Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород в органических соединениях определение

    Применение окислителей. Существует большой выбор соединений, применяемых в качестве окислителей перманганат калия, хромовый ангидрид и хромовая смесь, азотная кислота, двуокись свинца и двуокись селена, тетраацетат свинца, перекись водорода, хлорное железо и многие другие. Направление и интенсивность действия окислителя на органические соединения зависят от характера окисляемого вещества, природы окислителя, температуры, pH среды и т. д. Так, например, при окислении анилина хромовой кислотой образуется хинон, перманганатом калия в кислой среде — анилиновый черный, перманганатом калия в нейтральной или щелочной среде — азобензол и нитробензол. Окисление проводится в большинстве случаев в водной или уксуснокислой среде. При определении коэффициентов в уравнениях окислительно-восстановительных реакций удобно пользоваться расчетной схемой, основанной на формальном представлении о степени окисления атомов, входящих в состав соединения. [c.129]


    При анализе органических веществ аналитик решает ряд задач, во многом сходных с задачами качественного и количественного анализа неорганических веществ. Одна из первых задач, возникающих при анализе нового органического соединения,— определение элементов, входящих в его состав. Ответ на этот вопрос дают методы качественного элементного анализа органических веществ. Однако этих сведений недостаточно, чтобы сделать вывод о строении исследуемого органического вещества, поскольку в состав почти всех органических веществ входит небольшое число элементов — углерод, водород, кислород, азот, сера, галогены и некоторые другие. [c.150]

    Химическое потребление кислорода — количество сильного окислителя, расходуемое на окисление органических веществ в определенном объеме анализируемой воды. Были опробованы различные окислители — перманганат калия, бихромат калия, иодат калия, персульфат калия, соли церия (IV) и др. В качестве стандартного окислителя был выбран бихромат калия, который применяют в среде серной кислоты в присутствии катализатора — сульфата серебра. Определение проводят в стандартизированных условиях. За немногим исключением (не окисляются пиррол, пиридин, пирролидин, пролин, никотиновая кислота, бензол и его гомологи) при соблюдении требуемых условий окисление органических веществ проходит на 95—98%. Результат определения обычно пересчитывают на кислород в миллиграммах на литр. С достаточной для практических целей точностью можно принять, что величина ХПК совпадает с теоретически необходимым количеством кислорода для полного превращения углерода и водорода органических соединений в СОг и НгО соответственно, за вычетом того кислорода, который входит в состав самих окисляющихся молекул органических веществ. Азот, входящий в состав аммиака, аминов, амидов кислот, нитрилов и др., в условиях определения величины ХПК превращается в сульфат аммония без за- [c.16]

    Определение элементного состава нефтей проводится общепринятыми методами анализа органических соединений, в частности углерод и водород — сожжением, по Либиху, или в калориметрической бомбе, азот, — по Дюма, сера, — по Кариусу, а кислород, — по разности, причем на процент его содержания ложатся все ошибки опыта. [c.76]

    В тех случаях, когда металл не удается определить в виде остатка одновременно с определением углерода и водорода, органические соединения озоляют, прокаливая их в платиновом или фарфоровом тигле или в лодочке. В зависимости от природы присутствующих элементов металл (окисел металла) взвешивают в виде остатка после прямого прокаливания или переводят металл, прокаливая с серной кислотой, в сульфат и в виде сульфата взвешивают. Ниже приведена одна из распространенных методик определения металлов. [c.43]


    Книга К- Бюлера и Д. Пирсона посвящена методам синтеза углеводородов и их функциональных производных, содержащих углерод, водород, кислород, азот и галогены. Она включает двадцать Глав, из названий которых можно было бы сделать ошибочное заключение, что синтезы соединений ряда других классов и даже целые разделы органической химии в книге вообще не рассматриваются. На самом же деле в книге приведено большое число синтезов таких соединений, которые формально не должны были бы рассматриваться ни в одной из имеющихся глав. Это обусловлено тем, что в каждой главе описывается введение в органическое соединение определенной функции, образование одной функции из другой, и поэтому содержащийся в книге материал значительно шире, чем это отражено в названиях соответствующих глав. [c.5]

