Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Оксид алюминия, его анализ

    Эти закономерности адсорбции веществ из многокомпонентных растворов легли в основу хроматографии — метода разделения и анализа многокомпонентных смесей. Впервые этот метод был применен М. С. Цветом (1903 г.) для разделения на составные компоненты сложного растительного пигмента— хлорофилла. Пропуская раствор хлорофилла через слой оксида алюминия, помещенного в стеклянную трубку (колонку), М. С. Цвет обнаружил, что отдельные компоненты этого сложного вещества адсорбируются на разных уровнях по высоте колонки. В верхней части накапливается компонент, обладающий наибольшей адсорбционной способностью (рис. 68 а, компонент С), последующие зоны соответствуют компонентам со все более уменьшающейся адсорбционной способностью. Так как отдельные компоненты хлорофилла окрашены, то эти зоны легко различить по окраске. Такой окрашенный столбик адсорбента М. С. Цвет назвал хроматограммой, а сам метод анализа — хроматографическим, [c.176]


    Амфотерными свойствами оксида алюминия пользуются при анализе полуторных оксидов (АЬОз) в почве, так как оксид алюминия в отличие от других полуторных оксидов растворяется в избытке щелочи. [c.173]

    Дальнейшее совершенствование отечественных катализаторов гидроочистки газировалось на переходе к пропиточной технологии нанесения аки вных метал.пов на носитель, основным структурным компонентом которых служит оксид алюминия. Основой послужили результаты исследований распределения гидрирующей и гидрообессеривающей активности Al-Ni-Mo системы по типам присутствующих в ней оксидных соединений - предшественников активных структур, возникающих после сульфидирования, а также анализ мирового опыта в области синтеза носителей и катализаторов гидроочистки. [c.177]

    Жидкостная адсорбционная хроматография. Жидкостная адсорбционная хроматография применяется для группового разделения углеводородов на алкано-циклоалкановую и ареновую фракции, а также для разделения аренов по степени цикличности. Хроматографические колонки заполняют силикагелем или двойным адсорбентом — оксидом алюминия и силикагелем. В качестве десорбентов при анализе керосиновых и масляных фракций для вымывания насыщенных углеводородов используют н-алканы С5 — С7, для десорбции ароматических и гетероатомных компонентов — бензол, спиртобензольные смеси, ацетон, хлороформ. Применение ступенчатого или непрерывного увеличения полярности подвижной фазы позволяет значительно уменьшить время удерживания веществ. Этот метод называется градиентным элюированием. [c.130]

    Следует также отметить, что зависимость скорости химической реакции от давления в значительной степени определяется конкретным способом ее проведения. Так, например, при синтезе аммиака, который проводится с помощью твердого катализатора (железо, промотиро-ванное оксидом алюминия и оксидом калия), скорость суммарного процесса определяется кинетикой активированной адсорбции азота на поверхности катализатора, свободного от адсорбированного азота. Опыты по синтезу аммиака при 500 °С и давлениях до 50,6 МПа показали, что при давлениях свыше 10,1 МПа начинается ио-степенное уменьшение константы скорости реакции. Анализ экспериментальных результатов показал, что они объясняются отмеченным явлением — кинетикой активированной адсорбции. [c.180]

    Метод колоночной хроматографии с весовым окончанием. Дпя проведения анализа необходимы перегонный аппарат, термостат, колба емкостью 50 см , делительная воронка емкостью 250 см , колонка длиной 10 см и диаметром 1 см, бюкс, хлороформ, гексан, оксид алюминия для хроматографии, стекловата, сульфат натрия и серная кислота. [c.158]


