Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Медь, определение колориметрическое

    Реакция тиурама с гидрохиноном и ацетатом меди и колориметрическое определение по образованию диалкилдитиокарбамата меди, окрашенного в желтовато-коричневый цвет. [c.128]

    Определение меди осуществляют колориметрическим методом с диэтилдитио- [c.310]

    Выделение следов металлов из органических сред изучено сравнительно мало, несмотря на то, что ионообменное разделение катионов могло бы существенно упростить многие определения. В основном это связано с низкой скоростью ионного обмена в органических растворителях в типичных неполярных средах ионный обмен вообще не происходит (гл. 7. 5). При анализе растворов в неполярных жидкостях пробу следует разбавить более полярным растворителем. В качестве примера приведем определение меди в минеральном масле [9]. Пробу масла (10 мл) смешивают с равным объемом 2 пропанола. Раствор пропускают через колонку (10 X 300 мм), заполненную сульфокатионитом в Н-форме и предварительно промытую 2-пропанолом. Затем колонку промывают 70 мл 2-пропанола и 60 мл воды. Медь элюируют 60 мл 10%-ной серной кислоты ш 20 мл воды. В элюате медь определяют колориметрически с диэтилдитиокарбаматом. Если исследуемое масло не смешивается с пропанолом, следует добавить немного бензола для обеспечения полной смешиваемости. Описанная методика позволяет с достаточной точностью определять медь при содержаниях 10 5% и меньше. Для выполнения анализа требуется около 2 ч. [c.285]


    В горных породах и в некоторых рудах медь встречается в небольших количествах (<1 й). Для определения малых количеств меди применяют колориметрические илй полярографический методы. . [c.227]

    Примечание Для контроля полноты выделения меди в раствор можно снова погрузить чистые электроды и оставить при 80—85°С еще 10— 15 мин. Если по истечении этого времени катод останется чистым, то выделение меди произошло полное, если же на катоде выделится медь, то продолжают электролиз еще 10—15 мин., затем электроды вынимают, катод промывают, высушивают, взвешивают, как описано выше, и привес на катоде прибавляют к привесу, полученному при первом выделении. В том случае, когда привес меньше 2 мг, или осадок не имеет характерного цвета меди, производят колориметрическое определение последней. Для этого осадок на катоде растворяют в 10 мл азотной кислоты, разбавленной 1 2. Раствор упаривают досуха на водяной бане, остаток растворяют в 5 мл горячей воды и переносят раствор в пробирку для колориметрирования емкостью 30 мл. По охлаждении прибавляют 5 мл аммиака, раствор разбавляют до 20 мл и перемешивают. В другую такую же пробирку наливают 12 мл воды 5 мл аммиака, а затем из микробюретки типовой раствор меди до получения окраски, одинаковой по интенсивности с окраской испытуемого раствора. Разбавляют раствор длч сравнения до 20 мл и, если нужно, прибавляют еще несколько капель типового раствора меди. Количество меди, найденное при колориметрическом определении, прибавляют к количеству меди, найденному при электролитическом выделении. [c.62]

    Предложено также отделять медь от других элементов, мешающих ее определению, из раствора золы электролизом или осаждением в виде сульфида [33]. Далее медь определяют колориметрически с помощью диэтилдитиокарбамината. [c.96]

    Бор может быть определен колориметрически в количествах меньше 0,5—1,0 у [412]. Небольшие количества меди в воде (от О до 15 на миллион) с достаточной точностью могут быть определены в виде Цветного комплекса с дитиооксамидом [466]. Малоновая кислота, прибавляемая как буфер, одновременно связывает посторонние ионы. Другой метод определения меди [405] основан [c.209]

    Кафедры аналитической химии многих вузов, по просьбе авторов, сообщили свои пожелания по указанным вопросам. Общее мнение сводится к тому, что в учебнике должны найти отражение современные направления развития аналитической химии. Многие кафедры в некоторой степени разрешают на практике трудную проблему модернизации преподавания общего курса количественного анализа без существенного увеличения объема курса. В ряде вузов дается характеристика не только давно известных и хорошо зарекомендовавших себя методов, как колориметрия, полярография и др., но и сравнительно новых методов, как комплексонометрия, кулонометрия, кинетические методы, высокочастотное титрование, радиохимические методы и др. Во многих вузах введены задачи по неводному титрованию, потенциометрическому определению ванадия, колориметрическому определению меди, железа, титана. [c.8]