    Число реакций, катализируемых Сг(П1), ограничено вследствие склонности Сг(1П) к образованию кинетически инертных аквокомплексов, в которых скорость обмена координационно связанной воды на другие лиганды очень мала (см. табл. 4). Большинство кинетических методов определения хрома основано на каталитическом действии ионов Сг(УТ) в реакциях окисления перекисью водорода органических соединений. Выход реакций определяют фотометрическими, люминесцентными и полярографическими методами. [c.59]

    Второй основной принцип классификации — деление по функциям (характеристическим группам). В зависимости от того, какая функция введена в молекулу углево-дорода вместо атома водорода, получаем семейство органических соединений определенного типа  [c.83]

    Атомы водорода играют важную роль в реакциях термического распада органических соединений. Определение их концентрации на различных стадиях процесса — исключительно трудная проблема. [c.53]

    Можно объяснить изложенные выше экспериментальные данные, исходя из современных представлений о зависимости между физическими свойствами и химическим строением органических соединений, а также из данных о прочности связей углерода с углеродом, водородом, кислородом и азотом (86, 146, 149, 208, 212]. Каждому температурному пределу соответствует определенное количество разложившихся сернистых соединений в коксе, которое (находится в определенной зависимости от энергетических состояний внутри его молекул. [c.156]

    Для определения содержания тяжелого водорода органическое соединение после отделения сжигается, и измерения производятся с получающейся смесью тяжелой и легкой воды. [c.64]

    Органические соединения. 1. Для определения 5°298 органических соединений в состоянии идеального газа можно использовать подробно рассмотренный в главе I приближенный метод введении поправок на замещение водорода группами —СНз и другими, предложенный Андерсеном, Ватсоном и Байером [33—35]. Необходимые для вычисления данные приведены в приложении 7. Этот метод обычно дает расхождение с экспериментальными данными ие более- [c.120]

    В молекулах разных неорганических соединений различие в энергии и характере связей между двумя данными атомами значительно больше, чем в молекулах органических соединений, так как способы насыщения других валентностей атомов могут быть более разнообразными. Поэтому методы расчета, основанные на принципе аддитивности, здесь большей частью неприменимы к тому же точность определений в общем меньше, чем у органических соединений. Данные разных авторов нередко различаются на несколько килокалорий. Однако значения, полученные аналогичными методами для близких между собой веществ, например для разных сочетаний изотопов водорода, обладают достаточно высокой относительной точностью. [c.86]

    Смесь метана с кислородом или воздухом сильно взрывает при зажигании. Однако температура воспламенения метана очень высока, и поэтому он сгорает гораздо труднее, чем водород и все другие углеводороды. Это обстоятельство может нежелательным образом сказаться на результатах элементарного анализа органических соединений, отщепляющих при нагревании метан, в особенности при определении азота по Дюма если нагревание недостаточно, то метан может выйти из трубки, не успев сгореть. Чрезвычайно трудная сгораемость метана в смеси с воздухом, даже над нагретой платиной, используется в газовом анализе для аналитического определения метана в присутствии других углеводородов. [c.39]

    Описаны и другие упрощенные методы. Все они едва ли имеют большое значение для определения теплот образования или теплот, сгорания алканов при наличии более точных и не слишком слож- ных методов расчета. Однако при переходе к непредельным угле- водородам и другим классам органических соединений более точные методы сильно усложняются и требуют большего числа исходных данных. Несмотря на отдельные более или менее успешные разработки путей расчета свойств некоторых групп непредельных углеводородов и нормальных первичных спиртов, распространение этих методов на другие классы соединений до сих пор встречает серьезные затруднения. Это объясняется не только увеличением числа видов связи, но и влиянием кратных и полярных связей с кислородным атомом на соседние связи, вследствие чего учет состояния только ближнего окружения становится недостаточным, в этих условиях приобретает практическое значение разработка упрощенных методов. [c.255]


    При определении степени окисления связи между атомами одного и того же элемента в расчет не принимаются. Степень окисления атома углерода в органических соединениях может принимать значения от + 4 до —4, водорода от -Ь 1 до —1, кислорода —2 и —1. Сумма степеней окисления всех атомов в молекуле равна нулю. В качестве примера приведены значения степени окисления атомов в некоторых органических соединениях  [c.200]

    От внимания Лавуазье не укрылось то обстоятельство, что в построении веществ, из которых состоят растения и животные, главную роль играют углерод, водород, кислород и азот. Еще определеннее подчеркивал это Берцелиус, считавший, что подобное ограничение числа элементов, входящих в состав органических соединений, составляет основное отличие от неорганического мира. Впрочем, ему уже было известно, что в очень малых количествах в клетках живых организмов встречаются также и другие элементы — кальций, калий, железо и т. д. [c.2]

