Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Барьеры потенциальные при поворотной изомерии

    В тех же случаях, когда яма имеет сложную форму или когда имеется несколько минимумов, разделенных не очень высокими и широкими барьерами (инверсия, поворотные изомеры, таутомеры, конформеры и др ), надо проявлять крайнюю осторожность в интерпретации положения минимумов на потенциальной поверхности В таких ситуациях надо решать дополнительную задачу о движении ядер в сложном поле, и может оказаться, что максимум квадрата волновой функции, отвечающей основному ядерному состоянию, не будет совпадать ни с одним из минимумов Поэтому трактовка каждого из минимумов как признака наличия, например, того или иного поворотного изомера, является наиболее распространенной в литературе ошибкой Возникает еще неопределенность при записи матричных элементов для сравнения данных расчета с экспериментом, связанная с выбором области интегрирования [c.161]


    С несколько иных позиций подходит к вопросу высокоэластического состояния М. В. Волькенштейн, рассматривая различные конформации как поворотные изомеры с одной и той же энергией. Гибкость цепи связывается с перераспределением отдельных звеньев за счет их поворотов, при которых преодолеваются потенциальные барьеры внутреннего вращения. Чем легче происходит это перераспределение, тем меньше высота барьера. Одни поворотные изомеры соответствуют более вытянутой цепи, а другие — менее вытянутой или свернутой. При повышении температуры ускоряется переход одного поворотного изомера в другой, вследствие чего цепь становится более гибкой. По всей вероятности, в реальных полимерах при малых высотах потенциального барьера преобладает механизм Волькенштейна, а при более высоких — механизм ограниченных вращательных колебаний. [c.380]

    Разности между минимумами на потенциальной кривой определяют разности энергий поворотных изомеров А . Кроме того, кривая потенциальной энергии содержит два вращательных барьера ( Транс-конформер, как правило, более устойчив. [c.146]

    Изучение конформаций молекул. Всякие изменения в структуре молекулы отражаются на колебаниях входящих в ее состав атомов, что в свою очередь проявляется в ИК-спектрах. Таким образом изучение колебательных спектров в разбавленных растворах (для исключения межмолекулярных взаимодействий) дает информацию о различных конформационных взаимодействиях. Изучение ИК-спектров позволяет, например, исследовать поворотную изомерию, которая обусловлена заторможенным вращением объемистых заместителей вокруг данной связи. Если высота энергетического барьера вращения достаточно высока, то это приводит к крутильным колебаниям группы атомов такие колебания обычно расположены в дальней ИК-области (v<200 см" ), а их частоты позволяют рассчитать высоту соответствующего потенциального барьера. [c.220]

    Для некоторых веществ конформация в твердой фазе может зависеть от условий замораживания вещества. Например, при охлаждении 1,1,1-трифтор-З-хлорпропана ниже —103,4° С образуется кристаллическая модификация, в которой все молекулы имеют одинаковую гош-конформацию. При температурах от —103,4°С до температуры плавления вещества (—93,8° С) в кристалле находятся в равновесии оба поворотных изомера, что фиксируется по появлению в колебательном спектре полос анти-изомера. Если же очень быстро охладить вещество жидком азотом (—196° С), то при этом вымораживаются обе конформации, но равновесия между ними нет из-за невозможности преодоления потенциального барьера при низкой температуре. При нагревании такого образца до —157° С все молекулы переходят в гош-конформацию. [c.221]


    Взаимосвязь двух понятий — внутреннего вращения и поворотной изомерии — стала ясной в приложении ко многим низкомолекулярным веществам уже давно, особенно при использовании метода инфракрасной спектроскопии [47], Поворотная изомерия и заторможенность внутреннего вращения имеют одну и ту же причину— наличие потенциальных барьеров. На заторможенность внутреннего вращения указывает также факт, что теплоемкость молекул, содержащих единичные С—С-связи, находится между значениями, характерными для вращательных и колебательных степеней свободы. [c.135]

