Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калия с катионами V группы

    Отделение калия в систематическом ходе анализа катионов. В систематическом ходе анализа сначала осаждают катионы группы соляной кислоты, групп сероводорода и сульфида аммония, выделяют катионы щелочноземельных металлов, после чего в растворе остаются соли щелочных металлов, аммония и иногда магния. Схема анализа раствора, содержащего эти катионы, представлена в табл. 10. [c.128]


    В основе взаимодействия белков со стенкой лежит в основном механизм катионного обмена. Это возможно, поскольку и в случае отрицательного полного заряда молекулы (особенно при основных pH) всегда имеются в наличии катионные группы, например аргинин-радикалы в цепочках полипептидов. Поэтому путем добавления солей щелочных металлов (например сульфата калия) к буферу, как и в случае ионообменной хроматографии, достигается конкуренция кулоновскому притяжению и вызванное этим притяжением взаимодействие белок - стенка явно уменьшается. Следуя этой концепции, можно для стандартных белков в широкой области р1 (р1 5-11) достичь эффективности 50000-100000 тарелок на метр. И в этом случае недостатком является сравнительно высокая электропроводность буфера (эффективное охлаждение ) которая вынуждает использовать поля низкого напряжения (5 кВ) и длинные капилляры с маленьким внутренним диаметром (25 мкм). Кроме того, большие ионные силы уменьшают как ЭОП, так и -потенциал пробы, что вместе с вышеназванными факторами приводит к длительным временам анализа. [c.67]

    Определение содержания в флокулянте положительно и отрицательно заряженных групп.. Количество катионных групп в мг-экв/г определяют титрованием раствора полимера поливинил-сульфатом калия. Индикатором служит толидин синий, окрашенный в присутствии положительно заряженного полимера в синий цвет и отрицательно заряженного полимера —в пурпуровый цвет.  [c.53]

    Катионы I аналитической группы образуют характерные соединения лишь с некоторыми специфическими реактивами. Чтобы изучить действие часто применяемых в анализе реактивов на ионы данной группы, следует сначала изучить действие этих реактивов на каждый из катионов группы. Представляет интерес проверить действие щелочей, карбонатов аммония, калия и натрия, гидрофосфата натрия, оксалата аммония, антимоната калия, гидротартрата натрия и гексанитрокобальтата (III) натрия на все катионы этой группы. [c.217]

    Элемент 4-го периода и 1А-группы Периодической системы, порядковый номер 19, относится к шелочным металлам. Электронная формула атома [,8Ar]4s , характерная степень окисления -f-I. Имеет низкую электроотрицательность. Проявляет металлические (основные) свойства. Большинство солей калия хорошо растворимы в воде. Калий, катион калия и его соединения окрашивают пламя газовой горелки в фиолетовый цвет (качественное обнаружение). [c.116]


    Работа 22. Разделение катионов IV аналитической группы с помощью 2 М раствора иодида калия в качестве электролита [c.351]

    Измерения С, ф-кривых в расплавах различных галогенидов щелочных металлов позволяют разделить эти соли на две группы по их влиянию на емкость двойного слоя. В расплавах солей лития и натрия емкость велика, сильно зависит от природы аниона и существенно возрастает с температурой, а в расплавах солей калия и цезия емкость относительно мала и слабо зависит от природы аниона и температуры. Такую зависимость емкости от природы соли можно понять, если учесть что анионы галогенов С1" и Вг имеют больший объем, чем катионы и Na . Поэтому в расплавах солей лития и натрия существует значительное отталкивание между анионами, которое определяет особенности структуры таких расплавов, а именно катионы располагаются свободно в октаэдрических дырках, образованных более или менее плотно упакованными анионами. Для галогенидов калия и цезия роль взаимного отталкивания анионов не существенна, так как ионные радиусы этих катионов и анионов галогенов близки. Поэтому в структуре расплава ионы разного знака занимают более равноправное положение. [c.146]

    Проведено раздельное титрование тройной смеси оснований ацетата калия, бутил-амина и пиридина, раздельное титрование смеси солей органических кислот, образованных катионами первой и второй групп с алифатическими основаниями и пиридином, раздельное титрование смеси бензоата натрия с кофеином и салицилата натрия с кофеином в смеси ледяной уксусной кислоты с бензолом в соотношении 1 1. [c.459]

