Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деформация волокон течения

    Совершенно очевидно, что большие обратимые деформации полимеров (т. е. опособность проявлять высокоэластичность) не всегда являются достоинством для конструкционных материалов, а в определенных условиях чрезвычайно вредны, например, в тех случаях, когда полимерному материалу необходимо придать определенную форму. Заданная форма изделия наилучшим образом сохранится тогда, когда деформация расплава (или раствора) полимера истинно необратима, т. е. является деформацией вязкого течения. Поэтому практически все методы переработки полимеров в изделия (начиная от автопокрышек и кончая волокнами и пленками) основаны на переводе полимера в вязкотекучее состояние и придании ему формы именно в этом состоянии, когда вся деформация полимера или ее большая часть является необратимой. [c.126]


    Работа, связанная с деформацией волокна Хрупкое разрушение волокна Изгиб волокна в процессе вытаскивания Пластическое разрушение волокна Запасенная упругая энергия Пластическое течение в процессе изгибания Пластическое течение и образование шейки [c.368]

    Деформация волокна под действием постоянной нагрузки включает мгновенное упругое удлинение, удлинение, уменьшение которого во времени выражается степенной зависимостью, и некоторое пластическое течение. Та часть удлинения, которая зависит от времени действия нагрузки, обусловлена релаксацией межмолекулярных связей. Большая часть обшей деформации приходится именно на этот вид удлинения. Под действием повторных нагрузок происходит механическое кондиционирование волокна (рис. 8, 9). [c.111]

    По мере увеличения нагрузки усадка снижается, и при достижении определенной нагрузки волокно начинает удлиняться. Максимальная деформация в указанных условиях окисления достигает 40%. Изменение линейных размеров волокна наиболее интенсивно происходит в течение первого часа окисления, после чего продолжительность окисления мало сказывается на деформации волокна. [c.171]

    Способы упрочнения углеродного волокна, полученного из ПАН- ц гидратцеллюлозных волокон, в последнее время были использованы для улучшения механических свойств углеродных волокон, изготовленных из пеков [15]. С этой целью карбонизованное волокно (конечная температура обработки 1000°С) подвергалось графитации под натяжением при температуре выше 1800 С. Материал имел форму жгута толщиной 222—333 текс. Напряжение изменялось в пределах 0,9—4,5 гс/текс. Графитация проводилась в токе азота при температуре до 2500 °С со скоростью подъема 125°С/ч и выдержкой при конечной температуре в течение 3 мин. Пластическое состояние углерода и соответственно деформация волокна достигаются при температуре выше 1800 °С. Деформация волокна возрастает с увеличением температуры и напряжения (рис. 5.9). Напряжение ниже 1,8 гс/текс малоэффективно. Приме- [c.239]

    Наконец, отрезок СО характеризует пластическую (необратимую) деформацию волокна, вызываемую продольным скольжением макромолекулярных звеньев, целых макромолекул или надмолекулярных образований под действием нагрузки Яз ( течение волокна). [c.102]

    Регель и др. [74] показали, что закономерность подобного накопления разрушений применима к волокнам ПАН, нагружаемых с частотой 24 Гц в течение 1,5-10 циклов. Для пленок ПММА, вискозного волокна и волокна капрона (ПА-6) соответствие экспериментальных данных и выражения (8.11) можно было получить благодаря охлаждению воздухом образцов, испытываемых на усталость, после предварительной вытяжки или термообработки при повышенных температурах. Эти же авторы пришли к выводу, что выражение (8.11) будет описывать усталостное разрушение, согласно кинетической концепции разрушения, если температура Т (окружающей среды) и активационный объем у будут заменены величинами Т и у, которые зависят от параметров эксперимента при утомлении (частоты, формы импульса напряжения или деформации). [c.262]


