Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основания, активность алифатические

    Гидрированием оснований Шиффа, полученных из алифатических кетонов и оптически активного а-фенилэтиламина (его остаток обозначен Н ), оказалось возможным выйти сначала к диастереомерным вторичным аминам, а затем, после удаления остатка а-фенилэтиламина, и к оптически активным первичным аминам  [c.573]

    В случае гомолитических реакций, протекающих в жидкой фазе, обнаружить свободные радикалы, установить их природу и определить выход можно на основании их способности реагировать со свободными галогенами быстрее, чем друг с другом и окружающей средой [429, 430]. Как пример рассмотрим установление природы и определение выхода свободных радикалов, образующихся при радиолизе алифатических углеводородов и алкил-иодидов. Эти соединения облучались у-лучами в присутствии небольших добавок иода ( 10 3 моль), меченного радиоактивным изотопом Для идентификации и определения выхода образующихся алкилиодидов, а следовательно, и соответствующих радикалов в систему после облучения добавлялись стабильные молекулярные носители (ожидаемые алкилиодиды), после чего смесь подвергалась фракционной перегонке и производилось измерение активности отдельных ( акций. [c.229]


    В качестве гидрофобизирующих флотореагентов применяют анионо-и катионоактивные, а также неионогенные поверхностно-активные вещества. Они адсорбируются на границе раздела твердая фаза — вода так, что полярные группы обращены к поверхности частицы, а неполярные — в воду, вследствие чего взвешенные вещества гидрофобизируются. В случае флотации солей щелочноземельных металлов и минералов-окислов основного характера обычно применяют высшие жирные кислоты и щелочные мыла, а также анионоактивные вещества — натриевые сульфаты высших спиртов, алкил- и алкиларилсульфонаты, содержащие углеводородные цепи с 12— 18 атомами углерода. При флотации кварца и других минералов кислого характера используются катионоактивные вещества — высшие алифатические амины и соли четвертичных аммониевых оснований, содержащие радикалы с 12 и более атомами углерода. Для удаления взвешенных веществ с аполярной поверхностью (угля, графита и др.) применяются различные масла, в состав которых входят углеводороды. [c.165]

    Существенное влияние на результаты крекинга оказывают содержащиеся в сырье азотистые соединения. Обладая высокой основностью, они прочно адсорбируются на кислотных активных центрах и блокируют их. Ядами для алюмосиликатных катализаторов являются азотистые оонования аммиак и алифатические амины на активность алюмосиликатов не влияют При одинаковых основных свойствах большее дезактивирующее воздействие на катализатор оказывают азотистые соединения большей молекулярной маосы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Влияние различных соединений азота, добавляемых к декалину в количестве 0,11% N, на глубину крекинга (в %) в заданных условиях характеризуется следующими данными без добавки — 41,9 с аммиаком и метиламином — 42 с диамиламином — 42,3 с пиридином — 26,8 с индолом — 25,1 с а-нафтиламином — 21,8 с хинолином — 8,5 с акридином — 8,2. [c.228]

    Известно, что в жидком аммиаке даже очень слабые кислоты полностью ионизированы. Очевидно, то же самое имеет место для более сильных оснований — низкомолекулярных алифатических диалкилами-иов, которые исследовались в настоящей работе. Поэтому следует ожидать, что главной формой катализатора, в данном случае, будет ионная пара — И1, и изменению каталитической активности будет соответствовать изменение строения ионной пары. В работе [5] установлено, что в растворах солей неполностью замещенного аммония, наряду с электростатическим притяжением, существует некулоновское взаимодействие, обусловленное образованием водородной связи между анионом кислоты и атомом азота. Прочность этой связи зависит от сродства к протону аниона кислоты и, естественно, будет увеличиваться для более слабых кислот. Одновременно с этим уменьшится способность ионной пары отдавать протон, что приводит к уменьшению каталитической активности кислоты. [c.48]


    К сожалению, для нужд флотации у нас вырабатывается еще недостаточное количество и имеется небольшой ассортимент поверхностно-активных веществ, а такие весьма важные вещества, как катионоактивные флотореагенты типа высших алифатических аминов, солей четвертичных аммониевых и пиридиновых оснований и ряд других, в крупном промышленном масштабе не вырабатывают. Высокоактивные синтетические пенообразователи дают возможность заменить применяющиеся в настоящее время такие неактивные и токсичные флотореагенты, как крезол, тяжелый ииридин и другие. Это повысит извлечение металла и позволит прекратить загрязнение водоемов. [c.19]