    Необходимо подчеркнуть, что в ряду напряжений металлы расположены по убыванию активности, которая проявляется в способности их к взаимному вытеснению только в водных растворах солей левее расположенный металл вытесняет (восстанавливает) из раствора соли катионы любого правее расположенного металла. Такая последовательность изменения активности не совпадает с последовательностью изменения активности металлов в группах и периодах периодической системы. В самом деле, в ряду напряжений самым активным является литий, в то время как исходя из положения в периодической системе калий как металл активнее лития. То же наблюдается, если сравнить относительное расположение в ряду напряжений и в периодической системе натрия и кальция, [c.146]

    Из приведенных в таблице данных можно усмотреть несколько закономерностей. Во-первых, ионная электропроводность растет в пределах одной группы периодической системы элементов с ростом атомного номера, как это видно из данных для катионов щелочных металлов. Это, казалось бы, находится в противоречии с формулой (8.9), согласно которой подвижность обратно пропорциональна величине коэффициента поступательного трения иона, который, в свою очередь, в соответствии с законом Стокса растет с ростом размера иона. Сравнение расположенных в одном периоде и имеющих приблизительно одинаковый размер ионов Na , Mg и АР+ показывает, что практически не наблюдается роста ионной электропроводности, а тем самым и подвижности с увеличением заряда иона, опять-таки в кажущемся противоречии с формулой (8.9). Оба эти факта объясняются, тем, что в электрическом поле в растворах электролитов перемещается не свободный ион, а ион с плотно связанной с ним сольватной оболочкой. В силу меньшего размера ион сильнее притягивает диполи воды и в итоге имеет большую сольватную оболочку, чем ион N3 , а последний, в свою очередь, имеет большую сольватную оболочку, чем ион калия. Этим же объясняется малое отличие в подвижности ионов Ма" , Mg и С увеличением заряда, естественно, резко [c.127]

    В растворе 2 определение катионов третьей аналитической группы проводят как описано в 10 (табл. 14). Определение катионов калия и натрия проводят согласно описанию в гл. I, 7 из отдельных порций начального раствора. [c.76]

    На очень быстром окислении сульфида таллия основано обнаружение таллия в пределах катионов группы соляной кислоты. К капле слабокислого (pH 5) уксуснокислого раствора добавляют каплю сероводородной воды, при этом в осадок выпадают PbS, Ag2S, HgS и TbS. Через несколько минут, вследствие окисления TI2S, в растворе снова появляются ионы таллия, что можно заметить по желтой окраске, возникающей после добавления иодида калия и перемешивания— образование T1J (стр. 12). Таким способом можно обнаружить до 0,8 у Т1+ в 0,05 мл раствора, при предельной концентрации 1 62 ООО одновременное присутствие до 50у Ag+, Hg2 + и РЬ + не мешает обнаружению таллия [357]. [c.19]

    Вольфрамит, не имеющий признаков интенсивного окисления поверхности, практически не разлагается щелочными растворами в отсутствие кислорода. Для выщелачивания ниобия при обработке колуйбита (Ре, Mn)Nb20e раствором едкого кали (2—5 н., 200— 300 °С) также требуется окисление катионов группы А — Ре +, Мп +, так как при полном вытеснении кислорода из автоклава и раствора минерал не разлагается. Ионы решетки на границе раздела твердой и жидкой фаз окисляются с образованием пероксид-ных ионов, в растворах, как и в случае других окислительных реакций, обнаруживаются пероксиды. [c.71]


    При изучении катионной полимеризации аллена и пропина в газовой фазе под действием поликатиона (х = 1-3) [32] было установлено, что поликатионы фуллерена инициируют циклоцепную полимеризацию. В работе [33] показана возможность использования фуллеридов калия (содержащих группы С о-калий) для инициирования анионной полимеризации этиленоксида. Полиапи-оны фуллерена (с противоионом Li, Na и К) [5] оказались неэффективными в качестве инициаторов полимеризации стирола, акрилонитрила и других мономеров. [c.202]