    Сопротивление удару хрупкого полимера (площадь под кривой нагрузка—деформация), по существу, определяется энергией We, необходимой для достижения стадии быстрого распространения трещины (максимума Р). Дополнительная энергия, требуемая для разделения материала на части во время фазы быстрого роста трещины, незначительна (рис. 8.24). Поэтому одними из наиболее существенных особенностей сопротивления удару хрупких полимеров являются ограниченные условия, при которых становится возможным быстрый рост трещины в материале. Данная проблема будет рассмотрена в гл. 9 с позиций механики разрушения. Абсолютные значения наибольшей изгибающей силы Fm или наибольших напряжений в растягиваемом волокне не являются мерой сопротивления удару. Действительно, термообработка (в течение 30 мин при 130°С) бруска полистирола, полученного инжекцией расплава, увеличивала сопротивление удару (за счет увеличения отклонения б) от 18 до 21 кДж/м при одновременном уменьшении fm от 235 до 215 Н [105]. [c.272]

    Твердые полимеры обладают другой важной особенностью в отличие от обычных твердых тел. Они при больших напряжениях подвергаются так называемому холодному течению, или вынужденноэластической деформации, что приводит к ориентированному состоянию полимеров. Все химические волокна и пленки находятся в этом состоянии и обладают ярко выраженной анизотропией структуры и физических, особенно прочностных и деформационных свойств [17, гл. IV]. [c.71]

    Вот это и явилось источником путаницы. Простое смещение стрелки действия, приводящее к хрупкому разрыву жидкости—это, по существу, тот же эффект, что отскакивание камня от воды или раскалывание струи при выстреле в- нее. Этот эффект соверщенно не связан с характером течения и, соответственно, совпадением или несовпадением ориентаций компонент тензоров деформации и напряжения. Напротив, хрупкое разрушение бывшей струи, которая в результате фазового перехода стала волокном, должно трактоваться как обычное разрушение тела в струк-турно-твердом состоянии. [c.222]

    Для технологии полимерных материалов все три состояния являются практически важными. Пластмассы и волокна эксплуатируются главным образом в твердом состоянии (кристаллическом или аморфном), каучуки и резины —в высокоэластичном. Качество каучука улучшают частичным сшиванием цепей, поскольку несшитые цепи при деформации не только вытягиваются, но и несколько смещаются. В результате наблюдается течение, приводящее к остаточным деформациям. Сшивка, однако, должна быть редкой, чтобы отрезки между мостиками, где проявляется гибкость цепи, были длинными. Способность полимеров переходить в вязкотекучее состояние имеет большое значение при их переработке. Полимеры формуются в изделия большей частью в вязкотекучем состоянии. [c.197]

    Пленки, волокна и другие изделия из высокомолекулярных веществ отличаются особыми механическими свойствами, которые зависят от величины, гибкости, формы, строения и характера взаимного расположения макромолекул, а также от температуры. При приложении нагрузки полная деформация образцов происходит не сразу, как у обычных материалов, а в течение некоторого промежутка времени это время тем меньше, чем выше температура. У некоторых высокомолекулярных веществ (каучук и другие эластомеры) наблюдаются большие обратимые деформации, во много раз превосходящие упругую деформацию низкомолекулярных материалов. [c.7]

    Для понимания процессов, происходящих в присутствии наполнителей, существенно разделить эффекты деформации, связанные с высокоэластической и пластической деформациями. Такое исследование проведено термомеханическим методом для наполненного стеклянным волокном полистирола [276]. Была изучена кинетика нарастания деформации при различных температурах в течение 400 мин. Типичные кривые приведены на рис. IV. 4. После нагружения образцы разгружали, и при повышенной температуре происходило упругое восстановление. Оставшаяся после этого часть первоначально развившейся деформации рассматривалась как необратимая, а разность между общей величиной деформации и ее [c.153]

    Если растяжение происходит при низких скоростях деформации и предстационарная стадия завершается выходом на режим установившегося течения, то дальнейшее увеличение степени вытяжки может происходить очень долго путем развития пластических (необратимых) деформаций. Разрыв струи (волокна) в этом случав происходит только вследствие увеличения амплитуды поверхностных волн, возникающих под влиянием сил поверхностного натяжения. В этом случае полная длина струи до разрыва определяется соотношением сил вязкости и поверхностного натяжения. Упругость (высокоэластичность) полимерного материала при тех же значениях вязкости и коэффициента поверхностного натяжения, так же как и у ньютоновской жидкости, влияет на величину но конкретная форма зависимости от свойств материала в общем случае неизвестна. [c.426]