    II. Катионные ПАВ диссоциируют в воде с образованием развитого органического катиона — носителя поверхностной активности. К ним относятся алифатические и ароматические амины (первичные, вторичные и третичные). и их соли, четырехзамещенные аммониевые-основания, производные пиридина п др. [c.78]

    Высокую скорость сольволиза соединений 11.7 и 11.8 можно объяснить протеканием внутримолекулярного общего кислотного катализа под действием 5-гидроксигрупп, который способствует более эффективному общему основному катализу под действием внешнего триэтиламина (и других оснований типа пиридина и М-метилимидазола) (см. структуру 11.9). Внешний катализатор работает по механизму общего основного, а не нуклеофильного катализа, поскольку, во-первых, эфиры алифатических спиртов невосприимчивы к нуклеофильному катализу и, во-вторых, активность Ы-метилимидазола значительно ниже, чем триэтиламина (первый является более предпочтительным нуклеофильным катализатором а второй — общеосновным). Четырехкратное ускорение сольволиза соединения [c.291]

    Для очистки фенолов предлагался ряд известных приемов нейтрализация фенолов основаниями с экстракцией примесей из получаемых растворов органическими растворителями очистка за счет азеотропной отгонки с алифатическими спиртами [51—53] или водяным паром [54, 55]1 обработка кислотами и дистилляция в присутствии кислот [23, 56—58] очистка ионообменными смолами [23, 59] или активными глинами [60] введение стабилизирующих добавок аминокислот или сульфокислот [61—63]. Все эти приемы позволяют получить бесцветные стабильные продукты высокой чистоты. По мере возрастания требований потребителей к качеству фенольной продукции названные способы могут найти применение в промышленности. [c.102]

    Одно из важных наблюдений заключалось в том, что ароматические вещества сорбируются не всегда лучше, чем алифатические, так как сродство соединения к углю в значительной степени зависит от заместителей в ароматических кольцах и от функциональных групп в молекулах алифатических веществ. Полученные результаты подтверждают литературные сообщения, связывающие адсорбцию с растворимостью и диссоциацией кислот в искусственных смесях органических веществ. Вместе с тем при изучении адсорбции алифатических полимеров, обладающих свойствами кислот и оснований, получены новые данные в тех случаях, когда изменение pH вызывало образование ионизированных полимерных групп, адсорбция уменьшалась по крайней мере в 1000 раз. Эти данные позволяют установить параметры промышленных сточных вод, по которым может быть сделана оценка сродства водных растворов органических веществ к углю, а именно общее содержание углерода (ООУ), связанного азота, содержание ароматических соединений, кислотность (pH = 4—7) без карбонатной кислотности. В заключение можно отметить, что на адсорбцию органических веществ из водных растворов активным углем влияют многие факторы, некоторые из которых приведены ниже [15]. [c.97]

    В таблице 8.3 приведены вычисленные отношения содержаний органического азота (в мг/л) и ООУ (в мг/л) и соответствующие им адсорбционные емкости при равновесных концентрациях ООУ 10, 100, 1000 мг/л. На основании данных табл. 8.3 были построены графические зависимости (рис. 8.4), по которым можно оценить влияние отношения содержаний общего органического азота к ООУ на адсорбционную емкость активного угля в нейтральных, кислых и основных средах. По мере уменьшения этого отношения адсорбционная емкость угля увеличивается вследствие уменьшения влияния заряженных и незаряженных функциональных групп. Относительно неионизированных алифатических аминов в щелочных средах адсорбционная емкость угля на один порядок выше по сравнению с емкостью угля для ионизированных аминов в нейтральных средах. При построении графиков, представленных на рис. 8.4, влияние других функциональных групп не учитывалось. [c.102]

    По поведению на РКЭ нитроны, или изооксимы, напоминают оксимы. Зуман и Экснер [64] нашли, что ароматические нитроны восстанавливаются как в кислой, так и в щелочной среде в одну четырехэлектронную волну до вторичного амина с промежуточным образованием шиффова основания, а алифатические нитроны но-лярографически активны только в кислой среде. [c.54]


