Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Образец проба ввод в колонку

    Система ввода пробы и колонки. Блок для ввода и испарения жидких проб прямоточного типа изготовлен из нержавеющей стали и снабжен кольцевым нагревателем из ни.хромовой проволоки мощностью 50 Вт. Нагреватель через ступенчатый переключатель соединен с трансфор.матором, позволяющим устанавливать температуру через каждые 50° С в интервале 50—350° С. Точность установления температуры 20° С. Прн разделении иа стеклянных колонках нестабильных образцов можно избежать их контакта с нержавеющей сталью испарителя. Конструкция последнего позволяет подвести начальный конец стеклянной колонки непосредственно под резиновую прокладку, прокалываемую иглой микрошприца. Следовательно, вводимый образец, не контактируя с металлом, испаряется в незаполненной сорбентом начальной зоне стеклянной колонки или попадает сразу на сорбент, в зависимости от длины иглы микрошприца и уровня заполнения колонки. [c.208]


    Ширина хроматографической полосы в начале опыта зависит также и от метода ввода пробы. Выше указывалось, что наиболее эффективным является метод поршня, при котором образец выталкивается в колонку неразбавленным. Однако на практике часто происходит значительное разбавление пробы газом-носителем, и метод ввода приближается к экспоненциальному, в результате чего размывается тыл хроматографического пика. Непосредственно в дозаторе также происходит дополнительное размытие, обусловленное продольной диффузией. [c.237]

    Наконец, при обсуждении и Я предполагались условия линейного вымывания, при которых получаются симметричные гауссовы пики. В высокоскоростной ЖХ чувствительность детекторов такова, что для получения линейной изотермы необходимо проводить анализ с небольшими образцами. При использовании твердого носителя малой емкости образец даже обычного размера будет перегружать колонку, что приведет к несимметричным полосам. В этом случае необходимо уменьшить размер образца. Асимметрия полосы ( хвосты ) может также возникать из-за плохого ввода пробы, когда образец поступает в колонку в виде экспоненциальной, а не цилиндрической зоны. Асимметрия пика нежелательна по двум причинам во-первых, с уширением полосы уменьшается разрешение во-вторых, положение максимума пика (время удерживания) при работе в области нелинейности изотермы становится функцией количества введенного образца. [c.30]

    Устройство для ввода пробы. Существует два основных способа ввода образца в хроматографическую колонку ввод с помощью крана и через камеру. Кран для ввода пробы применяют в случае анализов больших размеров образца, а также при высоких давлениях в колонке. Камеры для ввода образца бывают двух типов камеры, из которых образец поступает в колонку вместе с подвижной фазой, и камеры, из которых образец непосредственно поступает в насадку. [c.319]

    В устройствах, аналогичных изображенным на рис. 1.15, пробу вводят в верхнюю часть колонки. Объем пробы выбирают по возможности малым. Для предотвращения размывания зоны растворитель должен быть менее полярным, чем элюент. Вводить образец можно с помощью пипетки или шприца так, чтобы поверхность зоны имела правильную форму. Необходимо принимать меры предосторожности для того, чтобы не нарушить слой неподвижной фазы в верхней части колонки, поскольку в противном случае отдельные области зоны будут перемещаться неравномерно. Для этого на верхнюю торцевую поверхность сорбента помещают тонкий слой мелкодисперсного силикагеля. Введение пробы в жидкостно-жидкостную систему аналогично способу, используемому в газовой хроматографии и описанному в разд. 1.3.1.3. В колоночной жидкостной хроматографии пробу вводят при температуре анализа и поэтому дополнительного нагревания на стадии введения образца не требуется. [c.67]


    Методика определения заключается в следующем. Предварительно охлажденную пробу бензина объемом 1 мл вводят в адсорбционную колонку, заполненную силикагелем и флуоресцентным индикатором. Адсорбированный образец бензина вытесняют затем изопропиловым или этиловым спиртом и далее в свете ультрафиолетовой лампы с фильтром длиной волны видимой части спектра определяют границы зон различной флуоресценции. Зону насыщенных углеводородов отсчитывают, начиная от нижнего края фронта жидкости до первого максимума интенсивности желтой флуоресценции. [c.194]