    Естественно предположить, что релаксация возникшего в волокне напряжения сопровождается работой, затрачиваемой на преодоление внутреннего трения. Поскольку релаксация напряжения происходит при постоянстве заданной деформации, такое перемещение отдельных участков цепи должно означать переход от средних к очень большим периодам релаксации, или к течению, в результате чего после снятия напряжения волокно обнаруживает в той или иной мере потерю способности к восстановлению своих эластических свойств. [c.273]

    Кривые, характеризующие такой процесс, приведены на рис. 2. Как видно из кривой 7, отражающей изменение задаваемых волокну деформаций, после достижения максимальной вытяжки некоторая доля этих деформаций снимается за счет релаксационной усадки на специальных приспособлениях, причем эта усадка осуществляется не мгновенно, а в течение некоторого времени, определяемого характером механических приспособлений (в данном случае она продолжается около 15 сек.). Согласно кривой 3, в этот же промежуток времени в нити осуществляется почти полная релаксация напряжения. [c.274]

    Ориентационное вытягивание производят после завершения первичного структурообразования, когда степень кристалличности еще невелика. Степень вытяжки зависит от характера надмолекулярной структуры и агрегатного состояния, определяющего подвижность системы. Последняя определяется темп-рой или наличием пластифицирующей жидкости. Вытягивание ведут при темп-ре, несколько превышающей темп-ру стеклования. В ряде случаев для снижения темп-ры стеклования в волокно вводят пластификатор (в этом случае процесс наз. пластификационной вытяжкой). Ориентационная вытяжка при темп-ре, близкой к темп-ре стеклования, протекает по принципу аффинного преобразования сплошной среды при ее упругом деформировании, что доказывается практически полной обратимостью деформации. Вытяжка при температурах, близких к температуре течения (термовытяжка), протекает преимущественно в режиме вязкого течения. Волокно в этом случае вытягивается в 5—10 раз. [c.376]

    Таким образом, релаксация напряжения при постоянстве заданной деформации в течение длительного времени является одной из основных причин выпрямления цепей и стеклования волокна в случае жесткой схемы. Устойчивость стеклования будет тем выше, чем большее время волокно находилось под напряжением. Экспериментально это подтверждается ходом кривых остаточных деформаций после медленной релаксации в условиях прогрева в водной среде при 90—95° в течение 30 мин. (кривые 3, рис. 1, а и б). Действительно, как видно из кривых, сокращение вырубленных отрезков нити в случае разгрун<енпой схемы почти вдвое превышает сокращение нити для случая жесткой схемы. [c.274]

    Детальному исследованию процессов высокотемпературной вытяжки и кристаллизации волокон из поли-ж-фениленизофталамида, поли-4,4 -дифениленоксид-терефталамида и сополиамидов посвящены работы [102, 103]. Отмечен общий бимодальный характер зависимости прочности волокон от температуры термической вытяжки. Это означает, что на кривой зависимости прочности волокон от температуры вытягивания имеется два максимума прочности. Для волокон из поли-ж-фениленизофталамида в первой зоне вытяжки (220—260 °С) наблюдается заметное упрочнение волокна, сопровождающееся возрастанием максимальной кратности вытяжки. Поскольку данный температурный интервал лежит ниже температуры размягчения полимера, можно предположить, что вытягивание в первой зоне происходит в области вынужденной высокоэластичности полимера. Вытягивание во второй зоне (260—300 °С), несмотря на увеличение максимальной кратности вытягивания, приводит к уменьшению прочности и увеличению разрывного удлинения. В этой зоне вытягивание происходит в режиме истинной высокоэластичности и сопровождается интенсивными релаксационными процессами, приводящими к дезориентации макромолекул в аморфных областях и к снижению прочности. В третьей зоне (300—360 °С) происходит упрочнение волокна при снижении кратности вытяжки. В этой области, по-видимому, ориентация сопровождается интенсивной кристаллизацией полимера. При этом релаксационные процессы играют заметную роль, так как прочность увеличивается незначительно. В четвертой зоне, при температурах выше 360 °С, наблюдаются процессы необратимой деформации вязкого течения в термической деструкции, вследствие чего физико-механические свойства волокна ухудшаются. В результате двухстадийной термовытяжки при 260 и 360 °С удалось затормозить релаксационные процессы и получить волокна из поли-ж-фениленизофталамида с удовлетворительной прочностью около 50 гс/текс. [c.185]