    По современным представлениям, гибкость макромолекул связана с изменением взаимного расположения смежных атомов цепи или звеньев. При этом звенья обладают набором устойчивых конформаций (поворотных изомеров), соответствующих минимумам потенциальной энергии. Изменение конформаций макромолекул происходит путем перехода звена от одних минимумов к другим через потенциальные барьеры. Чем выше потенциальный барьер, тем реже происходит переход от одного поворотного изомера к другому. При этом среднее время т, характеризующее процесс перехода от одной равновесной конформации к другой, тем больше, чем выше потенциальный барьер 11, и тем меньше, чем больше интенсивность теплового движения, характеризуемая величиной кТ (где k — постоянная Больцмана, Т — температура). Согласно статистике Больцмана, т = С ехр [ //(йГ)] (здесь С — постоянная, равная кон-формационному времени в условиях, когда U = 0 или Г- оо). [c.17]

    Рассматривая природу центральной связи, можно выделить две разновидности поворотной изомерии. В случае двойной связи внутреннее вращение затруднено, и между поворотными формами существует очень высокий потенциальный барьер. Такой барьер может оказаться настолько большим, что становится возможным физическое разделение [c.96]

    Конформационный анализ), когда устойчивым конформациям соответствуют разные по глубине минимумы потенциальной энергии, т. е. возникают различающиеся по форме и св-вам поворотные изомеры (конформеры). В частности, у молекул типа 1,2-дизамещенных этана имеются три стабильных конформации-одна транс- (или анти-) и две гош-конформации (см. рис. 2). Относит, стабильность поворотных изомеров определяется разностью их энергий АЕ, т. е. разностью значений энергии в минимумах потенциальной кривой. Напр., транс-изомер 1,2-дихлорэтана более устойчив, чем гош-изомер, т.к. его энергия (в газовой фазе) ниже на 5,6 кДж/моль. При достаточно низких потенциальных барьерах (неск. десятков кДж/моль) поворотные изомеры находятся в термодинамич. равновесии, положение к-рого зависит от т-ры, давления и природы среды. Для барьеров порядка 10 к Дж/моль время жизни конформеров составляет 10 °с. При высоких значениях Уд (выше 100 к Дж/моль), когда В. а отсутствует, конформеры даже при малой разности их энергий могут существовать как индивидуальные в-ва. В. в. молекул возможно в газовой и жиДкой фазах, параметры К(ф) зависят от характера среды и электронного состояния молекулы. В кристаллах В. в., как правило, отсутствует и стабилен лишь один конформер иногда существуют твердые фазы (напр., у некоторых фреонов), в которых стабильны разные конформеры и между ними осуществляются переходы. [c.392]

    В принципе макромолекулу можно полностью вытянуть, растягивая ее за концы с этой операцией далее мы часто будем встречаться. Ясно, что абсолютное значение и (ф) в минимумах не будет характеризовать трудность или легкость этого процесса, особенно в случае гауссовых клубков (скоро станет ясным — почему). При поворотно-изомерном механизме гибкости такое разворачивание сведется к перераспределению поворотных изомеров вдоль цепи. Но локальные перескоки между поворотными изомерами регулируются уже другими энергиями — высотой разделяющих их потенциальных барьеров ( хребтов между впадинами на энергетической карте). Эта форма гибкости, по понятным причинам, называется кинетической гибкостью макромолекулы. [c.43]

    При наличии нескольких энергетических "барьеров в этом и других аналогичных случаях могут возникать относительно устойчивые поворотные изомеры , каждый из которых отвечает минимуму потенциальной энергии (их конформация приведена на рис. 82) [c.363]

    Существование поворотных изомеров в полимерах экспериментально установлено методами инфракрасной спектроскопии. Оказалось, что для важнейших полимеров величина потенциального барьера существенно превышает kT. Поворотно-изомерная теория была эксперименталь- [c.31]