    Принципиальная схема газового хроматографа в самом общем виде представлена на рис. 15. Газ-носитель непрерывно продувает все части газовой схемы. Пробу анализируемого газа (если исследуемый образец — жидкость, то его с помощью специального испарительного устройства хроматографа переводят в парообразное состояние) вводят в поток с помощью устройства 2. Газ-носитель продвигает внесенную смесь через колонку 3 и детектор 4. Колонка — один нз основных частей прибора, поскольку в процессе движения в ней анализируемая смесь газов разделяется на компоненты. Разделенные компоненты образца, выходя из колонки, поступают в детектор, который обнаруживает их и выдает сигналы, обычно записываемые иа ленте регистратора 5. [c.61]

    При проявительной хроматографии в колонку, заполненную адсорбентом и продуваемую неадсорбируемым газом-носителем, вводят образец исследуемого адсорбтива. Скорость перемещения адсорбированного компонента по колонке зависит от равновесных и кинетических показателей системы. Спустя некоторое время после ввода пробы детектор, установленный на выходе газа из колонки, зарегистрирует нарастание концентрации адсорбтива, характеризуемое хроматограммой или, если проба состоит из одного компонента, хроматографическим пиком. [c.40]

    Другой метод ввода пробы в капиллярные колонки не требует расщепления потока и особенно полезен при хроматографировании очень разбавленных проб, поскольку в этом случае образец концентрируется на входе в колонку и затем непосредственно вводится в нее. В этом методе проба с помощью специального шприца вводится в колонку без предварительного нагревания или смешения с газом-носителем. [c.53]

    Пик 5 такая форма пика обычно вызвана техническими причинами. Кажуш,ееся неполное разделение двух компонентов может быть фактически результатом неправильного введения пробы, неправильной конструкции системы ввода пробы или распределителя на входе в колонку, в результате чего образец вводится в хроматографический слой двумя различными порциями. Другой возможной причиной является наличие дефектов в колонке (пустые объемы или каналы), которые могут приводить к разделению образца на две или более частей. В этом -случае колонку следует испытать на собственную эффективность в условиях низкой нагрузки. В случае найденного дефекта ее следует перепаковать или заменить. [c.55]

    Сила элюента — важный фактор при объемной перегрузке (ср. разд. 1.4.3.2 и 1.5.1.1.4 и работы [24—26, 141 — 143]). В сочетании с данной неподвижной фазой она определяет массовый коэффициент распределения (От) или коэффициент емкости к компонентов образца. Так как ЖХ является динамическим процессом, миграция образца начинается с момента входа молекул образца в хроматографический слой в процессе ввода пробы. Если ири соответствующей концентрации (см. разд. 1.5.1.1.4) необходимо ввести большой объем раствора, чтобы загрузить весь образец на колонку, то более быстрое движение компонентов с низким значением к будет давать много большую ширину полосы внутри слоя, чем они могли бы дать в случае большей концентрации образца и меньшего его объема. Это приводит к расширению полосы и меньшей разделительной эффективности (см. рис. 1.9). [c.89]

    Инертную систему ввода образца, способную выдерживать достаточные давления в системе, подавать количественно образец и иметь объем вплоть до 20% мертвого объема колонки. Для крупномасштабных препаративных ЖХ-систем обычно конструируют комбинацию подходящих кранов, насоса и резервуара для образца. При проведении многократных разделений желательно иметь автоматический контроль повторных введений пробы, сбора фракций и системы иодачи растворителя. [c.113]