    Влияние адсорбции на заряд частиц адсорбента можно определить с помощью электрофоретических измерений и затем выразить как изменение -потенциала. Так, адсорбция катионов на кварце в конечном итоге приводит к уменьшению -потенциала до нуля (рис. 1Х-13). Наблюдаемую линейную зависимость от Сг вблизи =0 можно объяснить тем, что в этой области концентрация в основном определяется ф [уравнение (1Х-51)]. Наклон кривой ((31g 2/(3/г)g=o, где п — число атомов углерода в углеводородной цепи, соответствует энергии адсорбции 600 кал/СНг-группа, что практически совпадает с энергией адсорбции, найденной для поверхности раздела вода — воздух (см. разд. 11-7Г). Фюрстенау рассматривает этот результат как свидетельство поверхностной ассоциации или образования полумицелл . [c.331]

    В слабокислой среде в присутствии комплексона только серебро и одновалентный таллий осаждаются иодидом калия, так как остальные катионы, как, например, свинец, висмут и медь, прочно связаны в комплекс и с иодидом не реагируют. В нейтральной среде серебро образует комплексное соединение Ag2Y , как было установлено амперометрическим титрованием его комплексоном Н14], и не осаждается иодидом. 1одробным исследованием этой реакции показано, что только в нейтральной среде можно потенциометрически определить серебро -при помощи серебряного индикаторного электрода. В кислых растворах, в которых происходит выделение иодида серебра, результаты всегда получаются пониженными. Авторы рекомендуют следующий ход определения. К раствору, содержащему не менее 1 мг серебра, прибавляют требуемое количество комплексона и 5 капель бромтимолового синего. После нейтрализации 0,2 н. раствором едкого натра (сине-зеленая окраска) раствор разбавляют до 50—100 мл и титруют с применением серебряного электрода 0,1 н. раствором иодида калия из микробюретки с делениями на 0,05 мл. Присутствующий в небольшом избытке комплексон на определение не влияет. Таким путем можно определить серебро в присутствии свинца, меди, висмута, кадмия даже и тогда, когда они присутствуют в 300-кратном избытке. Пятивалентный мышьяк и трехвалентная сурьма (связанные в растворе винной кислотой), не влияют на определение. Определению не мешает также таллий, если присутствует в не слишком большом количестве (Ag Т1=1 10). Присутствие двухвалентной ртути и катионов группы бария делает определение невозможным. Согласно авторам, метод можно с хорошими результатами применять для анализа различных сплавов с серебром. После их растворения в азотной кислоте к раствору прибавляют комплексон и винную кислоту (в присутствии сурьмы), нейтрализуют едким натром и титруют описанным способом. Аналогично поступают при анализе [c.139]

    Дальнейшую обработку осадка сульфидов для разделенип групп меди и олова производят либо посредством желтого сернистого аммония (по стр. 200), либо, что более рационально, посредством едкого кали. В том и другом случаях нужно убедиться в присутствии катионов обеих групп или только одной из них. Для этого небольшую порцию осадка нагревают с 2—Зел разбавленного едкого кали. Если растворение происходит без остатка, то заключают о присутствии только сернистых мышьяка, олова и с фьмы и приступают тогда непосредственно к открытию каждого из них, для чего переносят весь осадок в чашку и обрабатывают его концентрированной соляной кислотой и т. д., как указано на стр. 201. Если же взятая проба не вся растворяется в едком кали, то отфильтровывают через маленький фильтр и к фильтрату прибавляют разбавленной соляной кислоты до кислой реакции. При этом возможны два случая либо осадок образуется — присутствие группы олова, либо осадок не образуется — группа олова отсутствует. В первом случае весь осадок подвергают действию едкого кали, а во втором случае осадок, состоящий только из сульфидов катионов группы меди, исследуют, как указано выше на стр. 181. [c.296]

    Применение ИГП обеспечивает высокую степень очистки по обесцвечиванию— на 98%, по ХПК — на 75%. Несмотря на снижение рНопт до 7,5, в очищенной воде наблюдаются только следы растворенного железа, в то время как для эффективного осаждения гидроксидов железа методом известкования необходимо обеспечивать pH > 8,5. Всему этому способствует наличие в ИГП активных катионных групп натрия и калия, которые за счет своей ионообменной способности позволяют дополнительно удалять из обработываемого раствора ионы железа. [c.51]