    В качестве сорбентов использовали неорганические фазы. Так, смесь антрацена и фенантрена анализировали при 270°С на колонке, заполненной хлоридом кальция на хромосорбе или на ИНЗ-600 [79] смеси нафталина, бифенила, аценафтена, аценафтилена, флуорена, фенантрена, антрацена, пирена и флуорантена разделяли на оксиде алюминия, пропитанном раствором едкого натра и хлорида натрия [80] смесь нафталина, бифенила, фенантрена и терфенилов — на сульфате бария при 210—350°С [81]. Успешно проводится количественный анализ технических пе-ковых дистиллятов на хроматографе с пламенно-ионизационным детектором и программированием температуры в интервале 110— [c.137]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    Пропитанные водой колонки из смеси оксида алюминия с диметилглиоксимом удобны также для качественного анализа смесей кобальта и никеля или кобальта, никеля и железа. Разделение происходит уже в первичной хроматограмме никель образует розово-красную зону, кобальт — желтую зону, расположенную под зоной никеля. При промывании хроматограммы водой зона кобальта быстро перемещается вниз, благодаря чему разделение становится очень четким. [c.220]

    В качестве носителя чаще всего применяют оксид алюминия или уголь, выпускаемый под названием древесный активированный уголь для хроматографии (ДАУХ), отличающийся от осветляющего угля более крупным зернением, обеспечивающим достаточную скорость протекания раствора через колонку. Для качественного анализа применяют оксид алюминия как носитель, так как на поверхности светлого сорбента можно наблюдать образование характерно окрашенных зон комплексных соединений. [c.248]

    Качественный анализ. Оксид алюминия для хроматографии после смачивания водой приобретает способность сорбировать из водного раствора комплексные соединения различных органических соединений с ионами металлов. Учитывая эти свойства, применяют пропитанные водой колонки из смеси оксида алюминия с органическими соеди-ниями для качественного обнаружения ионов металлов в их смесях. Например, на колонке, содержащей диметилглиоксим, никель образует розово-красную зону, кобальт— желтую зону, расположенную под зоной никеля. Таким способом удается обнаружить 0,4 мкг никеля при разбавлении [c.248]

    Явление адсорбции из растворов широко используют для разделения многокомпонентных систем. Этот метод анализа и разделения, называемый хроматографией, был разработан русским ученым Цветом в начале XX в. Пропуская раствор хлорофилла через колонку с адсорбентом (оксидом алюминия). Цвет установил, что различные компоненты сложного раствора адсорбируются на разных уровнях высоты колонки. После нескольких циклов промывания растворителем в колонке обнаруживаются расположенные одна над другой резко очерченные (по-разному окрашенные) зоны, располагающиеся сверху вниз в порядке уменьшения адсорбционной способности. Разрезая колонку по зонам (в том случае, если они окрашены ) и затем десорбируя, можно препаративно разделить компоненты. [c.183]

    Избирательное химическое или электрохимическое растворение отдельных фаз системы может основываться либо на термодинамике, либо на кинетике селективного растворения. Термодинамика селективности обусловлена резко различной термодинамической устойчивостью разделяемых фаз в условиях анализа. В водных растворах электролитов часто резко различаются по своей термодинамической устойчивости матрица из неблагородного металла и включенные в нее частицы неметаллических фаз. На термодинамической селективности основаны, например, методы определения оксида алюминия в алюминии, а также диоксида титана в титане с помощью кислоты или хлора. [c.825]


    Предпочтение, отдаваемое обычно силикагелю по сравнению с оксидом алюминия, объясняется более широким выбором силикагелей по пористости, поверхности и диаметру пор, а также значительно более высокой каталитической активностью оксида алюминия, нередко приводящей к искажению результатов анализа вследствие разложения компонентов пробы либо их необратимой хемосорбции. [c.16]

    Пиролиз чаще используют при анализе органических веществ, особенно полимеров. Впервые термическое разложение этого типа было применено при анализе каучуков. Дпя разложения неорганических соединений пиролиз используют значительно реже, например, при разложении сульфатов с выделением О2 и SO2 (1350 °С), стекла (1650 "С), оксидов алюминия и редкоземельных элементов (1000 °С) и т. д. [c.74]

    Другой пример — анализ голландского природного газа (рис. 3-10). Для количественного определения примесей в колонку вводили 1 мл газа. Прекрасная форма пиков, выходящих на хроматограмме после пропана, обусловлена фокусирующим действием неподвижной фазы, нанесенной на оксид алюминия. [c.38]

