Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Распределение вещества в системе вода органический растворитель

    Коэффициент распределения зависит от химического строения растворенного вещества и обоих растворителей (первоначального и вторичного) и является результатом действия тех же межмолекулярных сил, которые влияют на растворимость. Растворимость в одной жидкости и распределение растворенного вещества между двумя несмешивающимися жидкостями могут совершенно различаться по своему характеру. В системах вода—органическая жидкость— растворенное вещество замечено влияние разных групп, содержащихся в молекуле растворенного вещества, на коэффициент распределения (отношение концентрации в органической фазе к концентрации в воде). Эти группы по своему характеру могут быть гидрофильные, облегчающие растворимость в воде, и гидрофобные, способствующие растворимости в органической жидкости. К числу первых относятся группы ОН, 1 Нд, СООН, ко вторым—группы со связью С—Н, продолжающие углеродную цепь. Эти явления качественно [c.24]


    Подвижная фаза. Бумажную хроматографию можно рассматривать как метод распределительной хроматографии. Об этом свидетельствует часто наблюдаемое на практике совпадение коэффициентов распределения, измеряемых прямым путем, с рассчитанными на основе значений (разд. 7.3.1.2 и [И]). При выборе подвижной фазы исходят из тех же соображений, что и в методе распределительной хроматографии, т. е. используют миксотропные ряды растворителей. Стационарная фаза в бумажной хроматографии вполне определенная — вода. Вторая фаза должна или не смешиваться с водой, или смешиваться очень ограниченно. В качестве подвижной фазы применяют фенол, крезол, -бутанол и др. Эти растворители предварительно насыщают водой. Для обеспечения насыщения целлюлозно-водной фазы подвижной фазой бумагу перед проведением разделения следует обработать парами растворителя, подвесив ее над сосудом с растворителем. Для достижения равновесия между стационарной и подвижной фазой в сосуд помещают ванну с водой или оборачивают стенки сосуда влажной фильтровальной бумагой. Выбор несмешивающихся с водой растворителей (необходимых для проведения разделения гидрофильных веществ) очень невелик, поэтому в качестве подвижной фазы применяют растворители, смешивающиеся с водой, даже воду или растворы электролитов, тем самым расширяя область применения бумажной хроматографии. В основе разделения лежат явления адсорбции. По аналогии с хроматограммами, полученными методом обращенных фаз, механизм распределения в данном случае следующий распределение происходит между стационарной фазой (целлюлоза — вода) и подвижной фазой (вода или соответственно гомогенная система вода — органический растворитель). [c.356]

    Концентрационные зависимости коэффициентов распределения некоторых соединений в системе органический растворитель — вода приведены на рпс, 5.3. В области средних и высоких концентраций раснределение вещества между фазами очень часто не подчиняется законам распределения Нернста или Шилова. Однако концентрационную зависимость коэффициентов распределения, как правило, удается выразить уравнениями не выше второго или третьего порядка. [c.88]

    Экстракцию гликозидов из растений, учитывая их растворимость, обычно осуществляют органическими растворителями — спиртами, ацетоном, этилацетатом, чаще с добавками в них воды. Очистку от хлорофиллов и смол проводят, как правило, адсорбцией их на оксиде алюминия из водно-спиртовых растворов. Выделение гликозидов в индивидуальном состоянии основано, главным образом, на хроматографии или противоточном распределении веществ в специально подобранных системах растворителей. [c.20]


    Конечно, даже в таких системах будут наблюдаться различия в поведении экстрагируемых веществ, обусловленные различием во взаимодействии растворителя с растворенным веществом. Хорошо изучены неидеальные растворы, которые образует, например, йод с различными органическими растворителями, что обнаруживается по изменению спектров поглощения растворенного вещества. Свойства подобных растворов изучали Гильдебранд и Скотт [134]. В настоящее время имеется много данных об образовании комплексных соединений между йодом и органическими растворителями за счет разного рода кислотно-основных взаимодействий и взаимодействий на основе переноса заряда [58, 124, 162]. Определена теплота ком-плексообразования [121]. Существование подобных взаимодействий не меняет основного предположения о том, что константа распределения есть отношение растворимости в каждой фазе, поскольку влияние оказывается только на растворимость в органической фазе. Однако это означает, что константа распределения йода между водой и органическим растворителем до некоторой степени все же зависит от химической природы растворителя.  [c.14]