    Характер кривых на рис. 3.15 косвенно указывает на то, что при окислении в течение более 1 ч происходит структурирование, так как деформация волокна при разных нагрузках остается пеиз у1енной. Видимо, при варьировании температуры и продолжительности окисления можно найти оптимальные условия вытягивания волокна. [c.173]

    Отрезки АВ и ВС характеризуют эластические (обратимые во времени) деформации волокна, АВ — деформации, исчезающие в течение 30—60 с, ВС — деформации, исчезающие медленнее (более 1 — 10 мин). Эти деформации зависят от гибкости макромолекулярных звеньев, которая, в свою очередь, зависит от жесткости полимерных цепей, температуры, наличия в волокне пластифицир ующих веществ и в большей степени от молекулярной структуры волокна. [c.102]

    Схема 4. Проведение процесса вытягивания в течение значительного времени приводит к резкому удлинению зоны П1, где протекают процессы релаксации и кристаллизации. В этой зоне продолжается незначительная деформация волокна (изотермическая ползучесть) вследствие наличия значительного механического напряжения. Однако с некоторым приближением можно полагать, что в зоне III W л onst или / = onst и о onst (кривая 4 на рис. 12.4). [c.229]

    В течение пускового периода происходит процесс формирования диафрагмы, условия протекания которого в значительной мере определяют ее дальнейшую работу. При заполнении электролизера подогретым рассолом и особенно после включения тока диафрагма начинает подвергаться активному воздействию г идростатического давления столба рассола, температуры и компонентов электролита. Гидростатическое давление уплотняет диафрагму п прижимает ее к катодной сетке, диафрагма под действием те.мпературы испытывает тепловые деформации, волокна асбеста набухают и пропитываются электролитом. При этом в слое асбеста происходят физико-химические процессы, которые определяют структуру этого слоя (пористость, плотность, набухание и т. д.) и, следовательно, первоначальную протекаемость диафрагмы. При оценке протекаемости диафрагмы I пусковой период приходится считаться с ее возможными де-( )ектамп, которые мо1ут вызвать значительные изменения протекаемости диафрагм в разных ваннах сразу же по заполнении м рассолом до включения тока. [c.166]

    В настоящей работе при ряде упрощающих допущений построена математическая модель динамики одиночной гибкой нити конечной длины и произвольной первоначальной конфигурации в условиях деформащм матрицы. Анализируются два типа деформации чистый сдвиг и простой сдвиг. Матрица моделируется ньютоновской жидкостью, силы инерции не учтываются. Течение изотермическое. Проскальзывание жидкости по поверхности волокна не учитывается. Волокно не контактирует с другими волокна ми. [c.141]

    В предыдущих разделах рассматривались свойства цепей и микрофибрилл исключительно при постоянных или монотонно возрастающих напряжениях или деформациях. Однако в процессе работы волокна часто подвергаются воздействию прерывистой или циклической нагрузки. Поэтому в течение многих лет изучалось [72—82] поведение волокна под действием повторяющегося циклического нагружения. На основе обширного обзора Хирля и др. [76] можно сказать, что при накоплении циклических растяжений волокно ослабляется, когда достигается его удлинение, соответствующее разрыву. При таком условии постоянно возрастающего максимума растяжения усталость можно рассчитать с помощью соответствующей информации о неупругом деформировании волокна и зависящих от времени условий его разрыва. Пока еще не обнаружено никаких особых усталостных эффектов при накоплении циклических растяжений [76]. [c.261]

    Чен [14], а также Уайт и Айди [10] представили экспериментальные и теоретические результаты (изотермический анализ устойчивости по Ляпунову), из которых следует 1) полимерные расплавы ведут себя при формовании волокна так же, как при однородном продольном течении 2) для полимеров, у которых продольная вязкость т]+ t, ) возрастает с увеличением времени или деформации (см. рис. 6.16), характерно устойчивое формование волокна без проявления резонанса прп вытяжке, и при высоких степенях вытяжки они разрушаются по когезионному механизму (примером полимера, демонстрирующим такое поведение, может служить ПЭНП) 3) для полимерных расплавов с уменьшающейся продольной вязкостью характерно проявление резонанса уже при малых степенях вытяжки и упругое разрушение (после образования шейки ) при высоких степенях вытяжки (типичными полимерами, которые можно отнести к этой категории, являются ПЭВП и ПП). [c.566]