    Как прямая кулонометрия, так и кулонометрическое титрование находят широкое применение в аналитической практике определения неорганических веществ. Подробная сводка возможных объектов анализа приведена в руководстве Агасяна и Николаева. Возможно определение элементов всех групп периодической системы Менделеева. Кулонометрическое титрование используют при анализе органических соединений. Для анализа газов также служит кулонометрия и на ее основе разработаны многочисленные автоматические газоанализаторы па водород, кислород, воду, оксиды углерода, азота и серы, галогены и их производные. [c.252]

    При применении стабильных изотопов их обнаружение и количественное определение обычно проводят прн помощи масс-спектрографа и лишь в редких случаях (например, прн работе с тяжелым водородом) путем определения удельного веса продуктов сожжения. Если же органическое соединение содержит радиоактивные изотопы, то определение легко удается провести путем измерения радиоактивности соответствующего вещества (например, прн помощи счетчика Гейгера — Мюллера). [c.1142]

    Современные деэмульгаторы являются неионогенными ПАВ, которые в основном получают присоединением окиси этилена и пропилена к органическим веществам с подвижным атомом водорода. При изменении числа молей окиси этилена и пропилена получаются химические соединения, определенным образом сбалансированные по гидрофобно-гидрофильным свойствам и обладающие высокой деэмульгирующей способностью по отношению к эмульсии конкретного нефтяного месторождения. [c.251]

    Превращение воды с целью облегчения хроматографирования Примеси воды в органических соединениях Ацетилен или водород Карбид кальция или литий, алюминий гидрид 20 Определение содержания воды Любой, кроме водорода [c.179]

    Атомы кислорода могут соединяться с углеродом и водородом органических соединений. Молекулы присоединяют столько кислорода, сколько могут захватить. При комнатной температуре этот процесс происходит очень медленно — обычно настолько медленно, что мы его со-верщенно не замечаем. Если же температуру повысить, процесс ускоряется. При определенной температуре — температуре вспышки — атомы органического соединения начинают соединяться с кислородом так быстро, что выделяемую при этом энергию можно увидеть и ощутить органическое соединение загорается. Но независимо от того, медленно и даже незаметно или быстро — с пламенем и взрывом происходит этот процесс, он во всех случаях называется окислением. [c.83]

    В зависимости от поставленной задачи, свойств анализируемого вещества и других условий состав веществ выражается по-разному. Химический состав вещества может быть охарактеризован массовой долей элементов или их оксидов или других соединений, а также содержанием реально присутствующих в пробе индивидуальных химических соедииений или фаз, содержанием изотопов и т. д. Состав сплавов обычно выражают массовой долей (%) составляющих элементов состав горных пород, руд, минералов и т. д. — содержанием элементов в пересчете на какие-либо их соединения, чаще всего оксиды. Наиболее сложен так называемый фазовый или вещественный анализ, целью которого является определение содержания в пробе индивидуальных химических соединений, форм, в виде которых присутствует тот или иной элемент в анализируемом образце. При анализе органических соединений наряду с определением отдельных элементов (углерода, водорода, азота и т. д.) нередко выполняется молекулярный и функциональный анализ (устанавливаются индивидуальные химические соединения, функциональные группировки и т. д.). [c.5]

    Солеобразующие свойства органических соединений зависят от присутствия в их молекулах определенных атомных групп, обладающих кислотными свойствами, например —СООН, —50зН, —ОН, =NOH, =ЫН, —ЫНг и др. Атомы водорода, входящие в состав этих групп, при определенных условиях замещаются на ион металла. Если же наряду с подобной кислотной группой в молекуле органического соединения имеется комплексообраэующая группа, которая может быть лигандом для данного катиона, то [c.123]

    При выполнении элементного анализа органические вещества минерализуют , т.е. разлагают таким образом, чтобы углерод превратился в СО2, водород — в Н2О, азот — в N2, NN3 или ионы СМ и т. п. Дальнейшее определение проводят обычными методами аналитической химии. В современных методах количественного анализа используются навески порядка 2—5 мг. Молекулярная формула органического соединения может быть установлена по данным масс-спектрометрии, обработанным ЭВМ. [c.246]

