриле измерения pH с помощью стеклянного электрода [28] показывают, что самые разнообразные первичные, вторичные и третичные амины образуют гомосопряженные катионы ВН" - - - В. [c.295]

    ИК-спектры таких экстрактов обнаруживают слабую водородную связь в нитрате амина [510, 524, 559, 562] и пики, соответствующие присутствию йьободной, несвязанной азотной кислоты [521, 548, 561, 564, 566, 567]. Полагают, что некоторое различие в спектрах обусловлено наличием водородной связи HNO3 с NO3 с образованием аниона бинитрата [510, 524], Это подтверждается также ЯМР-спектрами [559]. Изменения в электропроводности, плотности и вязкости таких экстрагентов объясняются образованием этого соединения [38, 521, 548, 558, 562], [c.63]

    Расщепление на оптические изомеры с помощью 190 проводилось следующим образом [ 2, 31]. Колонку с внутренним диаметром 0,75 см и длиной 56 см заполняли 14,0 г 190 и вьщерживали до установления рависиесия с жидкостью-носителем - раствором в хлороформе или дихлорметане переносчика солей аминов (обычно 18-краун-б в концентрации от 5- Ю до 2.10 М, 0,75% этанола или 5% изопропилового спирта). Раствор пропускали через колонку с постоянной скоростью элюирования в пределах 0,50 - 1,0 мл/мин. Рацемическую соль амина (1-11 мг) растворяли в 2 мя носителя и вносили в верхнюю часть колонки. Молярное отнощение "хозяина" и "гостя" варьировали от 23 до 128. На выходе из колонки измеряли электропроводность жидкости. Результаты представлены в табл. 5.3 и на рис. 5.7. [c.296]

    Это заключение можно легко проверить экспериментально, поскольку свойства гидроокиси четырехзамещенного аммония XV (являющегося сильным основанием и электролитом) в значительной мере отличаются от свойств карбинольного основания XVII, которое представляет собой третичный амин и относительно слабое основание. Была проведена экспериментальная проверка высказанного предположения путем измерения электропроводности растворов иодистого N-метилпиридиния немедленно после нейтрализации его щелочью [40]. Поскольку не удалось обнаружить понижения электропроводности во времени, как это можно было ожидать в том случае, когда XV превращается в XVII, то нет оснований рассматривать гидроокиси пиридиния как существующие главным образом в форме псевдооснования. Это нельзя, однако, считать общим правилом и для других четвертичных оснований гетероциклического ряда, поскольку хорошо установлено [c.322]

    Высокий выход ш,елоч ) по току (более 90%) достигается лишь при низкой концентрации получаемой каустической соды (около 10%). С целью увеличения селективности мембран и повышения их электропроводности одну сторону мембран можно обработать аминами или аммиаком по реакции Н302р + + NHз —> RS02NH2, а затем водным раствором щелочи [c.182]

    Сосуд для определения электропроводности изображен на рис. 2, б. Электроды введены на длинных пальцах , как в катафоретическом приборе, из тех же соображений. Этим прибором мы пользовались при измерении электропроводности в эфирозолях н золях в этиламине и пропил-амине. В первом случае электропроводность измерялась гальванометром, во втором — мостиком и телефоном с трехламповым усилителем. [c.152]

    Как было выше указано, щелочные металлы дают в этиламине наряду с коллоидным также истинный раствор. Как показали наши измерения электропроводности этих растворов, концентрация их очень мала. Растворимость щелочных металлов в аммиаке и аминах быстро падает от низших членов к высшим. Как было указано выше, Краус не мог обнаружить истинной растворимости щелочных металлов уже в этиламине, по всей вероятности, вследствие недостаточно чистой поверхности металла. В наших условиях эта растворимость была обнаружена непосредственно (см. выше) — путем растворения свежевозогнапного металлического зеркала в чистом растворителе, причем образуется синий, прозрачный, лишенный эффекта Тиндаля и проводящий ток раствор, электропроводность которого падает нри разбавлении чистым растворителем. Коллоидный же раствор щелочного металла в том же растворителе не изменяет своей электропроводности при разбавлении, что является доказательством совместного существования истинного и коллоидного растворов. Косвенным доказательством является более быстрая металлизация этиламин-золей по сравнению с золями в других растворителях, например в пропиламине, в котором, как в следующем члене гомологического ряда, истинная растворимость щелочных металлов должна быть очень низкой, что и подтверждается изменением электропроводности прониламин-золей. [c.161]