    Кроме весового анализа, к группе методов, основанных на определении количества продукта реакции, относятся некоторые другие, наиример колориметрический анализ. При колориметрическом анализе определяемый компонент переводится в окрашенное соединение, после чего тем или другим способом измеряется количество окрашенного продукта реакции. Метод измерения основан, конечно, на другом принципе и связан с интенсивностью окраски раствора или его цветом. Тем не менее основные вопросы методики химического анализа являются общими для всей рассматриваемой группы методов. При колориметрическом определении главное внимание также уделяется возможно более полному переведению определяемого компонента в окрашенный продукт реакции. Так, например, при колориметрическом определении меди в виде синего аммиачного комплекса необходимо практически полностью связать медь в тетраммин [Си(МНз) ". Особенно важно при этом определении (как и при большинстве других методов колориметрического анализа) создать определенную концентрацию водородных ионов известно, что аммиачный комплекс [c.23]

    При колориметрическом определении (как и в других методах первой группы — см. выше) важно отсутствие других компонентов, которые в данных условиях образуют продукт реакции, обладающий аналогичными физическими свойствами. Так, при колориметрическом определении меди в виде аммиачного комплекса недопустимо присутствие никеля. Наоборот, присутствие веществ, хотя и реагирующих с данным реактивом, но не дающих продуктов, аналогичных по физическим свойствам, не мешает определению (подобно другим методам этой группы и в отличие от методов следующей группы). Например, при введении в исследуемый раствор достаточного избытка аммиака можно колориметрически определить медь в присутствии кадмия, цинка и т. п. [c.24]

    Галогенидные и роданидные комплексы. Колориметрическое определение висмута основано на переведении иона висмута в комплексную висмут-йодистоводородную кислоту, окрашенную в желтый цвет. Аналогичное соединение образует сурьма. Известны также окрашенные галогенидные комплексы других металлов (железа, меди, кобальта и т. д.). Очень хорошо известны и часто применяются в колориметрии роданидные комплексы. Роданид-ионы образуют в кислой среде окрашенные комплексы с ионами железа (И1), кобальта (И), молибдена (V), вольфрама (V), ниобия (V), висмута (И1) и др. Все эти комплексы характеризуются достаточно интенсивной окраской. [c.213]

    Лучшие результаты колориметрического определения получаются при использовании ряда органических реактивов, из которых наибольшее применение имеет дитизон. Этот реактив образует окрашенные соединения не только с ионами свинца, но реагирует также с ионами многих других металлов, например ртути, серебра, меди, цинка, кадмия и т. д. Однако с различными ионами дитизон реагирует при разных условиях, в частности, большое значение имеет величина pH среды. При подборе соответствующей кислотности раствора можно определить свинец в присутствии некоторых из перечисленных ионов другие необходимо предварительно отделить. [c.260]

    Определение соотношения количеств аминокислот основано на измерении оптической плотности растворов медного производного, полученных при обработке отдельных участков электрофореграмм спиртовым раствором сульфата меди. Измерения следует проводить в достаточно разбавленных растворах, чтобы соблюдалась линейная зависимость между содержанием аминокислоты и оптической плотностью раствора. Оптимальные для колориметрических определений концентрации аминокислоты находятся в пределах 0,05— [c.149]

    Комплексон использован для гравиметрического, кондукто-метрического и колориметрического определения меди, лантана и других металлов [427]. [c.230]

    Эту реакцию уже в течение многих лет применяют в колориметрических определениях небольших количеств ацетилена [1—4 Реагенты, содержащие одновалентную медь, обычно получают путем восстановления аммиачного раствора меди(II) гидроксиламином. Для замедления процесса образования хлопьевидного осадка ацетиленида меди(1) в реакционный раствор обычно добавляют стабилизатор. Встречающиеся при этом трудности связаны с нестабильностью реагента, выпадением осадка металлической меди, образующейся при дальнейшем восстановлении, и образованием хлопьевидного осадка ацетиленида меди(1). [c.256]

    Применение тиомочевины как маскирующего реактива. Тиомочевина применяется для восстановления и связывания меди при колориметрическом определении висмута в меди [95], а также для связывания серебра, ртути, висмута, кадмия и сурьмы, которые образуют растворимые комплексы. Иногда тиомочевину применяют для связывания меди пря колориметрическом определении висмута в виде иодидного комплекса. Последний значительно прочнее тиомочевниного комплекса висмута. [c.328]


