Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионная задержка

    Смолы для ионной задержки [c.396]

    Осаждение сульфидов катионов IV и V аналитических групп. Если в растворе присутствуют окислители, то осаждение сероводородом сопровождается обильным выделением серы, окислением S -ионов в 507 -ионы, задержкой осаждения сульфидов и др. [c.313]

    Скорость протекания всего процесса в целом контролируется стадией, сопровождающейся наибольшими торможениями. Причинами торможения могут быть замедленная доставка разряжающихся ионов к катоду — концентрационное перенапряжение (1-я стадия) замедленный разряд ионов, который обусловлен медленным переносом заряда через двойной электрический слой и связанным с этим изменением физико-химического и энергетического состояния ионов (дегидратация, десольватация, распад комплексных ионов и др.) — электрохимическое перенапряжение (2-я стадия) трудности, связанные с построением кристаллической решетки замедленная диффузия ад-атомов (ад-ионов) по поверхности катода к местам роста кристаллов, задержка при вхождении атомов в кристаллическую решетку или при образовании двух- или трехмерных кристаллических зародышей, т. е. то, что характеризует так называемое кристаллизационное перенапряжение (3-я стадия). Величина последнего сравнительно невелика и зависит от природы металла и от состояния поверхности катода, которое в ходе электролиза меняется в результате адсорбции посторонних ионов, молекул и органических веществ. [c.335]


    Применение комплексообразователей позволяет отделить одни катионы от других, если выбранный комплексообразователь образует комплексные соединения только лишь с частью из них. В этом случае константы ионного обмена катионов, не прореагировавших с комплексообразователей, существенно отличаются от константы ионного обмена образовавшегося комплекса. Возможен и такой случай, когда реагирующие с комплексообразователем катионы образуют комплексный анион и поэтому, не обмениваясь с противоионом катионита, вымываются из колонки без задержки. Такие смеси следует хроматографировать на анионитах. [c.110]

    Снижение эквивалентной электропроводности электролита при увеличении концентрации можно представить себе наглядно. Пусть при движении центрального иона в электрическом поле ионная атмосфера возникает перед ним и исчезает позади него. Появление ионной атмосферы происходит с некоторой задержкой времени (релаксацией). Время релаксации обратно пропорционально концентрации и заряду ионов, а также электропроводности. В результате движения иона равнодействующая всех зарядов ионной атмосферы смещается назад по движению ионов, иначе говоря, ионная атмосфера деформируется, становится асимметричной и поэтому тормозит движение центрального иона из-за электростатического взаимодействия (эффект релаксации). Кроме эффекта релаксации возникает также электрофоретическая сила. Она создается вследствие того, что ионная атмосфера состоит преимущественно из ионов противоположного знака и при движении в направлении, противоположном центральному иону, увлекает за собой молекулы растворителя в результате возникают как бы дополнительные силы трения. Обе эти силы обратно пропорциональны радиусу [c.332]

    Таким образом, процесс перехода молекул (ионов) ПАВ на поверхность раствора требует преодоления некоторого сложного по своей природе энергетического барьера, который является фактором, лимитирующим скорость адсорбции и приводящим к задержке установления равновесного значения а. [c.32]

    Образование осциллополярограммы можно объяснить при рассмотрении эквивалентной схемы и хода кривой постояннотоковой полярографии (рис. 4.31). Поверхность раздела фаз между поляризованным электродом и раствором электролита в отсутствие деполяризатора является конденсатором. Синусоидальный ток вызывает возникновение потенциала, как показано на рис. 4.31, б. При значении потенциала, большем чем потенциал разложения фонового электролита или потенциал растворения материала электрода, на кривой появляется плоский участок. Дальнейшей зарядки конденсатора двойного электрического слоя не происходит, так как возникает фарадеевский ток (например, при восстановлении К" , растворении Hg). Соответствующая кривая на рис. 4.31 дана полужирной линией. Происходящие при этом окислительно-восстановительные процессы также ясны из рисунка. В середине задержки , например для процесса выделения калия, ток меняет свой знак (рис. 4.31), и при этом вместо восстановления снова происходит окисление ионов калия, находящегося в виде амальгамы. В при- [c.159]


    Так, М. Леблан (1910 г.) предполагал, что скорость разряда ионов на катоде затруднена из-за связывания их в комплексные соединения с молекулами растворителя или комплексообразователя. Разряд комплексного или сольватированного соединения происходит не сразу, а с некоторой кинетической задержкой и таким образом определяет собой течение всего электродного процесса. Однако эта точка зрения не была подтверждена какими-либо экспериментальными данными. Кроме того, ближайшее рассмотрение этой гипотезы показывает ее несостоятельность, поскольку, например, процесс дегидратации протона водорода вряд ли вообще возможен как самостоятельная стадия, так как энергия связи протона с молекулой воды очень велика (около 282 кал на 1 г-ион), а константа диссоциации гидроксония [c.303]

