Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфоресценция тушение

    Эффективность и время затухания фосфоресценции. Фосфоресценция— это излучательный переход с триплетного уровня Т на синглетный 5о- Эффективность фосфоресценции в первую очередь определяется концентрацией триплетных молекул. Фосфоресценция наблюдается в основном в твердой фазе, когда процессы диффузионного тушения триплета замедлены. Эффективность образования триплетов фт — это число триплетных молекул, образующихся на один поглощенный квант возбуждающего света. В отсутствие фотохимических реакций или же интеркомбинационной конверсии из высших синглетных состояний скорость заселения нижнего возбужденного синглетного состояния равна скорости поглощения /п, а скорость образования триплетных молекул /пфт- По методу стационарных концентраций определяют выход триплетов  [c.62]


    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна /IV а + С, где а — энергия активации Q — теплота, выделяющаяся в элементарном акте. Следовательно, хемилюминесценция должна наблюдаться в соответствующем интервале длин волн. В некоторых реакциях в газовой фазе наблюдается инфракрасная хемилюминесценция, соответствующая колебательному возбуждению молекул. В реакциях, протекающих в жидкой фазе, энергия колебательного возбуждения рассеивается очень быстро. Наблюдающаяся хемилюминесценция соответствует обычно излучению с пулевого колебательного уровня возбужденного электронного состояния и лежит в видимой и реже в ультрафиолетовой областях. [c.119]

    К тушению триплетных состояний можно отнести триплет — триплетный перенос энергии, который наблюдается, если в системе находятся донор и акцептор энергии. Причем перенос энергии будет интенсивным, если энергия донора больше энергии акцептора. Кроме того, поскольку перенос энергии всегда изоэнергетический, то необходимым условием является перекрывание спектров испускания (фосфоресценции) донора и поглощения акцептора. Перенос энергии между триплетной молекулой и невозбужденной синглетной молекулой А с переводом ее в триплетное состояние А сопровождается сохранением суммарного спина системы по схеме [c.168]

    Определение констант тушения триплетных состояний. Изучение констант тушения триплетных состояний удобно проводить в вязких растворах. При температурах, близких к комнатной, могут быть использованы растворы 1-бромнафталина в глицерине или полиэтиленгликоле. При низких температурах выбор растворителя более широкий. В качестве тушителя применяют соединения с тяжелыми атомами, кислород, парамагнитные стабильные радикалы, доноры электронов или атомов водорода. Весьма удобным объектом исследования являются соли уранила, флуоресценция которых тушится аминами, спиртами, анионами галогенов и многими другими соединениями. Чтобы выяснить статический или динамический характер тушения, необходимо провести параллельное исследование кинетики и интенсивности фосфоресценции в одних и тех же растворах и определить константы тушения, представив данные в координатах Штерна — Фольмера <ро/ср—[Q] и to/t—[Q]. [c.115]


    Дальнейшее поведение возбужденной частицы не зависит от механизма ее образования. Возможно физическое или химическое тушение свечения, перенос энергии на другие частицы или внутримолекулярная безызлучательная дезактивация. Если время жизни возбужденной частицы мало по сравнению со временем релаксации, возможна дезактивация с испусканием кванта Ау (рис. 42), т. е. хемилюминесценция. В зависимости от механизма образования и природы возбуждаемой частицы хемилюминесценция может являться флуоресценцией или фосфоресценцией. Как видно из рис. 42, энергия кванта хемилюминесценции равна + где а — энергия [c.119]

    НИИ зависимости кинетики интенсивности излучения (или квантового выхода) от концентрации излучающих и тушащих частиц. В этом разделе мы сначала ознакомимся с применением стационарных методов исследования тушения флуоресценции (или фосфоресценции), а затем дадим определение излучательного времени жизни люминесцирующего уровня, существенного при нестационарных условиях. [c.85]

    Фосфоресценция, как правило, происходит после заселения уровня Г) посредством безызлучательного синглет-триплетного перехода с уровня 5], который в свою очередь возбуждается в результате поглощения света. Состояние 1 обычно имеет меньшую энергию, чем состояние 5ь поэтому долгоживущее излучение (фосфоресценция) является более длинноволновым, чем короткоживущее излучение (флуоресценция). Относительная интенсивность флуоресценции и фосфоресценции зависит от скорости излучения и интеркомбинационной конверсии с 5 абсолютный квантовый выход зависит также от меж- и внутримолекулярных процессов переноса энергии, фосфоресценция конкурирует не только со столкновительным тущением Ти но и с интеркомбинационным переходом на 5о. Разница между общей скоростью образования триплетов из 51 и скоростью фосфоресценции может быть использована для определения эффективности процесса 7 1 5о в условиях, когда процессами бимолекулярного тушения можно пренебречь. [c.101]