    Разумеется, такой метод расчета является весьма грубым, однако он достаточно хорошо иллюстрирует фундаментальную роль взаимодействий ближнего порядка, действующих в пределах небольших фрагментов цепи (и соответственно зависящих от ее химического строения), как основного фактора, определяющего гибкость макромолекулы в целом, а также оказывающего косвенное влияние на ее конформацию. Если же поставить обратную задачу — оценить гибкость молекулярной цепочки по ее конформационным свойствам, определенным на основании измерения физических характеристик раствора и т. д., то в этом случае основная проблема заключается в определении вероятности реализации транс- или зош-конформаций, которая характеризует собой разность между значениями энергии соответствующих поворотных изомеров. Последний параметр определяет так называемую равновесную гибкость макромолекулы. ( 1 другой стороны, параметр, оказывающий доминирующее влияние, например на температуру стеклования полимера, и характеризующий, очевидно, подвижность сегментов макромолекулы, имеет кинетическую природу и определяется, таким образом, высотой потенциального барьера е, препятствующего переходу из положения G или G в положение Т. По этой причине упомянутый параметр носит название кинетической гибкости . [c.159]


    Потенциал внутреннего вращения, изменяясь с изменением угла а, происходит максимумы и минимумы, которые разделены потенциальными барьерами внутреннего вращения Woi. Если эти барьеры очень велики, ог /гГ, то конформации, соответствующие минимумам Ш по обе стороны от по существу представляют разные молекулы — поворотные изомеры. Из находящейся в равновесии смеси поворотных изомеров молекулы каждого изомера г будут адсорбироваться по-разному в соответствии с энергиями их межмолекулярного взаимодействия с адсорбентом Ф, и концентрацией (мольной долей л, ) поворотного изомера I в смеси таких изомеров в газовой фазе. Измеряемая на опыте константа Генри для адсорбции смеси поворотных изомеров составляет [4, 30]  [c.190]

    Если звено при вращении может занимать не одно, а несколько определенных положений равновесия с различными потенциальными барьерами вращения Е , то полимер в каждом из положений можно рассматривать как поворотный изомер в этом смысле Волькенштейн считает полимеры равновесными смесями поворотных изомеров. Они отличаются, однако, от цис- и тра с-изомеров этиленовых соединений в десятки раз меньшей высотой барьеров и высокой скоростью взаимного превращения (до 10 раз в 1 сек.) при этом, поворотные изомеры с наиболее высокими Ед преобладают. Для простоты в дальнейшем мы рассматриваем только свободное вращение звеньев (гибкие цепи), или ограничение вращения колебаниями около одного положения равновесия (жесткие цепи). [c.223]

    Это, вообще говоря, не означает, что равновесные свойства молекул совершенно не зависят от высот потенциальных барьеров, так как последние до некоторой степени могут влиять на разности энтропий поворотных изомеров. [c.122]

    Для молекулы этана потенциальный барьер вращения сравнительно невелик, и при комнатной температуре кинетической энергии достаточно для осуществления свободного вращения. Поэтому этан фактически представляет собой смесь молекул, атомы которых могут зани.мать различное пространственное положение, т. е. является смесью поворотных изомеров. Переход из одного положения в другое осуществляется 10 раз в секунду, т. е. очень быстро, поэтому выделить молекулы этана с разным расположением, атомов практически невозможно. Однако спектроскопическими методами можно доказать реальность их существования. [c.59]

    Внутреннее вращение —это процесс, состоящий из крутильных колебанвй внутри потенциальных минимумов с перескоками время от времени между поворотными изомерами. Для молекулы этана с высотой барьера 13 кДж/моль частота перескоков равна при 20 °С примерно 10 ° с , что практически воспринимается как свободное вращение. Равновесные свойства молекул (такие, как дипольный момент, оптическая активность, форма макромолекул и т. д.), представляют собой результат усреднения по всем поворотным изомерам. Отдельные молекулярные характеристики, проявляющиеся за время, меньшее времени жизни поворотных изомеров позволяют наблюдать поворотные изомеры и доказывать их существование. Например, о поворотных изомерах можно судить по спектральным линиям, частоты которых различны для различных поворотных изомеров. Так, поворотные изомеры были в 1932 г. открыты с помощью спектров комбинационного рассеяния. В настоящее время поворотные изомеры обнаруживаются как по спектрам комбинационного рассеяния света, так, особенно, по инфракрасным спектрам поглощения. [c.136]