    Одна из причин задержки ионов — внутреннее электрическое поле самой мембраны, обусловленное ДЭС (в гетерогенных системах) или системой фиксирован-1 ых зарядов (в гомогенных). Это поле, уменьшая вследствие отрицательной адсорбции С- (рис. ХП.5, Ь и ХП. 23) и число переноса коионов, задерживает нх поток, а с ним и поток противоионов (согласно принципу электронейтральности). Действительно, устранение внутреннего поля в условиях ИЭТ прекращает эффект задержки, как показала работа Сидоровой и Ермаковой (ЛГУ) .  [c.219]

    Применяют при болезни Аддисона, общей мышечной слабости и других заболеваниях внутримышечно в масляных растворах по 5 Л1г 3 раза в неделю до 10 мг ежедневно. Препарат вызывает задержку ионов натрия и повышение выделения калия противопоказан при гипертонической болезни, сердечной недостаточности, атеросклерозе и др. [c.619]

    Помимо приведенной выше общей схемы, лежащей в основе этого явления, можно указать и на частные случаи. Так, при быстром утоньшении прослойки раствора электролита плотность заряда поверхностей раздела вследствие задержки перестройки адсорбционного равновесия ионов может оставаться постоянной, но после установления адсорбционного равновесия плотность заряда падает, [c.53]

    Это уравнение показывает, в частности, что можно повысить селективность мембран, вводя в состав электролита ионы с высокими значениями 7 . Их задержка будет вызывать вследствие возникновения электрического поля задержку иона противоположного знака, даже если последний сам по себе не задерживается или даже положительно адсорбируется мембраной (у 1). Так,-для симметричного 1—1-электролита с = 100 и Y- = Oil эффективное значение [c.303]

    Второй химический процесс, который обеспечивает задержку натрия в организме и выведение излишка водородных ионов,— это превращение в просвете канальцев бикарбонатов в угольную кислоту. В клетках канальцев при взаимодействии воды с углекислым газом под влиянием карбоангидразы образуется угольная кислота. Водородные ионы угольной кислоты выделяются в просвет канальца и соединяются там с анионами бикарбоната эквивалентный этим анионам натрий поступает в клетки почечных канальцев. Образовавшаяся в просвете канальца П СО, легко распадается на СО, и П,0 и в таком ввде покидает организм. [c.614]

    В идеальном случае для А. и. с. характерно стехиомет-])ич. соотношение кислотных и основных групп, предполагающее возможность 100%-ного образования ВС-формы. Наличие в А. и. с. ионогенных руш1 в свободном (не связанном в ВС-форму) состояаии обусловливает протекание обычных реакций ионного обмена, в то время как для истинных А. и. с. характерен не нонный обмен, а так наз. ионная задержка , т. с. замедление двшкепия ионов сильных электролитов ири разделении на А. и. с. в хроматографич. колонках смесей сильных и слабых электролитов. [c.66]

    Амфотерные ионообменные смолы, содержащие одновременно кислотные и основные ионогенные группы во внутрисолевой форме, не содержат подвижных ионов, поэтому потенциал Доннана на них не возникает и электролиты могут свободно проникать в фазу ионита. Специальные амфотерные смолы (типа ретардион ), виутрисолевая форма к-рых образуется с нек-рыми стерич. напряжениями, наоборот, охотно сорбируют электролиты. Они могут применяться для отделения электролитов от неэлектролитов по способу отстающего электролита (явление ионной задержки ). Так, саха- [c.430]

    Экспериментальные исследования [156] показали, что в турбулентных пламенах наблюдается как нормальное распространение пламени, так и самовоспламенение объемов свежей смеси. С учетом этого процесс турбулентного горения при достаточно высокой интенсивности турбулентного потока можно представить в виде двух одновременно протекающих и конкурирующих между собой процессов — нормального распространения пламени и самовоспламенения объемов свежей смеси [5]. Поскольку самовоспламенение смеси в данном случае происходит в условиях интенсивной диффузии в объем свежей смеси активных центров (атомов, свободных радикалов, ионов) и, что особенно важно, при интенсивном воздействии на объем свежей смеси излучения окр ужающего пламени, период задержки самовоспламенения мал и стремится к постоянной величине. В этих условиях параметром, существенно влияющим на взрывное горение, является температура самовоспламенения смеси Т  [c.139]


    В цитированной литературе рассматриваются другие особенности процесса разрушения, которые могут быть получены с помощью фрактографического анализа. Это — влияние линий Валнера на положение ребер [61, 196, 200], разрушение без образования трещин серебра в ПС с низкой молекулярной массой [155], задержка разрыва трещин серебра при усталости материала (разд. 3.3), пластическое разрушение ПС при более низких скоростях нагружения и при температурах, близких к 7 с, в результате роста одной или более каверн ромбической формы [169], выявление глобулярной структуры путем ионного травления вещества трещин серебра ПС [132] и поверхности ПВХ [208] и особенности поверхности разрушенных образцов фенолформальдегида, напоминающие трещины серебра [195]. [c.403]