    Из новых работ отметим работу Сендэла и Перлиха но определению никеля и кобальта в силикатных породах. Определение никеля основано на осаждении его диметилглиоксимом из аммиачно-тартратного раствора анализируемой породы, экстрагировании полученного соединения хлороформом, взбалтывании хлороформного слоя с соляной кислотой для переведения никеля в воДную фазу и конечном его определении колориметрическим методом с диметилглиоксимом (см. стр. 468, сноска 2) при концентрации его, не превышающей 6 мкг в 1 мл. Этим методом можно обнаружить 0,0001% никеля в 0,5 г пробы медь, кобальт, марганец, хром и ванадий в количествах, в каких эти элементы встречаются в большинстве изверженных горных пород, определению никеля не мешают. [c.1034]

    Реакция свободной серы с медью и ртутью, наряду с другими методами, используется не только для качественного открытия, но и для количественного ее определения. Аналогичные методы применяются в резиновой промышленности при определении свободной серы в вулканизированном каучуке [294]. Так, Гарнер и Эванс [274] кипятили анализируемые образцы с порошком медной бронзы, образовавшийся сульфид меди окисляли в сульфат и заканчивали определение весовым методом. Диттрих [295] пользовался порошком меди и заканчивал определение колориметрически, после прибавления избытка соли меди. Левин и Стер [296] разлагали сульфид меди, осажденный на сетке, кислотой и выделившийся сероводород определяли иодометрически (сравни [294]). Некоторые авторы [275, 278] рекомендуют пользоваться эталонными шкалами в виде набора медных полосок, предварительно прокорродированных в растворах с известным содержанием серы. [c.32]

    Сущность работы. Осадок карбоната кальция, выпадающий в результате прибавления в исследуемый раствор сначала хлорида кальция, а затем карбоната натрия, захватывает из этого раствора ряд катионов, в том числе медь, свиней, серебро, цинк и др., и некоторые анионы, например, УОз, МоОГ, N 03. Этим и пользуются для концентрирования соответствующих элементов. Мельчайшие частицы карбоната кальция обладают огромной поверхностью захвата, и поэтому извлечение микроэлементов достигается быстрее, чем при пользовании другими соосадителями. Осадок карбонатов легко растворяется в кислотах. Присутствие кальция обычно не мешает определению других элементов. Для того чтобы использовать минимальное количество коллектора—карбоната кальция, осаждение проводят в два приема. Сначала в раствор, содержащий хлорид кальция, прибавляют половину того количества карбоната натрия, которое необходимо для полного осаждения карбоната кальция. Затем добавляют остальное количество осадителя (Na.2 0з), при избытке которого образуется бь Сгро оседающий осадок, и все количество коллектора (СаСОд) выпадает на дно стакана. В осадке определяют содержание микроэлементов. Медь определяют колориметрически в виде диэтилдитиокар-бамииата (стр. 323, 326). [c.338]

    Количество В в колориметрическом цилиндре по возможности не должно превышать 1,25 мг. Незначительные количества Си (примерно до 3 мг) не мешают при ббльшем содержании меди определению должно предшествовать осаждение углекислым аммонием. Осадок В растворяют в разбавленной азотной кислоте, доводят, в зависимости от содержания В1, до 100-—1000 мл и отмеренную часть этого раствора анализируют колориметрическим путем. [c.403]

    Осадок сернистых металлов промывают и, растворив в азотной кислоте (1 1), выпаривают с серной кислотой. Свинец обычным способом отфильтровывают и взвешивают в виде PbSO .Медь и кадмий осаждают вместе счастью цинка сероводородом в виде сернистых металлов. Их отфильтровывают, хорошо промывают, обливают на фильтре теплым раствором сернистого натрия, после чего оставшиеся на фильтре сульфиды обрабатывают разбавленной серной кислотой (1 10). При этом сернистые кадмий и цинк переходят в раствор [а сернистая медь остается на фильтре]. При не очень ответственных анализах фильтрат после обработки сернистым натрием можно употребить для определения сурьмы и олова. Лучше,, однако, воспользоваться для этого отдельной навеской, применяя приводимый ниже метод Blumentha Гя. Оставшийся на фильтре осадок растворяют вместе с фильтром в смеси азотной и серной кислот, после чего определяют в этом растворе медь либо колориметрически (см. т. П, ч. 2 вып. 1, стр. 371), либо, если содержание меди велико,—электролитически (см. там же, стр. 57). В сернокислом фильтрате, содержащем кадмий, этот последний отделяют от цинка двукратным осаждением на холоду из раствора,, содержащего 8% по объему серной кислоты определяется кадмий, как это описано при Кадмии (см. т. II, ч. 2, вып. 1, стр. 286), в виде сернокислого кадмия. Фильтрат от сероводородного осадка кипятят, для удаления сероводорода, окисляют бромом, охлаждают, пересыщают аммиаком и вновь нагревают до кипения. Выделившуюся гидроокись железа отфильтровывают, растворяют в соляной кислоте и, восстановив хлористым оловом, титруют марганцовокислым калием. Если железо хотят определить весовым путем в виде окиси, надо растворить Fe(OH)g в соляной кислоте, вторично осадить аммиаком, отфильтровать и прокалить осадок. Однако, если в материале присутствует алюминий, весовой метод неприменим, и железо, выделенное осаждением в виде гидроокиси, следу ет оттитровать [КМпО ]. [c.584]