    Молекулы этана и пропана рассматривались и как квазижест-кпе при незаслопенном положении метильных групп, и как имеющие заторможенное внутреннее вращение, которое будет рассмотрено позже. В случае адсорбции на ГТС обе модели молекул этих двух алканов дали близкие значения Ки Молекулы н-алканов с более длинной углеродной цепью, начиная с н-бутана, при внутреннем вращении вокруг связей С—С должны преодолевать достаточно высокие потенциальные барьеры и поэтому образуют поворотные изомеры. Так, например, у н-бутана при внутреннем вращении вокруг центральной связи С—С возможны три поворотных изомера один гранс-изомер Т и два энергетически одинаковых гош-изо-мера О (правый и левый). Общее число поворотных изомеров у н-алканов равно 3" , где п — число атомов С в молекуле. При расчетах термодинамических характеристик адсорбции н-бутан, н-пен-тан и н-гексан рассматривались как смеси их поворотных изомеров, находящихся в равновесии друг с другом. Статистические средние значения константы Генри К1 вычислялись по формуле [c.172]

    В табл. 1.8 приведены длн некоторых полимеров значения параметров, характеризующих термодинамическую гибкость. Как видно из таблицы, термодинамическая гибкость определяется химическим строением повторяющегося звена и конформацией макромолекулы, которая, как было показано раньше, также зависит от химического строения На примере полимеров с одинаковым типом конформации (например, статистического клубка) можно проследить влияние химической структуры повторяющегося звена Полимеры диенового ряда с повторяющимся звеиом —СНг R = H—СНг—(R = H, СНз, I) характеризуются больиюй гибкостью по сравнению с полимерами винилового ряда —СНг— HR— (R = H, СН3, l, eHs, N и т. д.). Это обусловлено тем, что разница энергий поворотных изомеров (транс- и гош ) в диеновых полимерах меньше примерно в 100 раз (At/для виниловых полимеров составляет 2—3, а для непредельных— 0,025 кДж моль). Такое различие связано с уменьшением обменных пзаимодсиствин (притяжения — отталкивания) между группами СНг при введении между ними группы с двойной связью, имеющей более низкий потенциальный барьер i/o- Аналогичная картина наблюдается и для макромолекул, содержащих в цепи связи Si—О или С—О. [c.92]

    Принятое в литературе понятие конфигурация" по отношению к пептидной и слож-( оэфирной фуппам, строго говоря, не является полностью оправданным, так как переход Ч одной формы в другую происходит у них без разрыва химических связей В данном Мучае этот термнн подчеркивает стабильность плоских форм и, следовательно, большую Мичину разделяющего поворотные изомеры потенциального барьера [c.133]

    Подобные конформации, соответствующие минимуму потенциальной энергии, называются поворотными изомерами. Внутрен нее вращение для этих конформаций носит характер крутильных колебаний с перескоками через барьер от одного изомера к другому. Разность минимальных значений потенциальной энергии между поворотными изомерами в большинстве случаев составляет 0,5— 1,5 ккал1молъ [3, 9—11]. Частота перескоков через барьер 10 сек (С/о — 3 ккалЫолъ). Характеристики молекул, проявляющиеся за время, меньшее времени жизни поворотных изо- [c.16]

    Процентное содержание различных поворотных изомеров тесным образом связано с потенциальными барьерами вращения вокруг отдельных связей. Мы разбираем расчетную схему по связям с учетом первого окружения, а это значит-, что мы предполагаем, что физико-химические свойства отдельного структурного элемента связи с учетом первого окружения полностью определяются химической индивидуальностью атомов этого структурного элемента и кратностью всех образуемых этими атомами связей. Влиянием более удаленных атомии мы пренебрегаем. Естественно предположить, что потенциальные барьеры вращения вокруг центральной связи такого структурного элемента определяются только атомами этого структурного элемента и не зависят от более удаленных атомов. Отсюда должно следовать, что процентное содержание различных поворотных изомеров данного структурного элемента определяется видом структурного элемента и не зависит от того, в какой молекуле содержится данный структурный элемент. Степень достоверности такого предположения в настоящее время ие может быть оценена достаточно точно и однознач- [c.148]