    Перед определением не растворимого в соляной кислоте остатка, общей титруемой щелочи, сульфата натрия, суммы оксидов алюминия и железа, оксида кальция все соединения натрия, содержащиеся в черном щелоке, кроме сульфата, путем соответствующей обработки переводятся в хлорид натрия, а кремниевая кислота — в нерастворимое состояние. После отделения нерастворимого осадка фильтрованием получается нейтральный раствор, который используют для анализа. Содержание кремниевой кислоты (нерастворимый осадок) определяется количественно весовым методом. Общую титруемую щелочь находят титрованием вышеуказанного отфильтрованного раствора азотно-кислым серебром в присутствии хромово-кислого натрия. [c.174]

    Идея применения привитых фаз в жидкостной хроматографии заимствована аналитиками из газовой хроматографии. Силикагель и оксид алюминия без специальной обработки могут быть использованы в газовой хроматографии только для разделения легких углеводородов. Это объясняется тем, что силикагель и оксид алюминия обладают высокой активностью по отношению к анализируемым веществам, а газ-носитель слишком инертен. Поэтому в газовой хроматографии используются активные носители. Для дальнейшего снижения активности носителя на него наносят неподвижные жидкие фазы. В газовой хроматографии можно изменять температуру и неподвижную жидкую фазу, наносимую на носитель. Однако температура в ЖХ мало влияет на селективность анализа. Поэтому аналитики, имевшие прежде дело с газовой хроматографией, пытаются наносить вязкие жидкости на традиционные для ЖХ фазы - силикагель и оксид алюминия. [c.378]

    Привитые фазы особенно полезны для разделения соединений, различающихся по молекулярной массе (до 3000). Примером такого анализа является разделение смесей гомологов и олигомеров. Изомеры обычно разделяются на необработанном силикагеле и оксиде алюминия. По-видимому, ЖХ с обращенными фазами является самым универсальным методом анализа в современной колоночной хроматографии. В ТСХ этот метод имеет некоторые ограничения, обусловленные смачиваемостью. [c.386]

    ДПЯ хроматографии на оксиде алюминия или силикагеле методы анализа должны быть сопоставлены с методами ОФ ТСХ на химически привитых сорбентах. В последнем случае трудно стандартизировать метод анализа, поскольку свойства сорбента изменяются от партии к партии, а в результате этого меняется селективность. [c.400]

    Наряду с колоночной жидкосгной хроматофафией, ддя разделения суперэкотоксикантов в аналитической практике довольно частно применяют тонкослойную хроматофафию (ТСХ) на оксиде алюминия и силикагелях 118 , Этот метод дает вполне удовлетворительные результаты при анализе биологических объектов, в которых содержание определяемых компонентов относительно высокое. В частности, ТСХ на пластинках "Силуфол применяется дня определения афлатоксинов в зерновых, зернобобовых и молочных продуктах [ol]. Метод позволяет надежно обнаружить афлатоксины В и Gi на уровне 1-2 мкг/кг, а афлатоксины Вг Сг и М - на уровне 0,5-1 мкг/кг, [c.224]

    На рис. 6.5 показаны кривые дифференциального термического анализа (ДТА), полученные Маслянским Г.Н. при выжиге кокса с алюмоплатинового катализатора. На термограмме обнаруживаются два пика в интервале температур 200-370 С и 370-550 °С. С повышением давления водорода при риформинге выход кокса и высота обоих пиков уменьшаются. Считается, что первый пик на термограмме связан с горением непредельных углеводородов на платине, а второй пик характерен для горения кокса, карбоидизированного на кислотных центрах и инертных участках оксида алюминия. Определенную роль может играть также спилловер кислорода, заключающийся в активации молекулярного кислорода на платине, его натекании на поверхность носителя и особенно его кислртные центры и тем самым участие в реакциях окисления. Следствием является то, что при низкотемпературном окислении (до 370 С) выгорают соединения не [c.144]