    Метод определения остаточных количеств манеба у нас разработан М. А. Клисенко и А. Ш. Векштейн (ВНИИГИНТОКС), принцип которого основан на экстракции после разложения продуктов соляной кислотой, очистке выделяющегося при этом сероуглерода, абсорбции его раствором диэтиламина в спирте и реакции продукта с ацетатом меди. Определение проводят колориметрическим методом на ФЭК-М. Данный метод пригоден для определения остатков полимарцина, поликарбацина, тиазона, ТМТД, цинеба, эдитона. [c.139]

    Метод определения ксантогенатов предложен Ю. Ю. Лурье и 3. В. Николаевой [И] и основан на образовании окрашенного раствора ксантогената никеля, который экстрагируется четыреххлористым углеродом или толуолом и окрашивает слой растворителя в желто-зеленый цвет при соблюдении определенной реакции среды (pH в пределах 4,8—5,2), что достигается добавкой ацетатного буферного раствора. Колориметрическое определение проводится путем сравнения со стандартной шкалой визуально или с помощью фотоколориметра с синими светофильтрами. Выявлено, что в присутствии меди получаются результаты, пониженные прямо пропорционально количеству меди (1 мг меди соответствует 5,9 мг ксантогената). Поэтому, зная содержание меди в испытуемой пробе, вводят соответствующую поправку. Так же поступают в присутствии комплексных цианидов меди. Определению не мешают тиофос-фаты даже в количестве 1 г/л, цинк, простые цианиды (в 40-кратном избытке), комплексные цианиды цинка. Присутствие цианидов в очень большом количестве может связать в комплекс добавляемый сульфат никеля в этих случаях количество прибавленной соли никеля увеличивают. Свинец образует с ксантогена-том бесцветное соединение и в его присутствии результаты определения получаются пониженные. Чтобы избежать этого, свинец предварительно связывают добавлением небольшого количества карбоната кальция. После добавления карбоната кальция жидкость фильтруют и в фильтрате определяют ксантогенат. Результа- [c.281]

    Определение активного хлора проводят иодометрическим методом с соблюдением определенных условий по pH среды в присутствии нитритов. Удобнее проводить это определение колориметрически по образованию желтого окрашивания с ортотолиди-ном. Возможность применения устойчивой шкалы имитаторов, состоящих из растворов бихромата калия и сернокислой меди, существенно облегчает выполнение визуального определения этим методом. [c.246]

    Для снижения кислотности, а также разложения окислов азота к азотнокислому раствору меди прибавляли 10 г двузамещенного фосфата натрия н Ъ мл раствора, содержащего 300 г мочевины, 3 г азотнокислого свинца и небольшое количество азотной кислоты в 1 л воды. Затем добавляли 3 г иодистого калия и оттитровывали выделившийся иод 0,1 н. раствором гипосульфита. При малых содержаниях ацетилена в иле производили определение колориметрически. [c.298]

    Разработаны схемы анализа группового состава сернистых соединений всех нефтепродуктов, включающие колориметрические методы и амперометрическое прямое титрование [29]. Колориметрически определяют содержание сероводорода, меркаптанов и дисульфидов. Метод основан на экстракции сероводорода кислым раствором хлорной меди, а меркаптанов — аммиачным раствором углекислой меди с последующей обработкой вытяжки ксрцентрированным водным раствором аммиака и сульфита натрия (для нредотвращения каталитического влияния ионов меди). Вытяжки фильтруют и колориметри-руют при длине волны 625 нм. Содержание дисульфидов (после их восстановления) определяют по увеличению количества меркаптанов. Сходимость колориметрических определений достаточно высока. [c.92]