    Ассоциация молекул в водной фазе вызывает уменьшение коэффициента распределения при увеличении концентрации металла, ассоциация же в органической фазе—увеличение этого коэффициента. Комплексы металла, имеющего хорошо ассоциирующие частицы, отличаются очень слабой растворимостью в воде, большой—в неполярных растворителях (бензол, четыреххлористый углерод, хлороформ и метилизобутилкетон) и слабой в полярных (спирты, эфиры). Металлы со слабо ассоциированными молекулами особенно хорошо экстрагируются кетонами, простыми и сложными эфирами и другими растворителями типа доноров при добавлении кислот. В таких системах коэффициент распределения увеличивается с повышением количества свободной кислоты, а в некоторых системах имеет максимум при известных ее концентрациях, так как при низких концентрациях из частиц кислоты и экстрагируемого вещества образуется мало комплексов, а при высоких концентрациях количество комплексов сильно увеличивается. Нов некоторых системах при определенной кислотности одновременно начинает расти взаимная растворимость фаз, что может ухудшить коэффициент распределения. [c.425]

    В литературе описаны случаи применения смешанных расслаивающихся растворителей для целей идентификации различных классов органических веществ [21, Особенностью этого метода является взаимная растворимость растворителей друг в друге в распределяющей системе. В зависимости от состава слоев меняются их донорно-акцепторные свойства, которые влияют на константу распределения. Константы распределения вещества между смесью двух растворителей и водой иногда представляют собой аддитивную величину, вычисляемую следующим образом [c.93]

    Распределительная хроматография. Этот метод разделения основан на распределении вещества между более полярной стационарной фазой (обычно водой), находящейся на поверхности адсорбента, и менее полярной (органической) подвижной фазой, содержащей смесь разделяемых веществ. Основные принципы разделения и выбора системы растворителей такие же, как в методе противоточного распределения (см. стр. 24). Обычные адсорбенты — силикагель, кизельгур, крахмал и целлюлоза. [c.19]

    Массонеренос органических соединений из воды в органический растворитель можно рассматривать как процесс, обратный процессу растворения в воде. Поэтому, если не учитывать различия между самим распределяющимся веществом и его раствором в органическом растворителе, то уменьшение свободной энергии системы при распределении органических соединений почти полностью обусловлено повышением энтропии системы. Этот вывод должен быть справедливым и для переноса из водной фазы в органическую комплексов ионов металлов с гидрофобными лигандами. [c.21]

    При соприкосновении водного раствора галоида с органическим растворителем (не смешивающимся с водой) галоид распределяется между ним и водой в строго определенных отношениях. Если взять, например, бром и сероуглерод (СЗг), то отношение концентрации брома в сероуглеродной фазе к концентрации его в водной при различных общих количествах растворенного брома остается постоянным (и равным примерно 80). В этом постоянстве отношения концентраций (точнее — отношения активностей) распределяемого между двумя несмешивающимися растворителями вещества заключается так называемый закон распределения. Найденное отношение концентраций (в данном примере 80) называется коэффициентом распределения. Величина его (при постоянной температуре) характерна для данной системы растворитель А — распределяемое вещество — растворитель Б. Распределение имеет большое техническое значение, так как часто позволяет избирательно извлекать то или иное вещество из раствора смеси многих веществ. [c.187]


    Предлагается использовать для целей концентрирования следовых количеств органических соединений при их определении в воде экстракционную хроматографию — модифицированный динамический способ распределения в системе жидкость—жидкость, в котором органический растворитель используется в виде гранулированной фазы. В качестве носителя органического растворителя используют сополимеры стирола с дивинилбензолом сетчатой структуры. Такие сополимеры, являющиеся полупродуктами при синтезе ионитов, нерастворимы в органических растворителях (хлороформ, бензол, дихлорэтан, толуол, хлористый метилен), но способны набухать в них. Ранее подобные сополимеры были использованы в качестве гидрофобных носителей и для выделения природных веществ из растительных экстрактов [1,2]. [c.169]

    Распределительная хроматография стрептомицина представляет значительные трудности вследствие резко выраженной гидрофильности этого вещества. Коэффициент распределения в системе органический растворитель — вода очень мал. [c.171]

    Задание. Рассчитать коэффициент распределения заданного ПАВ в системе органический растворитель — вода (вещества те же, что и в разд. 3.3.1). [c.182]