    Спектрофотометрический метод. Для анализа необходимы спектрофотометр, цилиндр на 10 см и 50 см, мерные колбы на 50 см, хроматографическая колонка (12,7X254 мм) оксид алюминия (нейтральный), хлороформ ч. д. а., вода дистиллированная, метанол и метиленовый голубой, 0,006%-ный раствор. [c.163]

    Для каждой области температур кипения анализируемых. веществ существует оптимальная пористость адсорбента для разделения низкокипящих, наиболее слабо сорбирующихся газов нужно использовать силикагели с высокой удельной поверхностью и средним диаметром пор не более 2 нм, для анализа углеводородных газов с температурой кипения не выше 10 °С — силикагели с диаметром пор 5—20 нм и для разделения более высококипящих углеводородов — соответственно более крупнопористые силикагели [36]. Модифицирование неоднородных крупнопористых силикагелей гидроксидом калия, поташом или силикатом калия приводит к уменьшению асимметрии пиков и повышению селективности разделения углеводородов j-С4 [37]. В качестве адсорбентов с полярной поверхностью, селективных по отношению к алкенам, используются также оксид алюминия [38] и цеолиты [39—40]. Полное разделение неуглеводородных компонентов газов нефтепереработки проведено на цеолите в режиме программирования температур 50—300°С [4.3]. [c.115]

    Определение углеводородного состава фракции Сз и С4 проводится методом газожидкостной хроматографии на составной колонке с тренел ом зикеевского карьера (ТЗК) [52], модифицированным вазелиновым маслом и дибутилфталатом. Анализ сжиженного газа, включающего метан и бутадиен, проводится на колонке с оксидом алюминия, модифицированным вазелиновым маслом. [c.116]

    Большие успехи в разделении смесей достигнуты с помощью тонкослойной хроматографии (ТСХ). В этом методе носитель, например силикагель или оксид алюминия, наносят тонким слоем на стеклянную пластинку. Основным достоинством тонкослойной хроматографии является более быстрое выполнение анализа, чем методом бумажной хроматофафии, так как в тонком слое носителя растворитель движется бысфее, чем по бумаге, а также возможность применять более широкий круг элю-ентов, в том числе и элюентов, разрушающих бумагу. [c.294]

    Установление сорбционных рядов неорганических ионов на оксиде алюминия дало возможность К. М. Оль-шановой разработать ионообменно-хроматографический метод качественного анализа катионов, основанный на разделении целого ряда веществ при помощи этого сорбента [71, 83—85]. [c.142]

    К. М. Ольшанова и Л. А. Куницкая [164] разработали методику качественного анализа катионов III и IV аналитических групп с помощью осадочной тонкослойной хроматографии. В качестве сорбента применяли оксид алюминия ( для хроматографии ) и силикагель КСК-2. Сорбенты без добавления связующего вещества наносили на стеклянную пластинку (9x12 см) слоем 0,4 мм. Для исследования применялись растворы соответствующих солей в пределах концентраций 0,1—0,25 н. по отношению к каждому катиону для открытия катионов применяли высокоселективные проявители, дающие специфическую окраску с исследуемым катионом. Несложная техника выполнения и быстрота метода дают возможность использовать его как контрольный при качественном анализе неорганических веществ. [c.210]

    Совсем недавно появилось описание новой разновидности хроматографического анализа, названного пиковой тонкослойной окислительно-восстановительной хроматографией [140]. Этот метод был применен для количественного определения церия (IV) в растворах и заключается в следующем. На стеклянную пластинку наносили сорбент — оксид алюминия или силикагель в виде суспензии. Толщина слоя сорбента составляла 0,5 мм. На линию старта наносили капилляром по 0,02 мл хроматографируемого раствора. Пластинку помещали в наклонном положении в раствор смеси 3%-ного раствора перекиси водорода и 2 н. раствора аммиака, смешанных в определенном соотношении. Через 10—15 мин образовалась оксихроматограмма, на которой исследуемые вещества отображались в виде пиков. Было найдено, что с увеличением концентрации раствора церия высота пиков оксихроматограмм пропор- [c.224]