    По М.с. различают след. осн. типы материалов 1) жесткие и хрупкие (чугуны, высокоориентир. волокна, камни и др.), для них характерны модули Юнга > 10 ГПа и низкие разрывные удлинения (до неск. %) 2) твердые и пластичные (мн. пластмассы, мягкие стали, нек-рые цветные металлы), для них характерен модуль Юнга > 2 ГПа и большие разрывные удлинения 3) эластомеры (резины)-низкомодульные в-ва (мвновесный модуль высокоэластичности порядка 0,1-2 МПа), способные к огромнььм обратимым деформациям (сотни %) 4) вязкопластичные среды, способные к неограниченным деформациям и сохраняющие приданную им форму после снятия нагрузки (глины, пластичные смазки, бетонные смеси), 5) жидкости, расплавы солей, металлов, полимеров и т п., способные к необратимым деформациям (течению) и принимающие заданную форму. Возможны также разнообразные промежут. случаи проявления М. с. [c.76]

    Область рабочих температур волокон из некристаллизуюпщхся полимеров ограничена уровнем их температуры стеклования, выше которой их деформация носит характер необратимого пластического течения. Примером таких волокон являются поликарбонатные волокна = 150 °С), которые могут быть получены в закристаллизованном состоянии только в виде сополимеров, содержащих вполне определенное число гибких алифатических звеньев с таким же периодом идентичности, как и основные звенья цепи [47]. Способность полиэтилентерефталата легко кристаллизоваться в ходе технологических операций во многом определяет успех и свойства полиэфирного волокна. [c.111]

    Согласно скользящей модели, напряжение, развиваемое мышцей, целиком определяется нитями актина и миозина и 7-дисками. Все эти элементы не вполне жестки, они обладают определенной податливостью. Конечные саркомеры мышечного волокна связаны с соединительной тканью сухожилий, и здесь также имеется податливость, пластичность. Одновременно эти элементы вносят некоторую упругость в движение мышцы. Однако общий вклад упругих и пластических деформаций не превышает 3% развиваемого мышцей напряжения. Все же следует рассматривать мышцу как вязкоупругое тело. Как мы увидим, уравнение Хилла списывает только вязкое течение в мышце. [c.401]

    Рассмотрим вначале полимерную матрицу в ненагруженном однонаправленном композите. Такой композит обычно представляют квадратичной или гексагональной моделью. Минимальное объемное содержание полимера в плотноупакованной квадратичной структуре — около 21%, в гексагональной—13%. Армирующие волокна можно считать совершенно жесткими, так как модуль упругости применяемых неорганических волокон значительно больше модуля упругости полимера. Как уже указывалось выше (см. гл. 3 и 4), при отверждении эпоксидного полимера в ходе изготовления пластика, которое происходит обычно при повышенной температуре, объем полимера уменьшается вследствие его усадки, а вязкость быстро нарастает. До гелеобразования, пока полимер способен к течению, его объем может уменьшаться за счет уменьщения объема всей системы или образования пор. После гелеобразования течение полимера невозможно, и происходит деформация всей системы. Однако при этом деформация полимера ограничена волокнами, что приводит к появлению в полимере внутренних напряжений. Так как армированные пластики, как правило, содержат большое количество наполнителя, то можно считать, что он образует жесткий скелет, препятствующий деформации полимера, т. е. связующее подвергается всестороннему растяжению. Объемная деформация при этом может составлять несколько процентов (см. гл. 4). Таким образом, уже в ненагруженном состоянии эпоксидная матрица должна выдерживать значительные механические деформации без разрушения и нарушения адгезии на границе с волокном. Как показали микроскопические исследования [27—33], эпоксидные смолы значительно лучше других связующих выдерживают подобные условия. [c.209]