    Как правило, они являются стабильными соединениями, которые медленно разлагаются на свету или в водных растворах кислот. Физические свойства N-нитрозаминов зависят от природы замещакющх групп. Некоторые подобно К-нитрозодиметиламину представляют собой маслянистые жидкости, хорошо растворяющиеся в органических растворителях, другие, например Н-нитрозодифениламин, - твердые вещества, практически не растворимые в воде. Значительно различаются и коэффшшен-ты распределения этих веществ в системе липид/вода. Максимумы УФ-поглощения нитрозаминов в воде лежат в области 230-240 и 330- 350 нм. [c.91]

    Растворимость органических перекисей в петролейном эфире позволяет отличать и отделять их от перекиси водорода, практически совершенно нерастворимой в этом растворителе. Измерены коэффициенты распределения многих перекисей в системах вода — эфир и вода — петролейный эфир 3. Они очень сильно различаются в зависимости от принадлежности данного вещества к определенному классу перекисных соединений и от величины органических остатков. Поэтому в определенных условиях различие коэффициентов распределения может быть использовано также для разделения различных перекисей друг от друга. [c.578]

    Если в смесь, состоящую из двух несмешивающихся жидкостей, внести некоторое количество какого-либо вещества, растворимого в обеих жидкостях, то равновесные концентрации этого вещества (в данном случае йода) будут неравны. При этом оказывается, что вещество распределяется между двумя растворителями в строго определенном соотношении, называемом коэффициентом распределения. Таким образом, система, состоящая из воды или водного раствора йодида калия, органического растворителя и йода, при данной температуре будет характеризоваться строго постоянным отношением концентраций йода в органическом растворителе и в воде (водном растворе).  [c.188]

    В этих замечаниях, а также в таблицах и в тексте порядок компонентов следующий 1) вода или другой полярный растворитель, 2) гомогенизирующий компонент (тот, который распределен между несмешивающимися компонентами) и, наконец, 3) углеводород или другой менее полярный компонент. Однако, когда для высаливания органических соединений используется какая-либо соль, вода является гомогенизирующим компонентом. Как и в тексте, тире указывает на совместное присутствие различных основных компонентов. Дополнительные компоненты отделяются запятыми. Они могут быть взаимоисключающими, входящими в различные системы такие компоненты располагаются обычно по алфавиту. Иногда дополнительные компоненты могут присутствовать одновременно, образуя составной компонент, особенно в системах, включающих радиоактивные или редкоземельные вещества. В некоторых из последних систем содержится так много веществ, что желание расставить более точно может привести к путанице поэтому обзор этих систем не является исчерпывающим. Отдельные дополнительные системы можно найти в указателе Журнала неорганической химии в разделе Экстракция , [c.95]

    Классификационная теория Киселева дает теоретическое истолкование практическому опыту, накопленному в тонкослойной хроматографии по подбору селективных разделительных систем, и на этой основе позволяет оптимизировать их состав. Ограничимся одним примером, связанным с раздвоением ДНФ-аминокислот, представляющих сложные органические соединения с группировками I, II и III типов. Для их разделения используется система, состоящая из водного аммиака на силикагеле (неподвижная фаза) и смеси пиридина, толуола и этиленхлоргидрина (подвижная фаза). Неподвижную фазу можно отнести к ослабленному II типу (силанольный протонизированный водород, инактивированный водородными связями с водой и аммиаком). Также ясна роль компонентов в подвижной фазе толуол играет роль растворителя пиридин, обладающий неподеленной парой электронов на азоте, конкурирует на силикагеле с ДНФ-аминокислотами, а молекулы этиленхлоргидрина выполняют как бы буферные функции, образуя специфические связи с ДНФ-аминокислотами при переносе их в подвижную фазу и вступая в межмолекулярное взаимодействие друг с другом при переносе ДНФ-аминокислот в неподвижную фазу. Все это создает весьма тонкие эффекты, позволяющие разделять очень близкие вещества. Подобные представления дают возможность сделать два предсказания коэффициент распределения Кр ДНФ-аминокислот будет расти, и, следовательно, Rf уменьшится при повышении содержания аммиака в неподвижной фазе и увеличении концентрации пиридина в подвижной фазе. Эти предсказания соответствуют экспериментальным фактам (см. рис. 6). [c.208]