    Качественный анализ. Качественное обнаружение ионов неорганических соединений методом осадочной хроматографии чаще всего выполняют в колонках или на бумаге. В первом случае в качестве носителей используют оксид алюминия, силикагель (являющийся иногда одновременно осадителем), кварцевый песок, стеклянный порошок, насыщенные ионами-осадителями аниониты. Иногда колонки заполняют также чистым органическим реагентом-осади-телем, например о-оксихинолином, Р-нафтохинолином, купфероном, диметилглиоксимом, а-нитрозо-Р-нафтолом и др. Неорганическими осадителями для определения катионов служат гидроксид натрия, иодид калия, сульфид натрия и аммония, гексациано-(П)феррат калия, бромид и фосфат натрия, хромат калия для определения некоторых анионов используют нитрат серебра, нитрат ртути (I). [c.232]

    Если систематический анализ проводят на катионите оксид алюминия для хроматографии [(АЬОз) -A102"]Na+, способном [c.202]

    Впервые метод тонкослойной хроматофафии был описан Н. А. Измайловым и М. Шрайбер в статье Капельно-хроматофафический метод анализа и его применение в фармацевтике , опублик(званной в журнале Фармация в 1938 г. Авторы статьи исследовали возможность разделения ряда алкалоидов, содержащихся в растительных экстрактах, в тонком незакрепленном слое оксида алюминия. В 1949 г. Мейнгард и Холл опубликовали работу, в которой для разделения смеси неорганических ионов применили радиальную тонкослойную хроматофафшо на закрепленном (крахмалом) тонком слое оксида алюминия. Большой вклад в развитие метода внес, начиная с 1958 г., немецкий ученый Э. Шталь. [c.48]

    В табл. П1.2 приведены экспериментальные данные о влагоем-кости цеолита и оксида алюминия и глубине осушки природного газа этими адсорбентами после регенерации их в потоке сухого природного газа (с точкой росы —48 °С) при различных давлениях и температурах. Анализ этих данных показал, что температура регенерации оказывает более существенное влияние на эффективность процесса, чем давление. Поэтому регенерацию адсорбентов— осушителей целесообразно проводить при том же давлении, при котором осушают газ. [c.131]

    Выбор сорбента и колонки для ГВЭЖХ также имеет свои особенности. Прежде всего, колонка должна быстро приходить в равновесие с растворителем постоянно изменяющегося состава как в процессе градиентного элюирования, так и при возвращении к исходному составу растворителя при подготовке колонки к новому анализу. Если для старых колонок в жидкостной хроматографии, работавших однократно, градиент формировался и использовался один раз, после чего сорбент в колонке заменялся свежим, и это позволяло применять силикагель и оксид алюминия, то для ГВЭЖХ эти сорбенты не подходят, так как уравновешивание их со слабым растворителем после градиента слишком длительно. Однако современные обращенно-фазные и другие привитые сорбенты достаточно быстро приходят в равновесие с исходным растворителем после окончания градиентного элюирования, что позволяет успешно использовать их для этих целей. Время, необходимое для уравновешивания колонки, для каждого сорбента устанавливается экспериментально по достижению постоянства времени удерживания веществ, входящих в анализируемую смесь. Это время различно как для разных сорбентов, так и для разных по составу растворителей, и может колебаться от десятков до нескольких сотен минут. [c.66]

    ИНАА также можно использовать для анализа алюминия и оксида алюминия, однако не столь успешно, как в случае кремния. Причина заключается в образовании из основы пробы относительно высокой активности Na ( 1/2 = 15 ч) по реакции А1(п,о ) -Ка, инициируемой быстрыми нейтронами из спектра нейтронов деления. Высокий комптоновский континуум, вызываемый Na, серьезно ограничивает определение коротко- и среднеживущих индикаторных радионуклидов. Можно существенно улучшить НАА алюминия и оксида алюминия, если активированную пробу растворить и специфично отделить высокоактивный радионуклид Na на гидратированном пентаоксиде [c.124]