    Этими особыми свойствами обт ясняется возможность вытягивания в изотермических условиях волокна или пленки из полимерных материалов, не меняющих своего химического строения ори таких процессах. На самом деле, напряжение в полученном волок- не (или пленке) будет гораздо выше, чем в исходном образце, вследствие резкого уменьшения его поперечного сечения во время деформации. Это, в свою очёредь, должно привести к быстрому увеличению скорости теаения материала и разрушению волокна. Однако в результате того, что процесс течения сопровождается стремительным возрастанием вязкости, текучесть образовавшихся тонких образцов может оказаться меньше, чем у первоначального материала. Поэтому, несмотря на наличие более высокого напряжения в волокне или пленке, их формование из полимерной массы будет продолжаться без нарушения их целостности. [c.406]

    Этого можно было бы избежать, если бы в отправной системе были заранее созданы структурные элементы волокна (скажем, коллагеноподобного типа). Однако здесь выявляется второе ограничение, связанное уже с самой фильерой. Течение структурированной жидкости через фильеру может привести к серьезным осложнениям из-за накопления высокоэластических деформаций как показано в работах Г. В. Виноградова с сотрудниками [34], существует некоторое эластическое число Рейнольдса , переход через которое приводит к пульсации струи и соответственно к резким неоднородностям волокна. Чем сильнее структурирована система, тем при меньших скоростях экструзии наступает это критическое состояние. [c.66]

    Существенным следствием изложенного является то, что процесс взаимной ориентации асимметричных молекул приводит к различию сил взаимодействия вдоль общего направления цепей и поперечно к нему. Это значит, что появляется анизотропия вязких свойств, хорошо известная для этого случая экспериментально . Попытки использования этого свойства для получения особо прочных (в продольном направлении) искусственных волокон широко известны (так называемые ориентированные волокна ). Однако, как следует из развитых представлений, такая ориентация может иметь различное происхождение. Преимущественная ориентация цепей может получиться вследствие процесса релаксации и вследствие процесса вязкого течения. Оба процесса протекают с различными скоростями. Поэтому при эриентации, создаваемой непродолжительной деформацией, как это обычно целается, заметно развивается только релаксационный процесс и достигнутое упрочнение после снятия нагрузки постепенно исчезает вместе с ориентацией (напомним известное явление усадки искусственного шелка). [c.217]

    Однако по мере деформации полимера цепные молекулы выпрямляются и становятся тем самым более жесткими. Действительно, выпрямление связано с уменьшением числа конфигураций, которые может осуществить цепь. В пределе совершенно прямая цепь может существовать только в одной конфигурации и будет поэтому совершенно жестка. Следовательно, по мере течения полимера цепи его будут становиться жестче и вязкость будет расти даже у таких полимеров с гибкими цепями, как нолиизобутилеп [3]. В случае же полимеров с жесткими цепями, как, например, целлюлоза, эти эффекты долнчпы быть особенно велики вплоть до полной потери эластических свойств. В этом случае можно будет говорить о своеобразном переходе полимера в стеклообразное состояние из-за увеличения жесткости цени, вызванного внешними силами. Этот эффект может привести к тому, что после снятия напряжения ориентированное волокно почти не будет сокращаться, так как периоды релаксации чрезвычайно возрастут вследствие выпрямления и увеличения жесткости цепи. Этому будет соответствовать и энергетическая картина если пе в смысле существенного изменения внутренней энергии системы, то в смысле перераспределения связей относительно оси волокна, повышающего внутреннее сопротивление стремлению целлюлозных ценей или их участков вернуться в исходное равновесное состояние. [c.270]

    С увеличением деформации расплава (область II) степень сплюснутости сферолитов ( i ) возрастает, и по достижении .ф 10 происходит образование отдельных ламелей, рост которых начинается от зародышей, расположенных на одной линии. Ламели наслоены друг на друга и перпендикулярны Направлению течения расплава, т. е получается структура, аналогичная стержневой. Кроме того, в зависимости от конкретных условий прядения или экструзии оси а кристаллитов могут ориентироваться в направлении течения расплава (а-осная текстура). Косая с-текстура возможна при несколько больших деформациях расплава оси с наклонены к оси волокна на некоторый угол для ПЭВД он составляет 46°)] (Kanetsuna, см. [67]). Малоугловые рентгенограммы таких образцов содержат каплеобразные рефлексы, что подтверждает существование ламелярных слоев (см. раздел П. 2). [c.59]