    Теоретически казалось бы лучше обеззараживать воду труднорастворимой солью Ag l, насыщенный раствор которой содержит около Ы0 5 г-иои/л Ag+, тогда как пижиий предел бактерицидного действия серебра оценивается копцентрацией порядка 2Х ХЮ" г-ион/л. Но практически работать с осадком Ag l очень неудобно, так как он образует насыщенный раствор только вокруг твердого вещества, а прн тщательном перемешивании с водой требуются дополнительные мероприятия для задержки этой взвеси. [c.161]

    Напротив, если химические свойства малораспространенных элементов, зависящие прежде всего от заряда и радиуса образуемых ими ионов, существенно отличаются от свойств элементов, широко распространенных (т. е. с атомными ядрами высокой устойчивости), то минералы, образованные малорасиространенными элементами, не находят себе носителя кристаллизации и поэтому дольше других элементов сохраняются в расплаве. Такая задержка кристаллизации способствует концентрированию данного минерала в остаточном расплаве. Часто именно такие расплавы увлекаются водяным паром в трещины застывшей силикатной магмы и там застывают в виде пегматитовых жил ( остаточная кристаллизация). Поэтому пегматиты часто содержат собственные минералы многих редких элементов (без матрицы, образованной минералами широко распространенных элементов). [c.245]

    При фильтрации растворов под давлением через мембраны с еще более тонкими порами, например, ацетатцеллюлозные (г 10- см), происходит задержка не только дисперсных частиц, но и растворенных молекул и ионов электролитов. Этот процесс, называемый гиперфильтрацией или обратным осмосом, широко применяют в настоящее время для очистки природных и технических вод (см. гл. ХП, XVIII). [c.26]

    Наложение давления на систему, где мембрана разделяет два раствора, также создает поле сил, порождающих потоки через мембрану. Силовое поле неизбежно вызывает поляризацию в высокодисперсных системах как электрическую (индуцированные диполи), так и концентрационную. Аналогично электродиализу, где поле порождает поток электричества (электрический ток), наложение давления создает поток массы жидкости (фильтраг(ию) и вызывает концентрационную поляризацию. Потенциал течения выравнивает ионные потоки противоионов и Кононов (стр. 201), но они отстают от потока растворителя, происходит задержка электролита перед входом в мембрану, разбавление на выходе, и профиль концентрации становится сходным с представленным на рис. ХП. 23, если внешнее поле отсутствует, а фильтрационный поток направлен справа налево. Явление задержки электролита при фильтрации через мембрану называется гиперфнльтра-цией или обратным осмосом (поскольку давление направлено навстречу возникающему осмотическому потоку) и приобретает огромное, все возрастающее значение для опреснения природных вод (см. гл. XVlH). [c.219]

    Разряд ионов водорода потекает в несколько стадий. К их числу прежде всего относится диффузия ионов гидроксония из глубины раствора к катоду. Далее следует собственно электрохимический акт разряда водородных ионов одновременно с их дегидратацией. Образовавшийся в результате этого атомарный водород, адсорбированный на поверхности катода, превращается в молекулярный водород (реакция рекомбинации или молизаций). Из этого следует, что водородное перенапряжение вообще определяется суммой трех слагаемых перенапряжения диффузии, обусловленного задержкой переноса ионов водорода к катоду, перенапряжения перехода, связанного с торможением электрохимической стадии ассимиляции электрона водородным ионом, и, наконец, перенапряжения реакции, возникающего вследствие задержки рекомбинации. Соответственно этому [c.182]

    Для понимания механизма ингибиторного действия по отношению к кислотной коррозии нашел применение электрохимический метод, основанный на данных поляризационных измерений. Введение ингибитора в раствор может привести к задержке скорости катодного процесса разряда ионов водорода на поверхности металла. В случае введения другого ингибитора торможению подвергается анодная стадия ионизации.металла. Очень часто действие ингибитора одновременно направляется на обе стадии коррозионного процесса. Все эти изменения находят отражение на поляризационных кривых, наклон которых становится тем более крутым, чем выше эффективность действия ингибитора (рис. 142). Пунктиром на этом рисунке показаны кривые катодной и гиюдной поляризации в полулогарифмических координатах ля чистого иеингибированного раствора кислоты. Экстраполирован-пап точка пересечения начальных линейных отрезков этих кривых соответствует скорости саморастворения металла в таком растворе (на рис. 141 эт а величина обозначается г ). Ей соответствует стационарный потенциал коррозии Е . Сплошными линиями на рисунке показаны поляризационные кривые, относящиеся к ингибированному раствору. Абсцисса точки пересечения обеих кривых помтрежнему определяет скорость саморастворения металла с, но на этот раз в присутствии ингибитора в растворе. [c.260]