    Несомненно, что именно такой тип взаимодействия обусловливает уменьшение активности алифатических радикалов при переходе от СН3 к С4Н9, а также при увеличении разветвлен-иости углеводорода. Действительно, в этих случаях нет никаких оснований говорить о затягивании свободного электрона внутрь частицы с выделением анергии сопряжения. [c.51]

    ДЛЯ пайки алюминия и его сплавов при температуре <300 °С, пригодны только алифатические кислоты, их амиды, а также триэтаноламин, имеющий свойства основания. Среди алифатических кислот наиболее активны одноосновные кислоты стеариновая, элаидиновая, олеиновая, лауриновая, коприновая, капри-ловая, капроновая, валериановая, масляная, пропионовая, уксусная, муравьиная. Активность этих кислот повышается с увеличением их относительной молекулярной массы и температуры плавления. При взаимодействии их с оксидом АЬОз протекают следующие реакции  [c.152]

    По своему химическому характеру диспергенты делятся па зольные и беззольные. Первые содержат в своем составе металлы в виде солей нефтяных сульфокислот (сульфонаты кальция или бария) или нафтеновых кислот. К незольным диспергирующим присадкам относятся алифатические алкила-мипы, а также так называемые полярные полимеры, представляющие продукты совместной полимеризации двух (или трех) мономеров, из которых один — носитель активных свойств присадки и содержит полярную группу (азотистое основание), а другой — неполярное соединение, являющееся олеофилыюй частью присадки, обеспечивающей ее растворимость в топливе. Третий мономер, если он прпсутствует, не выполняет дополнительных функций и служит удлинителем цепи сополимера. [c.324]

    Литийнафталин и натрийнафталин [11] оказались активными агентами в реакции гидродимеризации изопрена в среде таких растворителей, как тетрагидрофуран, диглим нли алифатические амины. Хотя эта реакция, строго говоря, не является каталитической, она позволяет лучше понять катализируемую основаниями олигомеризацию ненасыщенных углеводородов с сопряженными двойными связями. [c.166]

    Норриш, как и ряд авторов до него, подчеркивает то обстоятельство, что феноменология холоднопламенного окисления одинакова для углеводородов, алифатических эфиров, альдегидов, кетонов, спиртов. Это дает основание предположить обш,ую причину возникновения холодных пламен у всех этих классов соединений. Такое заключение получает серьезное подтверждение в том, что ддя холодных пламен всех названных соединений характерен один и тот же спектр флуоресценции формальдегида. Тот же факт, что, с одной стороны, холодные пламена возникают при окислении альдегидов, а с другой стороны, альдегиды являются обш,ими промежуточными продуктами, возникаюш ими при окислении всех соединений, дающих холодные пламена,— заставляет искать причину холоднопламенного явления в реакциях, связанных с альдегидами. При этом, хотя холоднопламенное свечение обусловлено возбужденным формальдегидом, сам формальдегид при своем окислении не дает холодного пламени. Таким образом, не он и не его превращения, а реакции, связанные с высшими альдегидами, ответственны за возникновение холодных пламен. А так как эти пламена характерны для нижнетемпературного окисления, то, следовательно, высшие альдегиды, а не формальдегид являются активными промежуточными продуктами окисления в этой температурной области. [c.256]

    Анионоактивными (аионными) ПАВ называют вещества, содержащие в молекуле гидрофобную часть и одну или несколько полярных групп и диссоциирующие в водном растворе с образованием отрицательно заряженных длинноцепочечных органических ионов, определяющих их поверхностную активность. Гидрофобная часть обычно представлена предельными, непредельными алифатическими и алкилароматическими цепями. Гидрофильность молекулы обусловлена наличием функциональных групп -СОО(Н, Ме), S020(H, Ме), -50з(Н, Ме). Разнообразие свойств анионных ПАВ объясняется пространственным строением гидрофобной части и наличием промежуточных функциональных групп. Катион в анионных ПАВ может быть не только водородом или металлом, но и органическим основанием. Часто для этих целей применяют ди- и триэтаноламины. [c.10]