    Специально для колориметрического анализа переходных металлов синтезирован ряд специфических органических комп-лекЬообразующих реагентов. Общеизвестным реагентом на никель является диметилглиоксим. Для определения меди оказался пригоден оксалил-Ы,Н-бис(Ы -циклогексилиденгидразид). Другими наиболее часто применяемыми реагентами являются [c.366]

    БИУРЕТОВАЯ РЕАКЦИЯ — цветная реакция, которую дают с солями меди в щелочной среде биурет H2N ONH ONH2, амиды и имиды кислот, полипептиды, белки и другие соединения, содержащие группировки —СО—NH—, Б. р. — цветная реакция на белок — лежит в основе его количественного колориметрического определения. Если к щелочному раствору белка прибавить раствор uSO , появляется фиолетовое окрашивание. Чувствитель-1юсть Б. р. невысока. [c.45]

    Комплексы, обладающие невысокой растворимостью в определенных растворителях, могут быть использованы в аналитических целях. Интенсивно окрашенные вещества находят применение в колориметрических определениях. Более высокий молекулярный вес комплекса по сравнению с молекулярным весом исходной простой соли способствует более точному весовому определению элемента. Часто координационные соединения применяют в волюметрических методах для маскировки мешающих анализу ионов (например, в присутствии фторид-ионов воз-М0Ж1Н0 определение меди, находящейся в растворе в смеси с ионами трехвалентного железа), в качестве титрующих агентов [c.15]

    Например, примесь кислорода в азоте и водороде можно определить колориметрическим методом ло реакции с солями меди (1) при в1Г0 содержании 1 10 % объдан. (при объеме пробы 0,5 л). Однако колориметрические методы не при-. годны для определевия примеси кислорода в, хлоре, сероводо- роде, цианистом водороде, двуокиси углерод и в некоторых других газах. Определение примеси окиси и двуокиси углерода невозможно проводить в присутствии всех газов с кислотными свойствами. Определению примеси лор мешают газы, обла-. дающие окислительными или восстановительными свойствами двуокись азота, озон, двуокись серы, сероводород и другие. Подобные случаи довольно часты и они вынуждают экспериментатора для оценки чистоты газов применять большей частью физические методы. [c.79]

    Для количественного определения может быть использована биурето-вая реакция, хотя в случае пептидов также наблюдается положительный результат. Реакция основана на образовании фиолетового медного комплекса, интенсивность окраски которого (540 — 560 нм) может быть измерена колориметрически. Гораздо более высокую чувствительность имеет метод Лаури [62], в котором при участии остатков Тгр, Туг и Су8 образуется комплекс белка с фосфомолибденовой кислотой и медью. Это наиболее часто применяемый колориметрический метод определения малых количеств белка. Образующийся голубой комплекс (максимум абсорбции при 750 нм) достаточно устойчив для количественного определения. В качестве стандартного белка служит сывороточный альбумин. Предел обнаруживания 5 — 10 мкг/мгл раствора. Определению по методу Лаури мешают трис- [c.355]

    В. М. Севергин на рубеже XVIII и ХЕХ столетий проводил анализы, которые мы сегодня назвали бы колориметрическими. В 1846 г. описан способ определения меди по синей окраске ее комплекса с аммиаком, а в 1852 г. — метод определения железа по окраске роданидного комплекса. Первый колориметр Дюбоска появился в 1870 г. [c.18]

    Несколько исследователей [11 —13] в основу определения диметиламина в различных смесях положили колориметрический анализ комплекса дитиокарбамата меди. Условия для общего метода, основанного на этой реакции, были разработаны Умбрейтом [14]. [c.276]


Смотреть страницы где упоминается термин Медь, определение колориметрическое: [c.288]    [c.399]    [c.538]    [c.399]    [c.638]    [c.403]    [c.105]    [c.236]    [c.24]   
Основы аналитической химии Книга 2 (1961) -- [ c.492 ]

Количественный микрохимический анализ минералов и руд (1961) -- [ c.249 ]




ПОИСК





Смотрите так же термины и статьи:

Колориметрическое определение

Медь, определение

Определение меди колориметрически



© 2025 chem21.info Реклама на сайте