    Лрнмид — самое устойчивое к действию радиации и УФ-лучей химич. волокно при дозо облучения 10 дж/кг (10 ООО Мрад) оно сохраняет 90% исходной прочности. Воздействие УФ-лучей в течение 200—300 ч не приводит к заметному ухудшению физико-механич. свойств. Упикальное свойство аримида — сохранение эластичности при темп-ре жидкого азота, а также практически полная обратимость деформации прп 20 С. Для изделий из аримида ПМ характерны высокие теплозащитные свойства, абсолютная негорючесть, высокая стабильность размеров в широких диапазонах тсмп-ры и влажности. [c.317]

    Структура. Обычно Б. рассматривают как капиллярно-пористый коллоидный материал. Такое представление о структуре Б. легче всего объясняет ее свойства, закономерности процесса сушки, впитывающую способность, старение, влияние ряда технологич. факторов на ее деформацию в мокром состоянии и др. В течение длительного времени считали, что волокна в листе Б. связаны между собой исключительно силами трения, возникающими между сопряженными поверхно-стями волокон. Однако для большинства видов Б. эти силы играют второстепенную роль и приобретают известное значение в Б., изготовленной в основном из грубых, шероховатых волокон, напр, из волокон древесной массы. Между цепями целлюлозы но полярным гидроксильным группам возникают водородные связи. ]У1ежду макромолекулами целлюлозы действуют, по-видимому, и силы В а н-д е р-В а-а л ь с а. [c.143]

    Для полимеров особенно необходимо строгое разделение в уксиерименте полной деформации на необратимую деформацию течения и обратимую (высоколласти-ческую) деформацию, определяющую упругие свойства текучего полимера. Значение т] определяется скоростью только необратимой деформации. Большинство работ по измерению т] полимерных систем выполнено в условиях сдвиговой деформации. Однако для полимеров важное зиачение имеет также метод измерения В. при растяжении т]р. Этот метод моделирует условия переработки полимеров в волокна и пленки и в нек-рых случаях (особенно при очень высоких значениях В. вблизи темп-ры стеклования) измерение с его помощью выполняется проще, чем при сдвиговых деформациях. В простейшем случае — в области, где механич. свойства несжимаемой жидкости описываются линейными ф-циями, г)р = 3т) (закон Трутона), но при повышенных скоростях деформации наблюдаются отклонения от этого простейшего соотнотення, связанные с возрастанием т)р и убыванием т] при высоких напряжениях. [c.284]

    Сополимеры хлористого винила, содержащие 10% акрилонитрила, достаточно растворимы в ацетоне, чтобы можно было их перерабатывать прядением из 25%-ного раствора полимера. В результате выдерживания при повышенных температурах растворимость сополимера в ацетоне уменьшается и повышается температура, при которой происходит деформация по.чимера. Волокна, полученные прядением из раствора в ацетоне, следует выдержать при 150° С в течение 1 — [c.411]

    Полимерная природа наполнителя обусловливает низкие показатели прочности органоволокнитов при сжатии. При сжатии материалов на основе эластичных волокон деформации достигают 30—40%. Предел пропорциональности в этом случае можно определить только условно, так как зависимость напряжение — деформация практически не имеет прямолинейного участка. Например, для эпоксилавсанотекстолита момент начала течения при сжатии условно соответствует напряжению 10—12 кгс/мм и деформации 12% (рис. УН.10,а). Диаграмма напряжение — деформация при сжатии эпоксиоргановолокнита с хаотически расположенными волокнами капрона мало чем отличается от диаграммы а—е ненапол-ненной эпоксидной смолы (рис. УИ.Ю,б) [40]. [c.282]


Смотреть страницы где упоминается термин Деформация волокон течения: [c.393]    [c.18]    [c.65]    [c.617]    [c.290]    [c.276]    [c.376]    [c.287]    [c.14]    [c.63]   
Энциклопедия полимеров том 1 (1972) -- [ c.21 , c.63 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.21 , c.63 ]




ПОИСК







© 2025 chem21.info Реклама на сайте