    Совместно с П. И. Галичем и с участием О. Д. Коповальчикова и Ю. Н. Сидоренко исследованы реакции алкилирования метилзамещенных ароматических углеводородов метиловым спиртом па цеолитах типа фожазитов и ионообменными катионами щелочных и щелочноземельных металлов. Выявлено принципиальное различие превращений углеводородов в присутствии аморфных и кристаллических алюмосиликатов с катионами I и II групп. В присутствии аморфных алюмосиликатов и цеолитов типа X и с катионами щелочноземельных металлов, а также лития и натрия алкилирование толуола, ксилолов и метилнафталинов метанолом происходит в ароматическое ядро с образованием соответствующих полиметилбензолов и нафталинов различного изомерного состава. Те же цеолиты с катионами калия, рубидия и цезия селективно метилируют боковую цепь, и получаются соответствующие этил-и винилзамещенные ароматические углеводороды. Эта неизвестная ранее реакция может служить новым общим методом одностадийного получения этил- и винилзамещенных ароматических соединений путем конденсации метилзамещенных ароматических углеводородов и метанола. [c.14]

    Работа 22. Разделение катионов IV аналитической группы с по мощью 2 М раствора иодида калия в качестве электролита. Работа 23. Разделение катионов IV аналитической группы, об разующих аммиакаты................ [c.7]

    При электрохроматографировании катионов IV аналитической группы в виде иодидных комплексов в качестве электролита используют 2 М раствор иодида калия. Для того, чтобы на аноде не выделялся свободный иод, у анода вместо раствора иодида калия помещают насыщенный раствор оксалата натрия. Иодидные комплексы более устойчивы, чем хлоридные, и в данном случае все комплексные ионы движутся к аноду. [c.351]

    Так, если к разбавленному (например, 0,001 М) раствору соли трехвалентного железа прилить раствор роданистого калия до концентрации КСМЗ около 0,005 М, то в растворе образуется оранжево-красный комплексный катион [Ре.ЗСЫ] . При увеличении концентрации избыточных (свободных) эоданид-ионов равновесие сдвигается и образуются комплексные группы [Ре(5СМ)2] +, затем [Ре(5СЫ)з), [Pe(S N)J и др. Комплексы эти более интенсивно окрашены, и, кроме того, раствор приобретает более красный оттенок (сдвиг максимума поглощения к более длинным волнам). [c.207]

    Определяют коэффициент перед средой. Средой яв.ляется серная кислота, которая поставляет сульфатные группы ЗО для связывания катионов в виде солей. В правой части уравиения видно, что и составе солей находится 7 сульфатных групп, причем 3 из них нолучилиь в результате окисления сульфита калия. Значит, на солеобразование потреботшлись оставшиеся 4 су.льфатные группы. Поэтому перед формулой серной кислоты в уравнении реакции ставим коэффициент 4  [c.264]

    Вместе с тем известны химические реагенты, которые являются общими для некоторых катионов этой группы. Такую подгруппу образуют ионы калия и аммония, близкое сходство которых должно быть поставлено в связь с весьма малым различием их ионных радиусов (К "—0,133 нм, NH — 0,143 нм). Общим химическим реагентом для этих ионов являются гексанитрокобальтат (ПГ) натрия Ыаз [Со(Ы02)б], гидротартрат натрия ЫаНС4Н40б и гексахлоро-платинат (IV) водорода (платинахлороводородная кислота). [c.235]

    Фториды калия и натрия растворимы в воде, поэтому реакция образовании мпл0раств0рим010 LIF можеп быть использована для обнаружения ионов Li+ в присутствии ионов Na+ и К . Из катионов I аналитической группы реакции обнаружения ионов Li " мешают линИ) ионы Mg , образуюн.ии> с фторид-ионами малорастворимый MgI-2 (ПР = 6,5 10 "). [c.243]