    V N -> О (Н) -> F. По этой причине соединения фтора являются ионными соединениями. В том же ряду увеличивается растворимость неметаллов вследствие уменьшения донорной способности и задержки структурных изменений, связанных с образованием соединения. Число электронов, участвующих в образовании связей неметалл — металл, уменьшается от углерода к кислороду, соответственно ослабляется связь. Это положение иллюстрируется уменьшением температуры плавления, которую можно рассматривать как качественную меру прочности связи при переходе от карбидов к окислам (табл. 57, рис. 67). Наиболее высокими температурами плавления обладают фазы со структурой типа Na l. [c.232]

    Химическая поляризация наблюдается в газообразных веществах и со-(ровождается, как показал А. Н. Фрумкин, задержкой процесса восста- овления водорода и других ионов. Поэтому для разложения, например, [c.89]

    Цикл измерения масс-спектра в методе ИЦР ПФ состоит из интервала времени создания ионов в ячейке временной задержки (при необходимости) для превращения ионов или их взаимод. с др. частицами импульса возбуждения циклотронного движения ионов, подаваемого на пластины 3 и 4 интервала времени измерения сигнала от свободно вращаю-гцихся ионов с пластин 5 и 6 до импульса очистки ячейки от всех ионов выворачиванием потенциальной ямы, что достигается п гтем подачи на пластины 1 и 2 потенциалов обратной полярности. Т. обр., пауза между интервалом времени, в к-ром ионы создаются, и интервалом времени, в к-ром они анализируются по массам, может составлять часы. В результате метод дает возможность исследовать разл. медленные процессы взаимод. ионов с молекулами, электронами и светом. Высокая разрешающая способность метода позволяет использовать его для разделения дуплетов и мультипле-тов в масс-спектрах. Методом ИЦР ПФ впервые разделен дуплет Не - Т и измерена разность масс ионов. [c.375]

    Заселенность в электронном состоянии 1/2 будет существенно зависеть от временной задержки между возбуждающим и зондирующим импульсами. Из верхнего электронного состояния молекула может флуоресцировать (тогда измеряется интенсивность флуоресценции) либо распасться (детектируется продукт распада изложенными в этой главе методами) или ионизоваться (детектируется ток или ионы масс-спектрометрическими методами). Во всех случаях регистрируется зависимость измеряемой величины (интенсивность флуоресценции, концентрация продукта или ионного фрагмента) от временной задержки между возбуждающим и зондирующим импульсами. В некоторых методиках зондирующий импульс осуществляет переход в нижнее электронное состояние в результате вынужденного излучения на комбинационных переходах. Отметим, что высокая интенсивность фемтосекундных импульсов позволяет эффективно использовать все развитые к настоящему времени методы нелинейной спектроскопии. [c.133]

    При необходимости время задержки испытуемого вещества можно изменить, изменяя соотношение растворителей в подвижной фазе. Вообще, увеличение относительного количества более полярного растворителя приводит к укорочению времени задержки на колонке с нормальной фазой (например, колонка из силикагеля) и к удлинению времени задержки на колонке с обращенной фазой (фаза, химически связанная с октадецилсиланом). Для улучшения хроматограммы можно изменять и другие хроматографические параметры, такие как скорость элюции, длина колонки, pH, ионная сила и температура. [c.422]

    Некоторые методы амперометрического определения бромид-ионов основаны на реакции их взаимодействия с ацетатом кадмия в среде ледяной уксусной кислоты, в которой Сс1Вг2 нерастворим. Титрование ведут на платиновом [44] или (лучше) амальгамированном медном [137] электроде, вращающемся со скоростью 1000— 1200 об/мин] электродом сравнения служит большой медный анод. Осадок вьшадает без задержки, если в ячейку вводить реагент (0,01—0,04 N С(1(СНзСОО)2 в СНдСООН) и титровать его анализируемым раствором, добавляемым порциями по 0,2 мл. Твердую пробу растворяют в возможно меньшем количестве воды и раствор разбавляют в мерной колбе уксусной кислотой. Потенциал электрода устанавливают на уровне —2 в. Анализ длится всего [c.135]


Смотреть страницы где упоминается термин Ионная задержка: [c.433]    [c.396]    [c.439]    [c.146]    [c.18]    [c.160]    [c.194]    [c.546]    [c.226]    [c.151]    [c.605]    [c.133]    [c.139]   
Энциклопедия полимеров Том 3 (1977) -- [ c.0 ]

Энциклопедия полимеров том 1 (1972) -- [ c.131 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.131 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Задержка



© 2024 chem21.info Реклама на сайте