    При вводе газовых проб с помощью переключающихся кранов образец становится частью объема газа-носителя и вместе с потоком последнего поступает в колонку. При этом давление в системе должно быть хорошо сбалансировано, чтобы при переключении крана бросок давления был бы минимальным. В случае прецизионных измерений давление в петле дозатора необходимо контролировать и с помощью дросселя выравнивать с давлением на входе в колонку. Наибольшее распространение получили вращающиеся шестиходовые краны из нержавеющей стали и фторопласта. Схема такого крана дана на рис. И.И. В одной позиции (рис. II.11, а) калиброванный объем I заполняется анализируемой [c.135]


    Обычно твердый образец растворяют в подходящем растворителе и полученный раствор вводят в колонку, используя технику ввода жидких проб. Растворитель не должен вступать в реакции с целевыми компонентами анализируемой пробы или с сорбентом, не должен селективно экстрагировать отдельные компоненты из твердого образца (если намеренно не используется техника селективной экстракции). Кроме того, на хроматограмме пик растворителя не должен перекрывать пики анализируемых соединений. Существенный недостаток такого способа дозирования — ввод в колонку больших объемов растворителя, что приводит к возможности смыва с начального участка колонки неподвижной фазы и наличию на хроматограмме растянутого хвоста пика растворителя. [c.141]

    Системы ввода с делением потока. Проба в количестве, удобном для ввода обычным способом (0,1 —1,0 мкл), подается в систему, полностью испаряется, и гомогенная смесь паров пробы с газом-носителем разделяется на два неравных потока меньший поступает в колонку, а больший — сбрасывается. Если гомогенизация полная, то образец будет делиться в отношении, определяемом скоростями двух указанных потоков. Соотношение этих потоков называют отношением деления. На практике используют делители с отношением деления от 1 10 до 1 1000. Конструкция делителя должна обеспечивать в процессе ввода строгое постоянство отношения деления. На него оказывают влияние следующие. фак-торы изменение давления при испарении пробы, зависимость вязкости парогазовой смеси от ее состава, конденсация растворителя на входе в капиллярную колонку. [c.142]

    Системы ввода без деления потока. Способ ввода пробы, при котором весь образец целиком попадает в капиллярную колонку, был предложен в 1969 г. К. Гробом и Г. Гробом [31]. Системы такого типа нашли применение в анализе сильно разбавленных жидких образцов при исследовании загрязнения органическими веществами окружающей среды, изучении состава природных продуктов, в биомедицине. Сущность способа состоит в том, что относительно большое количество (1—5 мкл) разбавленного образца вводится в испаритель, испаряется и в виде пара переводится в колонку. Для исключения перегрузки колонки количество растворенных анализируемых компонентов в пробе не должно превышать 50 нг. [c.144]

    Отбор пробы газообразных смесей является делом относительно простым, требующим лишь обычных предосторожностей, чтобы избежать попадания в образец воздуха или же веществ, присутствовавших ранее в сосуде для отбора образца или в перегонном приборе. Наиболее удобен при этом следующий порядок операций трубопровод, газгольдер или же другой источник образца соединяют непосредственно с трубкой для ввода образца в перегонный прибор далее эвакуируют или вытесняют газ из соединительных трубок и вводят образец. Чаще переводят образец в какой-либо сосуд, переносят последний к перегонному прибору и затем переводят образец из сосуда в прибор. Если газ переводят из трубопровода или газгольдера, лучше всего применить простой сосуд для пробы, имеющий с каждого конца по вентилю, через который его можно наполнить. Затем вентили закрывают так, чтобы образец газа находился под некоторым давлением. Перевод образца в колонку требует обычно применения насоса Теплера. Перевод газа, может быть также осуществлен полным сжижением образца в кубе ректификационной колонки, если только образец содержит одни лишь легко сжижаемые компоненты, так что конечным давлением пара можно пренебречь. Весьма важно в любых случаях, чтобы все краны и соединения были герметичными даже под вакуумом. Перевод образца из сосуда, описанного, например, выше, можно выполнить, вводя снизу запирающую жидкость в трубку с образцом. [c.353]