    Какие катионы III группы образуют с растворами карбонатов натрия или калия а) гидроксиды, б) нормальные карбонаты и в) основные соли (гид-роксосоли) Напишите уравнения реакций. [c.280]

    Очень важная группа ионоселективиых электродов с жидкими мембранами основана на использовании особого класса комплексообразующих реагентов — ионных переносчиков, или ионофоров. Так в калиевом электроде используют макроцикли-ческий антибиотик — валиномицин, образующий прочный комплекс с калием, и гидрофобный катион тетрафенилбората. Такой электрод чувствует калий даже при избытке натрия в 10 раз. [c.244]

    Определение зависимости между концентрацией раствора и его плотностью. Работа выполняется большой группой студентов (т. е. несколькими малыми группами). За несколько дней до занятия назначьте руководителя, который будет координировать работу малых групп (по 4—О человек). По указанию преподавателя или самостоятельно выберите объект исследования. Можно изучить следующие системы галогениды натрия, калия и, аммония сульфаты натрия, калия и аммония гидроксиды тех же элементов их хроматы и дихроматы и др. Если Вы будете изучать системы NaF, Na l, NaBr и Nal, то сможете узнать, как изменяется плотность растворов одинаковой концентрации (1 или 0,1 М) при переходе по подгруппе галогенов. Или, изучив систему NaOH и КОН, Вы получите данные о влиянии катиона на плотность растворов гидроксидов одинаковой концентрации. Интересно ответить на вопрос о влиянии замены катионов Na+ и К+ на NH4+. Если Вы будете изучать плотность растворов органических кислот (уксусная, лимонная, бензойная и др.), то получите данные о влиянии состава и строения кислоты на плотность раствора. Можно взять [c.97]

    Пифер, Вулиш и Смолл провели потенциометржческг.е титрование ацетатов многих катионов в смеси хлороформа с уксусной кислотой (10 1). По результатам титрования все основания были разделены на две группы — сильные (основания, образованные калием и аммонием) и более слабые (основания, образованные литием, натрием, кальцием, барием, серебром, цинком, кадмием, свинцом, никелем). Любой катион второй группы может быть оттитрован раздельно в смеси. В указанных выше условиях авторы осуществили раздельное титрование смесей К+ -f- Li+, К+ -j- Na+, NH -Ь Na+, NHJ -j- Li+ и др. [c.460]

    Первая аналитическая группа катионов ( а% N114). К первой аналитической группе относятся катионы натрия, калия и аммония, фосфаты которых растворимы в воде. Эта аналитическая группа не имеет общего группового реактива. [c.18]

    Выполнение реакции. 1—2 капли исследуемого раствора помещают на фильтровальную бумагу, смачивают 2 каплями 2 н. раствора едкого натра, прибавляют 2 капли раствора гексацианоферрата (И) калия и затем уксусной кислоты. В случае присутствия ионов А1 " появляется красное окрашивание, окаймляющее пятно, гголученмое от нерастворимых гексацианоферратов (И) катионов других групп. [c.49]

    Действие едкого кали или натра. Катионы пятой аналитической группы образуют с растворами едких щелочей малорастворимые осадки гидроксидов и оксидов РЬ(ОН)г, А ОН, Ag20, Hg20. [c.91]


Смотреть страницы где упоминается термин Калия с катионами V группы: [c.57]    [c.46]    [c.161]    [c.176]    [c.14]    [c.365]    [c.135]    [c.402]    [c.235]    [c.263]    [c.138]    [c.138]   
Основы аналитической химии Книга 1 (1961) -- [ c.406 , c.418 , c.419 ]




ПОИСК





Смотрите так же термины и статьи:

Едкое кали действие на катионы II группы

Калий катион

Калия V группы

Калия действие на катионы I группы

Калия реакция с катионами IV группы

Первая аналитическая группа катионов (ионы калия, натрия, аммония и магния)

Первая аналитическая группа катионов. Калий, натрий, цезий, рубидий, литий, аммоний и магний

Разделение катионов IV аналитической группы с помощью 2 М раствора иодида калия в качестве электролита

Разделение катионов IV аналитической группы с раствором иодида калия в качестве электролита



© 2024 chem21.info Реклама на сайте