    Из всего этого большого цикла экспериментальных и теоретических работ, приходящихся на 30-е и 40-е годы, был сделан уверенный вывод о существовании заторможенного вращения вокруг простых связей, о существовании поворотных изомеров — наиболее предпочтительных конформаций и в некоторых конкретных случаях — о высоте потенциальных барьеров, их разделяющих. Однако основную трудность представило понимание природы потенциала внутреннего вращения. И дело здесь было не только в трудностях расчета составляющих, обязанных пространственному отталкиванию и ван-дер-ваальсовым силам и их соотношению между собою, айв том, что теоретические расчеты и экспериментальные данные привели к предположению, которое хотя и было высказано сначала в 1940 г., но на которое сумел обратить внимание впервые, по-видимому, в 1957 г. Уилсон. Согласно этому предположению, распределение электронов вблизи осевой связи (связи С—С в этане и его производных) должно обусловливать существенный вклад в потенциальный барьер. С развитием этой идеи выступил Полинг, но, как он заметил, ни об одной из предложенных теорий нельзя сказать, что она удовлетворительно согласуется с экспериментальными данными [71, с. 9], [c.54]

    Несмотря на то, что с экспериментальной точки зрения вопрос о внутреннем вращении в молекулах изучен довольна хорошо, теория тормозящего потенциала еще практически не разработана. В принципе строгий квантовомеханический расчет, основанный на учете электростатических взаимодействий между всеми электронами и ядрами молекулы, должен,, конечно, дать значения энергий всех конформаций молекулы и, следовательно, высот барьеров и разностей энергий между поворотными изомерами. Однако вычисление тормозящего потенциала предъявляет особенно высокие требования к точности рез гльтатов, полученных с помощью приближенных квантовомеханических методов. Энергия торможения значительно меньше суммарной энергии молекулы, так что высоты барьеров и разности энергий между поворотными изомерами представляют собой при таком методе расчета малые разности больших величин. Поэтому до сих пор не существует достаточно строгого квантовомеханического расчета потенциальной кривой даже для простейшего случая молекулы этана. [c.53]

    В работе Н. П. Борисовой и М. В. Волькенштейна на основе формулы (2.5) и потенциалов С. .. С Китайгородского и Н. .. Н Хилла [52] была вычислена потенциальная энергия внутреннего вращения в простейших углеводородных молекулах пропане и к-бутане. Эти расчеты показали, что в обеих молекулах минимуму потенциальной энергии соответствует транс-расположение связей С—С. Стерическое взаимодействие вносит сравнительно небольшой вклад в потенциальный барьер пропана ( 250 кал/моль), что согласуется с экспериментальным значением этого барьера 3300 кал/моль, всего на 300 кал/моль превышающем значение барьера в этане. Разность энергий между гош- и отренс-изомерами в я-бутане определяется стерическим взаимодействием атомов С метильных групп и особенно взаимодействием одной пары атомов Н указанных групп. Если принять, что го -изомеру соответствует угол внутреннего вращения ср=120°, то эта разность энергий Ш ж 900 кал/моль, что близко к экспериментальному значению. Если минимуму потенциальной энергии соответствует угол, несколько отличающийся от 120°, то в разность энергий между поворотными изомерами вносит, разумеется, свой вклад и эффект ориентации связей, но при разумных значениях /(,р (близких к Цд этана) величина Ш и в этом случае остается близкой к экспериментальному значению, равному 800 кал/моль. Наложение стерического взаимодействия и эффекта ориентации связей обусловливает довольно плоское дно потенциальных ям, соответствующих транс- и гош-изомерам н-бутана, что приводит к наличию крутильных колебаний с амплитудой 10—-15°. [c.65]

    Разности между энергиями поворотных изомеров (а также высоты потенциальных барьеров) могут быть подсчитаны, исходя из полуэмиирического выражения для энергии взаимодействия групп, не связанных между собой валентными связями. Подобными расчетами установлено, что разности между энергиями поворотных изомеров для таких полимеров, как полипзобутилен, натуральный каучук, метилкаучук, полихлоропрен и т. п., весьма малы. Оказывается, в частности, что вследствие симметрии связи, соседней с двойной, вращение вокруг нее можно считать практически свободным. [c.98]