    Пламенно-ионизационный детектор. Принцип действия детектора основан на том, что при горении чистого водорода почти не образуется ионов (слабый ионный ток). При внесении в пламя водорода органических соединений, содержащих связи С—Н, сила ионного тока возрастает. Пламенно-иониза-дионный детектор состоит из сопла для подачи смеси газа-носителя, водорода и воздуха, на котором горит смесь, образуя микропламя. Над соплом расположен электрод-коллектор (вторым электродом является само сопло). Достаточно наложить потенциал 200 В, чтобы полностью оттянуть образовавшиеся ионы. Возникающий ионный ток усиливают и измеряют. Пламенно-ионизационный детектор в два-три раза превосходит термокондуктометрический по чувствительности. Детектор пригоден для работы с веществами, концентрации которых лежат в пределах 1 млн (= 10 %). Пламенно-ионизационный детектор пригоден для анализа следовых количеств веществ. Обслуживание и работа детектора требуют больших производственных затрат, чем в случае термокондуктометрического детектора, так как в данном случае необходимо применять усилитель и три газа (газ-носитель, водород, воздух), скорость которых необходимо регулировать одновременно. Недостатком является также невозможность определения веществ, не содержащих связей С—Н или содержащих их в небольшом количестве (такие, как СО, H N, НСНО, HjS, благородные газы и др.). Промышленностью наряду с термокондуктометрическими и пламенно-ионизационными детекторами выпускаются детекторы и других типов. [c.368]

    Комиссия по микрохимическим методам и определению микроксчпонентов ранее основное внимание уделяла анализу органических соединений. И.<учалась проблема точности и правильности определения азота в органических соединениях, определения углерода и водорода в органических соединениях, содержащих гетероэлементы, рассматривались вопросы разложения органических веществ. [c.224]

    Результаты, полученные Крийгсманом и др. [157] для проб различных органических веществ массой 40-70 мкг, содержащих от 17 до 75% галогена, имеют среднее квадратичное отклонение от 0,5 до 1,5%, систематическая ошибка не наблюдается. Для анализа малых проб авторы рекомендуют быстрое нагревание трубки 3, для больших проб (порядка миллиграмма) предпочтительно медленное нагревание. Кроме того, необходимо охлаждать титруемый раствор до одной и той же достаточно низкой температуры, так как, согласно уравнению Нернста, потенциал зависит о1 температуры. Авторы работы [171] установили, что перекись водорода стабилизует электродный потенциал. Гидразин облегчает титрование иодида, образовавшегося из иодсодержащих органических соединений. Определение галогенов вышеописанным методом длится не более 6 мин, стандартное отклонение обычно не привышает 0,35%. Сера, азот, фосфор и мышьяк не мешают определению. [c.58]

    Методы анализа кремнийорганических создинений, содержащих водород, присоединенный непосредственно к атому кремния, или соединений, содержащих группировку Si—Si, совершенно отличны от методов анализа сходных по структуре органических соединений. Определение силанов, полисиланов и их различных производных основано на специфической реакции взаимодействия групп. ровки S1—Н или Si—Si с водой или со щелочами, в результате чего происходит количественное выделение газообразного водорода по следующим схемам"  [c.183]

    Для многих вод термодинамическое равновесие не характерно, Особенно неравновесны воды рек и озер тайги, тундры, влажных тропиков, которые содержат сильный восстановитель — растворенное органическое вещество п сильный окислитель — свободный кислород. В соответствии с законами термодинамики в водах протекают процессы, направленные к достижению равновесия, и органические вещества окисляются свободным кислородом. Однако равновесие никогда не достигается, так как новые порции этих активных соединений поступают из окружающих болот и атмосферы. Причина неравновесности иод, таким образом, заключается в постоянном притоке энергии, носителями которой сяун ат геохимические аккумуляторы — свободный кислород, углерод и водород органических веществ. Определенное значение имеют радиоактивный распад п другие источники энергии. [c.88]

    При определении формул строения органических соединений очень важно и другое свойство углерода, заключающееся в том, что все четыре валентности атома углерода одинаковы и равноценны между собой. К такому выводу можно прийти уже потому, что никогда не удается получить моно- и дизамещенных производных метана в двух или нескольких формах, а это, очевидно, было бы возможно, если бы четыре атбма водорода в молекуле метана не были бы равноценны, т. е. были бы связаны посредством различных валентных сил.  [c.14]