    Как уже отмечалось вьппе, методы разделения и кощентрирования играют особую роль в анализе суперэкотоксикантов. Среди распространенных на сегодняшний день методов разделения и концентрирования, видимо, одним из важнейших является жидкостная экстракция - распределение вещества между двумя несмешивающимися жидкими фазами 11,2,4,29-31[, Наиболее часто встречаются системы, в которых одной фазой является вода, а второй - органический растворитель Многочисленный ассортимент известных к настоящему времени экстрагентов позволяет найти удовлетворительное решение практически для любой задачи. Кроме того, жидкостная экстракция не требует сложного оборудования и выполняется достаточно быстро в делительной воронке или автоматически при использовании экстракторов непрерьгвного действия. Высокая степень извлечения огфеделяемых компонентов достигается тагсже в перегонно-экстракционных устройствах (аппаратах Сокслета) при одновременной конденсации водяного пара и не смешивающегося с водой растворителя, Такие устройства применяют для концентрирования ПХБ и ХОП [321, ПАУ [331, фенолов и других соединений. [c.207]

    Названные зависимости с высокой точностью описывают и газохроматографическое поведение веществ-гомологов в условиях газоадсорбционнои и ионообменной хроматографии, а также могут быть использованы для расчета значений Р, в тонкослойной хроматографии, факторов емкости в высокоэффективной жидкостной хроматографии с обращенной фазой, коэффициентов распределения при растворении органических соединений — членов гомологического ряда в бинарных системах вода — органический растворитель. [c.189]

    Поликонденсация па границе раздела фаз проводится в системе вода — органический растворитель. Используемые растворители могут принадлежать к различным классам органических соединений, не смешиваюш,ихся или мало смешивающихся с водой, инертных по отношению к реагирующим веществам. Наиболее широко применяются такие растворители, как бензол, гомологи бензола, алифатические углеводороды, галоидозамещенные углеводороды и некоторые другие [192, 196, 201, 206, 210, 211]. От природы органического растворителя зависит распределение реагентов меноду двумя фазами, диффузия реагентов, набухание и проницаемость образующегося полимера [212. Для получения полимера высокого молекулярного веса необходимо, чтобы растворитель не растворял полимер, а вызывал его набухание [211, 212]. Влияние этих факторов в настоящее время [c.143]

    В качестве примера, характеризующего поведение анионитов, может быть рассмотрено влияние метанола, этанола и ацетона на равновесие обмена между нитратными и галогенидными ионами. Поглощение ионов хлора и брома анионитом в КО -форме усиливается нри возрастании концентрации органического растворителя поглощение ионов иода при этом ослабляется [30]. В связи с рассматриваемым вопросом заслуживают упоминания интересные данные Катцина и Геберта [22 ] по сорбции хлоридов лития и кобальта (И) сильноосновным анионитом в С1-форме. Авторы [22) обнаружили значительное влияние содержания воды в воздушно-сухих образцах ионита на их способность сорбировать указанные хлориды из ацетоновых растворов. При этом сорбция протекает не по обменном механизму, а как процесс поглощения ионитом растворенного вещества в целом. Это явление может быть правильно истолковано лишь при учете различного состава растворителя в жидкой фазе и в фазе ионита [14]. Как показали Кеннеди и Дэвис [24], смола с третичными аминогруппами, находящаяся в С1-форме, ведет себя сходным образом, сорбируя катионы и анионы в стехиометрическом соотношении. Поглощение хлоридных комплексов сильноосновными анионитами из смесей соляной кислоты с органическими растворителями существенно отличается от поглощения их из водных растворов соляной кислоты. Рядом авторов [15, 20, 26, 27, 49, 511 опубликованы интересные результаты, касающиеся равновесного распределения в таких системах. Как правило, введение органического раствори- [c.136]

    Одним из наиболее важных методов разделения и концентрирования является экстракция. Хотя термин экстракция приложим к различным фазовым равновесиям (жидкость — жидкость, газ — жидкость, жидкость — твердое тело и т. д.), чаще его при-.меняют к системам жидкость — жидкость, и термин этот служит обиходной формой более правильного названия жидкость — жидкостная экстракция . Под экстракцией пониглают процесс распределения вещества между двумя несмешивающимися растворителями и соответствующий метод выделения и разделения веществ, основанный на таком распределении. Одним из несмешивающихся растворителей обычно является вода, вторым — органический растворитель, однако это не обязательно. Известны экстрационные системы, включающие расплав солей или металлов возможны системы из двух несмещивающихся органических растворителей или системы с неорганическими растворителями типа жидкой двуокиси серы. Однако в большинстве случаев применяют комбинацию вода — органический растворитель. [c.83]