    Таким образом, М. В. Волькенштейн рассматривает линейную макромолекулу не как случайно закрученную цепочку, а как своеобразную смесь поворотных изомеров . Он считает, что в цепочке макромолекул осуществимы не любые повороты вокруг отдельных звеньев, а лишь повороты на определенные углы, приводящие к появлению относительно устойчивых поворотных изомеров. Гибкость цепочки и, следовательно, важнейшие свойства полимеров определяются разностями энергий поворотных изомеров. Только от раз-1 остп. между энергиями поворотных изомеров, а не от величины потенциальных барьеров зависит, следовательно, и средняя квадра- [c.98]

    В первом томе этой книги, состоящем из четырех глав, образованные макромолекулами кристаллы охарактеризованы на молекулярном уровне степенью сохранения дальнего порядка в положении атомов и самим положением атомов макромолекулы в кристаллической решетке (разд. 2.4). Показано, что факторами, определяющими образование различных кристаллических структур, являются потенциальные барьеры вращения вокруг ковалентных связей, существование поворотных изомеров и соблюдение принципа плотнейшей упаковки (разд. 2.3). Морфология кристаллов, как было обнаружено, тесно связана с макроконформацией молекул полимеров (разд. 3.2), а ла-мелярная и фибриллярная формы кристаллов являются наиболее общими и наиболее хорошо сформированными габитусами полимерных кристаллов (разд. 3.3 и 3.8). В разд. 4.2 и 4.3 также показано, что детальная характеристика кристаллического состояния линейных макромолекул в большой степени осложняется наличием кристаллических дефектов. [c.15]

    Необходимо отметить, что, хотя конформационные изомеры реально существуют и наличие их может быть подтверждено физическими ц химическими измерениями (в отличие, например, от резонансных гибридов), они все же не могут быть выделены ни при комнатной, ни при значительно более низкой температуре. Причина этого — слишком низкие потенциальные барьеры их взаимных превращений (порядка 3 кка.г молъ). Для того чтобы разделить взаимно превращающиеся изомеры при комнатной температуре, необходим потенциальный барьер около 16— 20 ккал молъ. Изомеры, разделенные барьером в 3 ккал моль, можно выделить только при температуре 50° К. Существуют, однако, поворотные изомеры, разделенные потенциальными барьерами, достаточно высокими для получения этих изомеров в индивидуальном состоянии. Такие изомеры встречаются в ряду дифенила и называются атропоизомерами. Изомерия такого типа пе обсуждается в данной книге она подробно рассмотрена в обзорах [4, 51. Подчеркнем, что атропоизомерия представляет собой частный случай конформационной изомерии, в которой потенциальные барьеры достаточно высоки, чтобы обеспечить выделение индивидуальных изомеров. Очевидно, проведение границы между обычной конформационной изомерией и атропо-изомерией определяется температурой . Так, существует ряд [c.20]

    В принципе граница между конформационной и геометрической изомериями также условна, поскольку геометрические изомеры являются поворотными изомерами, разделенными потенциальным барьером порядка 40 ккал1молъ. В некоторых случаях при повышенных температурах возможны взаимные превращения геометрических изомеров. Тем не менее, геометрическая изомерия оле-финов обычно не рассматривается как частный случай конформационной изомерии. [c.21]


Смотреть страницы где упоминается термин Барьеры потенциальные при поворотной изомерии: [c.96]    [c.220]    [c.511]    [c.317]    [c.92]    [c.186]    [c.56]    [c.121]    [c.131]    [c.242]    [c.17]   
Успехи спектроскопии (1963) -- [ c.355 , c.358 , c.366 , c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Барьер

Внутреннее вращение, поворотная изомерия и потенциальные барьеры в галогенпроизводных этана

Изомерия поворотная

Методы измерения потенциальных барьеров и разностей энергий поворотных изомеров

Поворотные изомеры

Потенциальная яма

Потенциальные барьер

поворотные



© 2024 chem21.info Реклама на сайте