    Триплет-триплетный перенос энергии иногда рассматривается как отличное от синглет-синглетного переноса явление. Однако, если рассматривать механизм обменного взаимодействия, тот факт, что обе частицы А и О меняют свою спиновую мультиплетность, не имеет значения, поскольку реакция адиабатическая. Наблюдаемые же отличия в фотохимических процессах возникают в результате большого радиационного времени жизни триплетных состояний. Для среды, в которой процессы тушения и безызлучательной релаксации протекают медленно (например, в жестких стеклообразных матрицах), большое реальное время жизни триплетного донора приводит к тому, что даже неэффективный процесс переноса энергии успешно конкурирует с другими релаксационными процессами. В то же время сенсибилизированная фосфоресценция наблюдается только в таких системах, где процессы безызлучательной релаксации и тушения не являются основными путями дезактивации триплетного акцептора (т. е. вновь в стеклообразных матрицах, или для таких акцепторов, как диацетил). [c.127]

    При обсуждении процессов переноса энергии мы чаще всего предполагали, что заселение более высоких, чем для молекулы-донора, энергетических уровней молекулы-акцептора (т. е. положительная величина Д ) может происходить, только когда энергия активации реакции равна Д . В самом деле, триплет-триплетный перенос энергии в растворе впервые был продемонстрирован на примере тушения фосфоресценции диацетила, которое наблюдалось лишь для партнеров, чей триплетный уровень расположен ниже, чем для молекулы диацетила. Предположение об участии в процессе тушения триплет-триплетного обмена энергией было доказано в последующих экспериментах прямым детектированием трип-летных состояний акцепторных молекул по их спектрам поглощения. Существует, однако, несколько наиболее интересных случаев, когда энергия активации много меньше, чем этого требует эндотермичность реакции, хотя перенос энергии при этом менее эффективен. Например, скорость переноса на молекулу [c.128]

    Возможно, наиболее важным классом сенсибилизирующих красителей являются цианиновые красители, содержащие гетеро- НЛП ароматические циклы, соединенные полиметиновой цепью =СН(—СН = СН)я, я-электроны которых принимают участие в спектральных переходах, ведущих к сенсибилизации. Для этих красителей характерна сильная адсорбция на зернах галогенидов серебра. Выход флуоресценции адсорбированных красителей значительно ниже, чем в их растворах. Выход фосфоресценции также мал. Уменьшение флуоресценции, по-видимому, не является следствием роста скорости перехода IS усиленного эффектом тяжелого атома (ср. со с. 107). Скорее результаты предполагают тушение флуоресценции за [c.250]

    В присутствии значительных концентраций тушителей наблюдается статическое тушение, приводящее к уменьшению квантового выхода фосфоресценции без [c.204]


    Число безызлучательных переходов можно увеличить путем добавления тушителей. Механизм тушения флуоресценции бывает разным чаще всего оно обусловлено столкновением возбужденного хромофора с молекулой тушителя. Известны вещества, являющиеся особенно эффективными тушителями (например, иодид-ионы). Эффективность флуоресценции в отсутствие тушителя можно выразить через константы скорости флуоресценции (А ), безызлучательного перехода к ) и фосфоресценции ( р)  [c.30]

    Температурное тушение. Повышение температуры вызывает уменьшение выходов флуоресценции и фосфоресценции. В частности, в области комнатных температур выход флуоресценции обычно уменьшается на несколько процентов с повышением температуры на 1 °С. Это связано с тем, что безызлучательная дезактивация электронно-возбужденных состояний осуществляется преимущественно при соударениях излучающих молекул, а частота таких соударений в растворах прямо пропорциональна температуре. Одновременно с уменьшением выхода люминесценции происходит уменьшение длительности свечения. [c.505]

    Метод основан на измерении интенсивности излучения частиц, являющихся продуктами химической реакции, т.е. когда молекула, образовавшаяся в результате протекания химической реакции, находится в возбужденном электрон-но-колебательном состояти и в процессе релаксации излучает в определенном спектральном диапазоне. Иногда используется обратный процесс, когда аналитическим сигналом является тушение определяемыми частицами свечения (фосфоресценции) некоторых органических красителей. Существует два варианта хемилюминесцентного метода — пламенный и не пламенный. В первом случае регистрируется изменение свечения пламени при введении в него продуктов химической реакции, во втором — интенсивность излучения самих продуктов химической реакции. [c.921]

    Еще одно интенсивно развивающееся направление в люминесцентном органическом анализе — фосфоресценция при комнатной температуре. Появление фосфоресценции при комнатной температуре связано с уменьшением скорости тушения кислородом триплетных состояний молекул сорбированных органических соединений. Это уменьшение обусловлено снижением подвижности [c.311]