    При газохроматографическом разделении алифатических аминов на пористых ароматических сорбентах наблюдаются размывание заднего фронта и большая асимметрия пиков аминов. По мнению авторов [30], размывание обусловлено существованием двух типов активных центров на полимере кислотных центров, которые можно нейтрализовать обработкой основанием, и ионов металлов, которые дезактивируются добавлением нелетучего комплексообразователя, например полиаминов. Времена удерживания алифатических аминов зависят от их структуры, причем порядок элюирования аналогичен наблюдаемому в газожидкостном варианте хроматографии на неполярных жидких фазах. Разделение аминов на пористых полимерах, модифицированных 1—5% полиэтиленимина, осуществляется главным образом адсорбцией на неполярном полистироле наблюдается линейная зависимость между температурой кипения аминов и логарифмом времени удерживания первичных, вторичных и третичных аминов. Добавление полиэтиленимина дезактивирует активные центры. При нанесении больших количеств полиаминов на пористые полимеры разделение амииов осуществляется комбинацией газоадсорбционной и газо-жидкостной хроматографии [30]. [c.33]

    Конденсации с участием формальдегида. Реакция Маи и их а. По активности в качестве карбонильного компонента формальдегид существенно превосходит большинство алифатических альдегидов и кетонов. Поэтому, естественно, что при использовании в качестве катализаторов слабых оснований он легко реагирует со взятым в реакцию альдегидом или кетоном прежде, чем последний подвергнется самоконденсации. Получаемые таким образом монометилольные производные альдегидов и кетонов вступают в реакцию с формальдегидом еще легче, чем исходные карбонильные соединения, поэтому бывает трудно избежать полного замещения водородных атомов у а-углеродов (называемые обычно для краткости а-водородными атомами) на ме-тилольные группы. [c.166]

    При обсуждении реакций соединений, содержащих амино-группу, ароматические амины, алифатические амины, в том числе насыщенные гетероциклические соединения, амиды и четвертичные аммониевые соли, удобнее рассматривать по отдельности. Амины и амиды могут окисляться на аноде начальной стадией окисления является отщепление электрона от неподеленной электронной пары атома азота или от системы, с которой эти электроны сопряжены. Соответственно, четвертичные соединения, протонированные амины и амиды, а также соли, имеющие четыре связи углерод — азот, не окисляются. Некоторые ароматические амины активны в кислых растворах, поскольку они являются очень слабыми основаниями. Амины и амиды обычно не восстанавливаются, если они не содержат обширных. тт-электроннйх систем, способных принимать электроны. Однако четвертичные соединения обычно восстанавливаются при этом либо образуются нейтральные радикалы, либо происходит восстановление протонов до водорода. [c.242]

    Микробиологическая активность обнаружена у алифатических и ароматических производных гуанидина. В частности, в качестве фунгицида и акарицида нашел некоторое применение в сельском хозяйстве препарат додин. Он приготавливается на основе ацетата додецилгуанидина (59), который, представляет собой белое кристаллическое вещество, т. пл. 136 °С, ЛДбо 1000—2000 мг/кг. В щелочной среде это соединение выделяет свободное основание, которое менее стабильно. При кипячении в растворах щелочей и в кислотах разлагается. Получают по реакции додециламина с цианамидами в присутствии уксусной кислоты  [c.328]

    На основании многочисленных опубликованных данных можно сделать следующие выводы об инсектицидной активности органических соединений олова. Наиболее активны триал-кил- и трициклоалкилоловоацилаты. С увеличением радикалов, связанных с атомом олова, начиная с Се инсектицидная активность снижается, меньшей активностью обладают также первые представители алифатического ряда, содержащие 1—3 атома углерода в каждом углеводородном радикале. Ацильный остаток, связанный с оловом, оказывает менее существенное влияние на активность соединения. Наибольшую активность по отношению к растительноядным клещам проявляют производные трициклогексилолова. [c.388]

    Гидролитическая деструкция белков и синтетических полиамидов протекает по амидной (пептидной) связи и катализируется щелочами и кислотами. Для деструкции белков можно пользоваться некоторыми ферментами. Конечными продуктами реакции являются аминокислоты или дикарбоновые кислоты и диамины, которые при надобности могут быть опять применены для синтеза полимеров. У полиэфиров основания являются более активными катализаторами, чем кислоты в результате расщепления сложноэфирной связи образуются новые концевые группы ОН и СООН. Полиэфиры, полученные из гликолей и алифатических кислот, более устойчивы к гидролизу, чем полимеры, синтезированные из тех же двухатомных спиртов и ароматических кислот. [c.624]