    При анализе минерала массой 0,5076 г получили сумму оксидов алюминия, железа и титана массой 0,2078 г. При дальнейшем анализе из суммы оксидов определили массовую долю TiOj 2,78%, ГегОз 3,56%. Алюминий определяли по разности. Вычислить содержание алюминия, железа и титана. [c.56]

    Какую массу силиката, содержащего около 20% оксида алюминия, следует взять для анализа, чтобы после сплавле- [c.126]

    Для определения содержания углерода и водорода в полимерах применяют классические методы с ручным сжиганием образца. Однако промежуточные продукты разложения полимеров не успевают окислиться до СО2 и Н2О при сжигании в пустой трубке. Поэтому для анализа полимеров используют трубки с каталитическим наполнением (например, последовательные слои кобальта (П) и (Ш), серебра, осажденного на оксид алюминия, и серебряной проволоки), которое способствует более полному протеканию процессов окисления. Если полимеры содержат значительное количество галогенов, то наполне- [c.37]

    Впервые метод ТСХ был применен в 1889 г, голландским биологом Бейеринком, наблюдавшим диффузию капли смеси соляной и серной кислот по тонкому слою желатины Измайлов и Шрайбер в 1938 г, при контроле подлинности лекарственных препаратов растительного происхождения применили тонкий слой оксида алюминия. Однако только после работ Е.Шталя, который в 1956 г. предло кил стандартную методику, оборудование и сорбенты, метод начинает использоваться в исследовательской практике. Преимущества ТСХ -простота подготовки и малый расход пробы, разнообразие методов детектирования и низкая стоимость проведения анализа, универсаль-1юсть - обеспечили его быстрое распространение [47]. [c.105]

    Фосфид бора образуется в лодочке, в то время как AI I3 испаряется. Согласно данным рентгенофазовопо анализа, полученный ВР содержит также некоторое количество оксида алюминия. [c.874]

    Ионные ссединення (группа 3). Как уже упоминалось, силикагель обладает кислотными свойствами и поэтому не пригоден для анализа катионных соединений (в частности, ионов металлов) или соединений, содержащих многочисленные основные группы, и эти соединения, как правило, анализируют методом ион-парной и ионообменной хромато1рафии. На нормальных фазах для ЖАХ (силикагель, оксид алюминия) разделить ионные соединения при использовании органических элюентов удается редко. Обычно зоны таких соединений имеют "хвосты", особенно при низких значениях Кл Каждый аналитик мог наблюдать вытянутые пятна около стартовой линии, принадлежащие загрязнениям от ионных соединений в тестовой смеси красителей. [c.399]

    Некоторое время считалось, что анализ ионных или ионогенных соединений следует проводить методом ион-париой хроматографии с обращенными фазами. Однако в настоящее время исследователи останавливают свой выбор либо на традиционном варианте ионообменной хроматографии, либо на хроматографии с применением немодифициро-ванного силикагеля или оксида алюминия. В последнем случае применяют водные растворители и буферы. Хроматография на немодифицированном силикагеле или оксиде алюминия имеет существенные преимущества по сравнению с ОФ-вариаитом. Во-первых, свойства сорбента не меняются от партии к партии, во-вторых, сорбенты в меньщей степени подвержены гидролизу и, наконец, при анализе таких проб, как сыворотка, не требуется предвар1ггельная очистка [275]. Оксид алюминия ие изменяет своих свойств при использовании водных элюентов с pH от 2 до 12. Силикагель растворим в воде при рН>8, однако этот недостаток может быть преодолен при насыщении растворителя силикагелем в фор-колонке. При использовании ТСХ описанные преимущества реализуются наилучшим образом (см. разд. 1П, Б, 2). Учитывая взаимное влияние буфера, растворенного вещества, рК, состава элюента и pH, можно варьировать условия и тем самым оптимизировать процесс разделения. Разработанные [c.399]


Смотреть страницы где упоминается термин Оксид алюминия, его анализ: [c.9]    [c.175]    [c.66]    [c.35]    [c.101]    [c.94]    [c.126]    [c.297]   
Эмиссионный спектральный анализ Том 2 (1982) -- [ c.137 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминия оксиды



© 2024 chem21.info Реклама на сайте