    В зависимости от источника вода содержит различные природные соли, обусловливающие повышение ее коррозионной способности и электропроводности. Пенообразователи, соли против замерзания и другие добавки также усиливают эти свойства. Предотвратить коррозию контактирующих с водой металлических изделий (корпусов огнетушителей, трубопроводов и др.) можно либо нанесением на них специальных покрытий, либо добавлением к воде ингибиторов коррозии. В качестве последних применяют неорганические соединения (кислые фосфаты, карбонаты, -силикаты щелочных металлов, окслители типа хроматов натрия, калия или нитрита натрия, образующие на поверхности защитный слой), органические соединения (алифатические амины и другие вещества, способные абсорбировать кислород). Наболее эффективный из них — хрмат натрия, но он токсичен. Для защиты от коррозии пожарного оборудования обычно применяют покрытия. [c.67]

    Зачастую полосы обладают структурой, не имеющей отношения, к наличию или отсутствию таутомерного равновесия (резоцанс Ферми, комбинации с низкочастотными колебаниями). Поэтому достоверность выводов о структуре комплекса, которые можно сделать при исследовании только полос у(АН), обычно невелика. Таюке, видимо, нельзя использовать величину химического сдвига активного протона в спектре ЯМР в качестве единственного критерия структуры комплекса (молекулярной, ионной или таутомерией). И тем более нельзя ограничиваться измерением каких-либо макроскопических характеристик растворов (диэлектрической поляризации, электропроводности, теплоты смешения и т. д.) Иллюстрацией могут служить противоречивые суждения различных авторов, сделанные подобным путем, относительно строения комплексов трифторуксусной кислоты с пиридином или алифатическими аминами в малополярных растворителях (как уже отмечалось, эти комплексы имеют ионную структуру [34, 37, 39]). Например, в [50, 51], комплекс СРзСООН—пиридин рассматривается как молекулярный комплекс с водородной связью, в [50] допускается возможность симметричной структу-рыЛ- -Н- -В, а в [31] предполагается существование таутомерного равновесия между молекулярной и ионной формами. [c.220]

    Для анализа летучих жирных кислот А. Джемс и А. Мартин [13] применили автоматическую титрацион-ную ячейку. Элюированные из колонки соединения поступали в камеру, содержащую водный или неводный растворитель. Цветной индикатор pH среды в сочетании с фотоэлементом и реле контролировал подачу титрующего раствора. Положение поршня бюретки, выполненной в виде шприца, регистрировалось самописцем. Такой титрационный детектор регистрирует интегральную кривую выхода кислот из колонки. Он позволяет селективно определять кислоты (или амины) в смеси с другими соединениями. Рабочая температура ячейки ограничена давлением пара титрующей среды. Чувствительность детектора 0,002—0,02 мг кислоты или щелочи. Применение детектора с кулонометрическим титрованием соединений, элюируемых из газохроматографической колонки, описано в работе [14]. Метод регистрации хромато-графически разделенных метилхлорсиланов по изменению электропроводности раствора, которое возникает в результате образования соляной кислоты при гидролизе хлорсиланов, предложен в работе [15]. [c.174]

    Свидетельством существования равновесия служит падение электропроводности после добавления к хинолиниевой соли 1 экв щелочи и образование продуктом реакции фенилгидразона. Окисление гидроксида феррицианидом калия дает хинолои-2, который может образовываться, как из карбиноламина, так и из о-амино-коричного альдегида с последующим замыканием лактамного цикла в промежуточно образующейся аминокислоте схема (30) . Со спиртами карбиноламины дают эфиры, при самоконденсации— димерные эфиры схема (31) . [c.215]


Смотреть страницы где упоминается термин Электропроводность аминов: [c.19]    [c.277]    [c.321]    [c.103]    [c.12]    [c.236]    [c.121]    [c.982]    [c.103]    [c.25]    [c.62]    [c.121]   
Водородная связь (1964) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Соли аминов электропроводность растворов

Электропроводность растворов аминов



© 2025 chem21.info Реклама на сайте