    Экстракционный анализ применяется для распознавания свободных галогенов, которые могут быть выделены при действии хлорной водой на соли МаВг или KJ. Выделившийся элементарный бром можно извлечь хлороформом, сероуглеродом или бензолом. При извлечении хлороформом или сероуглеродом образуется нижний слой органического растворителя, окрашенный в желто-корич-невый цвет. При извлечении бензолом растворитель образует верхний слой, окрашенный в желто-коричневый цвет. Водный раствор иода не отличается по цвету от раствора брома. Раствор иода в сероуглероде — красно-фиолетового цвета вследствие сольватации молекул иода. Это позволяет легко отличить иод от брома по окраске сероуглеродного слоя. В хлороформе иод также дает красно-фиолетовое окрашивание, а бром — желто-коричневое. Для экстракционного анализа важное значение имеет закон распределения, выведенный В. Нернстом в 1890 г. и экспериментально проверенный А. А. Яковкиным в 1894 г в равновесном состоянии системы, состоящей из двух несмешивающихся между собою жидкостей двух фаз), имеющих поверхность раздела, отношение концентраций растворенного в них вещества является постоянной величиной при постоянной температуре), названной коэффициентом распределения, [c.84]

    Простейшая возможная система в жидкостной экстракции — распределение относительно инертных ковалентных молекул между двумя несмешивающимися растворителями. В этих условиях действует закон распределения [уравнение (9.7)] и константа распределения определяется отношением растворимостей вещества в каледой из фаз. Хорошим примером такого типа является распределение молекулярного брома и иода между водой и неполярным органическим растворителем, например четыреххлористым углеродом. Ковалентные молекулы растворенного вещества экстрагируются в органическую фазу, так как не существует энергетического барьера для распределения этих молекул между молекулами растворителя взаимодействие при этом определяется только слабыми силами Ван-дер-Ваальса. Однако в водной фазе, где молекулы растворителя ассоцииро- [c.354]

    В качестве растворителей могут применяться бутилацетат, амилацетат, метилизобутилкетон, этиловый эфир, хлороформ и др. Эти растворители хорошо экстрагируют пенициллин и незначительно растворяются в кислой воде. При экстракции пенициллина на экстракторах-сепараторах Лувеста [ПО] обычно используется бутилацетат. Коэффициент распределения пенициллина в системе подкисленная культуральная жидкость — бутилацетат равен примерно 18. Теоретический выход пенициллина для трехступенчатого экстрактора Лувеста при применении бутилацетата в количестве 25% объема культуральной жидкости составляет около 99%. Для дальнейшего концентрирования пенициллина большое значение имеет чистота экстракта первой стадии экстракции. Органическая фаза не должна содержать водной и белковой эмульсий. Чтобы выполнить это условие, в культуральную жидкость перед экстракцией добавляются смачивающие вещества, благодаря чему белки остаются в водной фазе и не переходят в растворитель. Добавка этих веществ в количестве 0,01% объема культуральной жидкости повышает производительность экстрактора и способствует уходу белков с отработанными кислыми водами. Кроме того, смачивающие вещества препятствуют эмульгированию растворителя в культуральной жидкости. Технологическая схема извлечения пенициллина на экстракторах Лувеста представлена на фиг. 94. [c.197]

    Еще более наглядное представление о свойствах различных систем и поведении компонентов различных гомологических рядов в распределительных системах можно получить при выражении результатов хромато-распределительных опытов в терминах относительных коэффициентов распределения. На рис. 10 представлены зависимости [11] логарифма отн от числа атомов углерода в органическом соединении одного гомологического ряда для четырех систем растворителей при 20° С изооктан—N-мeтил-пирролидон (а) изооктан—ДМФА (б) изооктан—водный (20% воды) ацетон (в) изооктан—вода (г). Как видно из рисунка, эти зависимости имеют вид прямых линий. Угол наклона прямых характеризует селективность той или иной системы растворителей по отношению к членам одного гомологического ряда, а взаимное расположение прямых характеризует селективность используемых систем к классам органических соединений. Наиболее селективными, как следует из приведенных результатов, являются системы, содержащие воду в полярной фазе (системы е и г). Линейные зависимости имеют место и в координатах логарифм относительного коэффициента распределения — температура кипения вещества, причем точки, соответствующие одному гомологическому ряду, лежат на одной прямой (рис. И). Вообще, закономерности в распределении веществ в системе летучих растворителей должны подчиняться закономерностям, наблюдаемым в газо-жидкостной [4, 5, 12] и в жидкостной хроматографии (см., например, [13]). Для описания наблюдаемых и установления новых закономерностей целесообразно использовать методы сравнительного расчета [14]. Указанные зависимости могут быть ис  [c.81]