    Введение образца. Различные операции, связанные с введением образца в колонку, рассматривались уже в связи с описанием приборов. Более старые типы приборов требуют часто введения образца через верхнюю часть колонки. Это представляет известные трудности, если в образце присутствуют значительные количества низкокипящего газа. В современных приборах образец вводят непосредственно в куб, так что неконденсирующиеся газы проходят колонку и собираются в приемнике, как уже было описано. Если имеются какие-либо опасения, что газообразный образец может частично сконденсироваться в то время, пока он находится в сосуде для проб, то весь сосуд следует подогреть на 15° выше той температуры, при которой отбирался образец до того, как какая-либо часть его будет выведена в колонку. [c.356]

    Образец надо вводить в колонку как можно быстрее, так как в противно.м случае ухудшается разделение смеси на компоненты за счет разбавления ее газом-носителем, Если вводить пробу в колонку медленно или с перерывами, то полученная хроматограмма будет представлять собой результат наложения одна на другую ряда отдельных хроматограмм, Идеальным считается такое ввеление пробы, при которо-м она заиимает минимальный объем на начально,м участке колонки, [c.146]

    Размер вводимого в колонку образца в зависимости от решае4 мых задач в хроматографии может меняться на много порядков от нанограммовых количеств для капиллярных колонок до килограммовых для препаративных колонн, и каждая система ввода рассчитана на вполне определенный интервал объемов дозы. Размывание пробы в системе ввода (один из факторов внеколоноч-ного размывания пиков) зависит от конструкции дозатора и условий его эксплуатации. Минимальный мертвый объем, хорошо сформированный поток подвижной фазы, быстро направляющий весь образец непосредственно в колонку, точное поддержание заданных температурных режимов — вот основные характеристи- ки системы ввода, вносящей минимальный вклад в размывание, пиков. [c.134]

    Системы прямого ввода. В системах ввода пробы для капил-.). 1рной газовой хроматографии, использующих принцип прямого ввода пробы в колонку [34, 35], преодолены те недостатки, которые присущи рассмотренным выще системам с делением потока или без деления с помощью обогреваемого испарителя. При прямом вводе образец попадает в начало колонки в исходном агрегатном состоянии — в виде жидкости при температуре, не превышающей температуру кипения растворителя. Поскольку стадии испарения образца при высоких температурах и перенос Ларов вещества при этом способе ввода отсутствуют, то фактически исключаются такие отрицательные эффекты, как мoлejiyляpнo-массовая дискриминация по высококипящим компонентам, взаимодействие полярных компонентов с активной поверхностью испарителя и соединительных линий, разложение термолабиль-иых соединений. [c.148]

    Этот анализатор яаляется первым в мировой практике анализатором элементного состава, который позволяет определять элементы HNS/0 из обычной пробы и яаляется наиболее точной системой этого типа с максимальной простотой проведения измерений. Образцы исследуемых проб вводятся авто-самплером в систему, в которую подаются кислород и гелий. Образец сжигается в динамическом режиме при температуре на катализаторе 1030 С и при 1800°С, в капсулах из олова подвергается окислению и восстановлению, а продукты реакций вводятся в газохроматографическую колонку, разделяются на N2, СО2, HjO, S02, что позволяет автоматически рассчитывать элементный состав. Следовые количества серы определяют детектором по захвату электронов, а изотопный состав можно определить масс-детектором. [c.457]

    В теории линейной хроматографии идеальная модель исключает какое-либо размывание полосы в системе ввода, поскольку предполагается, что образец в начале колонки занимает объем сорбента, эквивалентный одной теоретической тарелке. На практике конечный объем образца и конечное время дозирования препятствуют это.му. Тем не. менее при стремлении к идеальной модели следует вводить минимально возможные дозы за минимально короткий интервал времени. С этой целью предложено использовать спепиальный шприц, поршень которого опускается под ударо.м небольшого резинового молоточка, что сводит к ми->П1муму период дозирования. Предложен также шприц в виде п )столета, выстреливающий пробу в колонку. [c.24]