    В 80-х годах XVIII столетия Лавуазье пытался определить относительное содержание углерода и водорода в органических соединениях. Он сжигал изучаемое соединение и взвешивал выделившиеся углекислый газ и воду. Результаты такого определения были не очень точными. В первые годы XIX в. Гей-Люссак (автор закона объемных отношений, см. гл. 5) и его коллега французский химик Луи Жак Тенар (1777—1857) усовершенствовал этот метод. Они сначала смешивали изучаемое органическое соединение с окислителем и лишь потом сжигали. Окислитель, например хлорат калия, при нагревании выделяет кислород, который хорошо смешивается с органическим веществом, в результате чего сгорание происходит быстрее и полнее. Собирая выделяющиеся при сгорании углекислый газ и воду, Гей-Люссак и Тенар могли определить соотношение углерода и водорода в исходном соединении. С помощью усовершенствованной к тому времени теории Дальтона это соотношение можно было выразить в атомных величинах. [c.74]

    Одним из наиболее опасных типов отходов, основным методом переработки которых служит сжигание, являются галогеноорганические отходы. Фтористые и бромистые отходы менее распространены, но их обрабатывают тем же способом, что и хлорсодержащие материалы. Хлорированные органические материалы могут содержать водную фазу или определенное количество воды, но в основном они представляют собой хлорированное органическое соединение или ряд таких соединений. Отходы с высоким содержанием хлора имеют низкую теплоту сгорания, так как хлор, аналогично брому и фтору, препятствует процессу горения, а малохлорированные органические соединения могут гореть без дополнительного топлива. Галогеноорганические отходы при обработке сначала подвергают гидролизу образующийся кислый газ обычно растворим в воде и поэтому легко удаляется при водной абсорбции в насадочной колонне. Хлористый и фтористый водород абсорбируются легче, чем бромистый водород. [c.138]

    Поэтому оказалось совершенно необходимым снизить до минимума содержание серы в бензинах, смешиваемых с ТЭС. Каталитическое превращение серы, содержащейся в бензинах насыщенного характера, в частности в бензине прямой гонки в виде органических соединений, в сероводород пе представляет особых трудностей. При пропускании бензина с водородом над онределенпым катализатором при определенных условиях выделяется сероводород, причем сам бепзпн практически никаких изменений не претерпевает. [c.720]

    Реакции магнийорганических соединений с реагентами, имеющими подвижные атомы водорода, применяют для количественного определения подвижного водорода в органических соединениях (метод Чугаева — Церевитинова). Если использовать метилмагнийнодид (или -бромид), то при взаимодействии с соединениями, имеющими подвижные атомы водорода, по объему выделившегося метана можно определить их количество в молекуле исследуемого соединения  [c.265]

    Выделяющиеся пузырьки метана указывают на наличие в молекуле органического соединения активных атомов водорода. Этот метод был предложен Л. А. Чугаевым и разработан для количественного определения активных атомов водорода Ф. В. Церевитиновым в 1907 г. [c.248]

    Особенно важной была идея о том, что атомы, соединяясь в определенном порядке в соответствии с их валентностью, взаимно влияют друг на друга таким образом, что частично изменяется их собственная природа. Так, свойства атома водорода существенно меняются в зависимости от того, соединен ли он с атомом хлора (в молекуле НС1), кислорода (в молекуле НгО) или азота (в молекуле NH3). В первом случае в водных растворах атом водорода сравнительно легко отщепляется от молекулы НС1 в виде иона Н" ", что и определяет кислотные свойства хлороводорода от молекулы воды ион водорода отщепляется с гораздо большим трудом, так что кислотные свойства выражены у воды весьма слгьбо наконец, для молекулы аммиака отщепление иона водорода еще менее характерно — аммиак ведет себя как основание. Особенно многообразно проявляется взаимное влияние атомов в молекулах органических соединений. [c.99]


Смотреть страницы где упоминается термин Водород в органических соединениях определение: [c.362]    [c.272]    [c.272]    [c.67]    [c.316]    [c.102]    [c.349]    [c.273]   
Основные начала органической химии том 1 (1963) -- [ c.36 , c.37 , c.38 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ органических соединений определение активного водорода

Водород определение

Водород соединения

Определение числа активных атомов водорода в органическом соединении (Метод Чугаева—Церевитинова—Терентьева)

Органический водород

Соединение определение



© 2025 chem21.info Реклама на сайте