    Наличие в целлюлозных волокнах бумаги активных гидроксильных групп обусловливает возможность химической модификации этого субстрата для различных целей и прежде всего для гидрофобизацпи. Существует множество различных способов гидрофобизацип бумаги и целлюлозных волокон, основанных на химическом взаимодействии соединений типа КЗ (Х ) и КК З (Ха) с гидроксильными группами целлюлозы (К, В/ — алифатические радикалы, X — хлор, водород, метоксигрунпа и другие легко гидролизуемые группы) [132—135]. В качестве примера можно привести метод так называемой газовой проклейки, заключающейся в обработке готового бумажного листа парами метилтрихлорсилана. Выделяющаяся при этом соляная кислота нейтрализуется парами аммиака  [c.261]

    Миристиновая кислота при 120° С в присутствии Мп-катализатора окисляется с несколько меньшей скоростью, чем к-тетрадекан, имеющий то же число метиленовых групп (рис. 1). Такой результат можно было ожидать на основе предположения о дезактивации части С—Н-связей в молекуле кислоты по отношению к реакции с алифатическим КО - радикалом вследствие его электрофильности [6]. Однако небольшое различие в скоростях превращения углеводорода и кислоты дает основание предполагать, что при взаимодействии карбоксильной группы миристиповой кислоты с ведущими окислительную цепь радикалами, если таковое имеет место, образуется радикал, но активности не отличающийся от исходного. [c.163]

    Многочисленные исследования были посвящены изучению распределения различных видов сернистых соединений в нефтях. Преобладают сернистые соединения, не вступающие в реакции при рассмотренной схеме анализа (остаточная сера) о соединениях этой группы известно очень мало — установлено лишь, что под действием нагрева они превращаются в более активные сернистые соединения. Присутствуют также меркаптаны, алифатические и циклические сульфиды (сульфиды I), ароматические сульфиды и тиофены (сульфиды II). Вследствие разнообразия присутствующих в нефтях сернистых соединений приходится применять различные методы и схемы нефтепереработки. Сводные данные о содержании серы в нефтях в виде различных сернистых соединений приведены в табл. 4. Некоторые из нефтей на основании этой работы отнесены к группам сульфидных и меркаитан-сульфидных нефтей. Типичным примером сульфидной нефти может служить нефть месторождения Велма, Оклахома. Типичными меркаптановыми нефтями [c.263]

    Превращение глицеринового альдегида в метилглиоксаль. Глицериновый альдегид на 55% превращается ароматическими и некоторыми алифатическими аминами в метилглиоксаль с отщеплением воды [147, 148]. Что происходит с остальной частью глицеринового альдегида, еще не исследовано. Поскольку третичные основания неактивны, вероятно, требуется временное связывание аминогруппы альдегидной группой глицеринового альдегида. Следует отметить активность п-амипобензойной кислоты, которая, как известно, является ростовым веществом бактерий. [c.59]

    В 1863 г. Липскоумб [1] впервые предложил применять активный уголь для очистки питьевой воды. Первое значительное исследование активного угля касалось влияния молекулярной структуры и pH раствора на эффективность адсорбция. В 1929 г. Фелпс и Петерс (Англия) [2] изучили зависимость адсорбции низших жирных кислот и простых алифатических аминов от pH раствора и степени диссоциации кислот и оснований. Оказалось, что адсорбируются только недиссоциированные молекулы и что адсорбция органических веществ в водных растворах аналогична адсорбции газов. В начале 40-х годов Челдин и Уиль-ямс сделали два важных наблюдения 1) адсорбция изученных ими 33 аминокислот, витаминов и родственных соединений активным углем (Dar o 6-60) соответствует изотермам адсорбции Фрейндлиха 2) наличие и положение полярных групп и от сутствие ароматических ядер определяет возможность адсорбции органических веществ активным углем из воды. Задача этих исследователей состояла в выявлении возможности использования угля в аналитических целях. Однако вследствие высокой концентрации изучаемых органических веществ сделанные выводы нуждаются в уточнении применительно к их адсорбции из реальных водоемов или промышленных сточных вод. [c.95]


Смотреть страницы где упоминается термин Основания, активность алифатические: [c.154]    [c.460]    [c.420]    [c.180]    [c.27]    [c.263]    [c.259]    [c.9]    [c.10]    [c.20]    [c.276]    [c.130]    [c.82]    [c.324]    [c.44]   
История химии (1975) -- [ c.353 ]

История химии (1966) -- [ c.342 ]




ПОИСК





Смотрите так же термины и статьи:

Основания алифатические



© 2025 chem21.info Реклама на сайте