    Экстракционный метод нашел свое развитие в особом способе экстракции жидкости жидкостью, так называемой противоточной экстракции. Основан он на законе Нернста для идеальных растворов, согласно которому при одних и тех же условиях растворенное вещество распределяется между двумя несмешивающимися растворителями в постоянном, не зависящем от концентрации и воспроизводимом отношении. Если же в системе имеется два или больше веществ, то каждое из них подчиняется тому же правилу. Метод противоточной экстракции был предложен Мартином и Сингом в 1941 г. Синг обнаружил (1938) значительное различие в коэффициентах распределения ацилированных аминокислот между хлороформом и водой, а Мартин разработал перед этим противоточный экстрактор для очистки витаминов. Б конечном итоге их совмеот-ная работа привела к аппарату, в котором водная фаза адсорбировалась на силикагеле, а противоток создавался хлороформом. Этот метод был автоматизирован Крейгом в 1944 г. В 1948 г. Рэмси и Паттерсон применили неводные системы растворителей, в частности для разделения жирных кислот С5—С д. Конечно, революционизирующее значение в области выделения и очистки органических веществ принадлежит хроматографии, основанной на избирательной адсорбции растворенных веществ многими твердыми материалами. [c.304]

    Предельный коэффициент распределения р вещества NaA между водой и органической фазой, например нитробензолом, равен отношению концентраций NaA в воде и органическом растворителе при условии, что в этих фазах находится только КаА в весьма малых концентрациях и достигнуто равновесное распределение вещества между этими фазами. Снижение концентрации МаА в водном растворе, когда он граничит с органической фазой, пренебрежимо мало. Это обьясняется тем, что, с одной стороны, активность аниона А в органической фазе Яа (о.5) зависит от состава мембраны электрода, а с другой стороны, тем, что значения коэффициента распределения детергента типа КаК, использованного Гавашем и Бертраном [419], находятся в пределах 10 —3-10 . Практически всегда выражение (11.5) дает зависимость электродного потенциала от активности углеродного аниона. Если добавлять увеличивающиеся количества водного раствора С Х известной концентрации в раствор 1, то начинает выпадать осадок, в результате чего снижается концентрация свободных анионов А в растворе, а следовательно, потенциал электрода. После того как в растворе исчезнут несвязанные анионы А , дальнейшее добавление С Х приведет к тому, что цепь с двойным распределением станет обычной концентрационной системой. Такое скачкообразное изменение э. д. с. в точке эквивалентности делает возможным потенциометрическое определение А в водном растворе. [c.144]

    Влияние соотношения и состава фаз на молекулярный вес ароматических полиамидов обусловлено в значительной степени нестабильностью эмульсионных систем, особешго на основе органических растворителей, смешиваю- Рис. 1.20. Зависимость характе-щихся с водой. Изменение исходного соотно- ристической вязкости поли-л-шения компонентов эмульсионной системы фениленизофталамида от со-(водной и органической фаз) влияет в первую держания акцептора в систе-очередь на концентрацию мономеров в органической фазе, межфазное натяжение, содержание воды в органической фазе, коэффициенты распределения исходных веществ и т. д. [c.47]

    Экстракция — как метод разделения и очистки — основана на различии в растворимости компонентов в двухфазной системе находящейся в состоянии равновесия. Чаще всего в качестве одной из несмешивающейся жидкости функционирует вода, а второй — органический растворитель. Таким образом, практически проводят жидкостную экстракцию. Количественно экстракция характеризуется коэффициентом распределения = J , гдеСдН Св — концентрации экстрагируемого вещества соответственно в экстрагенте и воде. Это значит, что соотношение концентраций растворенного вещества в соприкасающихся фазах в равновесном состоянии и при данной температуре не зависит от общего его количества в смеси. [c.67]


Смотреть страницы где упоминается термин Распределение вещества в системе вода органический растворитель: [c.73]    [c.263]    [c.208]    [c.205]    [c.177]    [c.242]    [c.500]    [c.288]    [c.11]    [c.187]    [c.65]    [c.284]    [c.258]   
Руководство к практическим занятиям по радиохимии (1968) -- [ c.421 ]




ПОИСК





Смотрите так же термины и статьи:

Вода как растворитель для ГПХ

Органические вещества в воде

Растворители для органических веществ

Растворители органические



© 2025 chem21.info Реклама на сайте