    Поми.мо размера образца и вре.мени ввода пробы, иа размы-ваш1е пика в систе.ме ввода существенное влияние оказывает конструкция дозатора. Мини.мальный объе.м, отсутствие непро-дувае.мых полостей, хорошо сфор.мированный поток газа-носителя, быстро направляющий весь образец непосредственно в колонку,— вот основные условия, которые необходимо выполнить лри конструировании системы ввода. [c.25]

    Помимо дозирования веществ, которые в нормальных условиях находятся в газообразном состоянии, описанные системы введения пробы используют и для жидкостей. В аналитической газожидкостной хроматографии (ГЖХ) жидкие образцы часто непосредственно вводят в колонку с помощью шприца, однако в препаративной ГЖХ используют пробы больших объемов, и перед вводом в колонку их непременно переводят в паровую фазу, главным образом по следующим трем причинам. Во-первых, начальный участок колонки, в который попадает образец после ввода, имеет теплоемкость, недостаточную для нагревания образца от комнатной температуры до температуры колонки. Во-вторых, жидкое вещество очень трудно равномерно распределить в плоскости поперечного сечения колонки, это совершенно необходимо для получения равномерного распределения концентрации. С другой стороны, это сделать гораздо легче, если вещество уже находится в паровой фазе. В-третьих, жидкий образец, введенный в колонку, смывает жидкую фазу с носителя в начальном участке колонки и переносит ее в другие участки. В результате через некоторое время часть колонки оказывается лишенной жидкой фазы, а другая содержит слишком большое ее количество, и это неблагоприятно сказывается на разделительной способности колонки. [c.68]

    В качестве газа-проявителя применяют водород или гелий, однако можно применять и азот. Образец газа вводится в колонку через специальный кран, позволяющий вводить в колонку постоянный, заранее выбранный объем анализируемого газа. Жидкую пробу вводят в колонку микропипеткой со шприцем. [c.205]

    Все металлические коммуникации заменены на стеклянные. Газом-носителем служил азот, дополнительно очищенный с помощью четырех последовательно соединенных стеклянных колонок диаметром 35 мм и длиной 800 мм, заполненных молекулярными ситами типа 5 А [10]. Влажность газа-носителя на выходе из системы очистки не превышала 1 10 объемн. %. Содержание воды контролировали методом радиочастотной спектроскопии. Образец в хроматографическую колонку может вводиться непосредственно или впрыскиванием микрошприцем жидкости через испаритель с фторопластовым поршнем или в виде пара посредством вакуумной системы дозирования Применение последней обусловливалось окислением треххлористого фосфора до] оксихлорида кислородом воздуха при] обычном введении образца. Объем жидкой пробы составлял 2— 0мпл, а газообразной 5 мл при5 давлении 50—80 мм рт, ст. [c.191]

    Такой пересчет хроматограммы в кривую ИТК возможен, если весь образец, введенный в хроматограф, вьжипает до 550 °С и полностью выходит из колонны. В противном случае анализ и расчет ведут с использованием внутренней "метки" вместе с образцом в хроматограф вводят 3-5% метки (обычно н-алкан с числом атомов углерода от 8 до 16). Если пик "метки" фиксируется отдельно, на отрезке между точкой ввода пробы и началом хроматограммы основного анализируемого образца, то суммарная доля вьжипающего до 550 °С и вышедшего из колонки хроматографа продукта Е определяется соотношением [c.48]

    В-третьих, при более высоких концентрациях образца, используемых в препаративпой ЖХ, он может выпасть в осадок в насосе, узле ввода пробы, трубопроводах или в голове колонки, как только вводимый раствор станет достаточно разбав-ленны.м подвижной фазой. Это может потребовать демонтажа узлов системы и (или) перепаковки части или всей препаративной ЖХ-колонки, если образец нельзя будет растворить in situ. Для того чтобы избежать этих проблем, исследуйте, как влияет на раствор образца разбавление подвижной фазой, с помощью пробного эксперимента до проведения препаративного разделения. [c.102]

    Наконец, можно применять третий метод, лишенный недостатков вышеуказанных методов и сохраняющий экспресоность анализа. В этом методе используют широкий испаритель с индивидуальным терморегулированием, дозатор твердых проб и программирование температуры колонок (хроматографы Цвет , серия 100), позволяющее растянуть время ввода пробы без существенного расширения пиков до десятков минут. Дозатор твердых проб позволяет вводить небольшой образец полимера (несколько миллиграмм) в нагретый до постоянной температуры испаритель и после улетучивания из полимера антиоксиданта удалять его. Серийный хроматограф позволяет провести анализ антиоксиданта из малой навески полимера, в том числе нерастворимого (сшитого), не загрязняя испаритель хроматографа при малом времени определения (40—60 мин). Недостатком метода является ограничение в термостойкости некоторых полимеров, однако показана возможность определения таким способом в каучуках и резинах не только летучих монофенолов (ионол и др.), но и высококипящих неозона Д и бисфенолов (продукт НГ-2246). [c.73]

    При непрерывном потоке газа-носителя через колонку введенный образец постепенно разделяется иа,компоненты, передвигающиеся вдоль колонки с разной скоростью. Время прохождения данного вещества через колонку с определенной неподвижной фазой при данных условиях (температура, скорость газа-носнтеля и т. п.) является характеристикой вещества н может исполь-аоваться для его идентификации. Идентификация компонентов смеси произ-шодится обычно по временам удерживания или объемам удерживания, характеризующим время илн соответствующий объем гааа, прошедшего через колонку от момеита ввода пробы до максимума хроматографического пика. Для сопоставления данных, полученных на разных колонках в разных услоииях, Часто используются индексы Ковача  [c.7]

    При анализе жидких полимеров или их растворов образец вводится шприцом в стандартный узел ввода пробы хроматографа, нагретый до высокой температуры. В зоне высокой температуры происходит быстрое улетучивание легких компонентов образца, а жидкий полимер медленно перемещается под действием силы тяжести и газового потока в хроматографическую колонку. Поэтому обычно во всех методиках этого типа перед хроматографической колонкой устаналивают предварительную сек- [c.115]

    С помощью шприца образцы можно также вводить в колонки, используя разборное устройство для введения пробы. Прежде чем ввес- и пробу, поток подвижной фазы останавливают, открывают отверстие для ввода пробы и вводят образец. Приняв меры, чтобы в систему ме попал воздух, отверстие закрывают и возобновляют поток элюента. Это медленный и отнюдь не изящный метод. Поскольку для восста- ювления установившегося режима в потоке требуется некоторое время, могут возникнуть трудности при идентификации посредством изменения удерживания, а также при оценке влияния изменений в скорости элюента на характеристики колонки. Тем не менее это практи ческий метод, который, если это необходимо, можно применить в работе при чрезвычайно высоких давлениях. [c.201]

    Твердый образец в дозатор легче всего ввести в виде раствора, однако существуют методы и непосредственного ввода. Так, Дубский иЯнак предложили использовать ампулу из сплава Вуда (температура плавления 60,5 °С), в которую запаивали исследуемый образец. При введении в дозатор ампула попадала на нагретую бронзовую сетку, расплавлялась, а испарившаяся проба проходила в колонку. Твердый образец можно ввести в дозатор, используя обычную металлическую иглу. В ушко иглы заливают расплавленную пробу, которая сразу затвердевает. Затем иглу вводят через мембрану в обогреваемый дозатор, проба расплавляется и переносится газом-носителем в колонку. [c.148]


Смотреть страницы где упоминается термин Образец проба ввод в колонку: [c.214]    [c.27]    [c.64]    [c.216]    [c.116]    [c.197]    [c.490]    [c.213]    [c.205]    [c.30]    [c.30]    [c.34]    [c.36]    [c.39]   
Практическое руководство по жидкостной хроматографии (1974) -- [ c.200 ]




ПОИСК





Смотрите так же термины и статьи:

Колонки ввод пробы

Образцы



© 2025 chem21.info Реклама на сайте