    Ранее было замечено (стр. 121), что фосфоресценция, обусловленная триплет-синглетными переходами, обычно не наблюдается в жидких растворах, так как триплетное состояние имеет сравнительно большое естественное радиационное время жизни, и дезактивация в результате столкновений происходит чаш е, чем эмиссия. Оказалось возможным, однако, наблюдать фосфоресценцию эозина в глицерине или этаноле и измерить отношение ее интенсивности к интенсивности флуоресценции [44]. Это было сделано при помощи спектрофлуориметра и двух вращающихся секторов, один из которых служил для прерывания пучка возбуждающего света, другой — для прерывания пучка излученного света. Когда оба прерывателя находятся в одинаковой фазе, измеренная интенсивность обусловлена фосфоресценцией плюс флуоресценцией если они в разных фазах — то только фосфоресценцией. Это очень перспективный метод для определения скоростей перехода между триплетным и синглетным состояниями. По сравнению с флеш-методом он имеет то преимущество, что для облучения можно использовать монохроматический свет с различной частотой, кроме того, можно точно измерить квантовые выходы наконец, стационарная концентрация молекул в триплетном состоянии мала, и поэтому можно пренебречь триплет-триплетным тушением. С другой стороны, если естественное время жизни велико или тз шение сильно, эмиссия будет очень слабой [c.165]

Рис.З. Тушение фосфоресценции адсорбированного на пористом стекле Викор р-бензохинона транс-2-бутеном, адсорбирован- Рис.З. <a href="/info/129099">Тушение фосфоресценции</a> адсорбированного на <a href="/info/499893">пористом стекле Викор</a> р-бензохинона транс-2-бутеном, адсорбирован-
    Наиболее интересные результаты были получены для разбавленных нанесенных катализаторов, так как в них все центры свечения находятся на поверхности и доступны для адсорбированных молекул. Это было, в частности, подтверждено обратимым тушением фосфоресценции при адсорбции парамагнитных молекул кислорода, а также диамагнитных молекул водорода, моноксида углерода и олефинов. [c.32]

    Как правило, растворитель существенно влияет на люминесценцию растворов неорганических и органических веществ. Чем сильнее выражена сольватация, тем вероятнее перенос энергии на другие молекулы и тем больше возможность проявления эффекта. тушения. Усиление сольватации приводит к смещению люминесценции в длинноволновую область. Выход флуоресценции часто оказывается более высоким в растворителе с повышенной вязкостью, так как в этом случае уменьшается число соударений активированных частиц. Если учесть большие различия в вязкости газов, жидкостей и твердых тел, то можно понять, почему газы в большинстве случаев не проявляют фосфоресценции, а период [c.96]

    Заместители, для которых поглощение света сопровождается переходом п—(карбонильная группа), вызывают тушение флуоресценции. Когда в я-электронную систему вводится атом с большим атомным номером, он обычно усиливает фосфоресценцию, но ослабляет флуоресценцию этот эффект увеличивается, например, в ряду Р< С1<Вг<1. Подобное влияние на люминесценцию растворенного вещества наблюдается в случае растворителей, содержащих какой-либо тяжелый атом. [c.100]

    Тушение флуоресценции или фосфоресценции возбужденного комплекса можно обсуждать таким же образом, как и в случае возбужденной молекулы. При этом приходят к тем же выводам тушение становится более эффективным по мере увеличения донорной или акцепторной способности тушителя. [c.290]

    Более высокие триплетные состояния будут подвергаться внутренней конверсии до Т , которое будет далее переходить в 5о за счет тушения либо излучения (фосфоресценция) или вступать в химическую реакцию. Времена жизни триплетного состояния значительно превышают времена жизни синглетного состояния, по- [c.494]

    В разделе И, Б, 5 показано, что эффективность быстрой флуоресценции с ростом температуры обычно уменьшается. Эффект невелик — в диапазоне от 77 К до комнатной температуры ф/ редко изменяется более чем в 10 раз. В противоположность этому эффективность Г1-> 5о-фосфоресценции может падать в этом интервале температур на несколько порядков и чрезвычайно сильно зависит от вязкости растворителя. Различие в поведении обусловлено тем, что излучательное время жизни триплетного состояния велико и соответственно оно сильнее подвержено тушению примесями и интеркомбинационной конверсии Г1 [см. уравнение (100)]. Для некоторых соединений оказывается существенным дополнительное влияние изменений ф, (см. раздел II, Б, 5), которое противоположно влиянию тушения и [c.91]

    Причинами резкого падения эффективности и времени жизни фосфоресценции могут быть увеличение скорости безызлучательной конверсии.[кт) и (или) тушение триплетного состояния примесями [к д]), но пока еще не ясно, которая из этих причин является главной (см. раздел IV, БЛ).  [c.93]

    Тушение, следовательно, осуществляется при крайне низких концентрациях тушителя, и действительно, для того чтобы наблюдать триплет-синглетную фосфоресценцию в жидких растворах, необходимо использовать тщательно очищенные вещества и растворители. Кроме того, основное состояние молекулярного кислорода — триплетное, поэтому он эффективно тушит другие триплетные молекулы следовательно, необходимо как можно сильнее снизить и концентрацию молекулярного кислорода. Наибольшие времена жизни триплетов в жидкостях при комнатной температуре составляют около 20 мс, однако пока не известно, чем определяется этот предел — тушением примесями или же интеркомбинационной конверсией Более подробно этот [c.98]

    Время жизни Тр (или константа скорости Афс) является фундаментальной характеристикой вещества, не зависящей от температуры. В противоположность флуоресценции эффективность фосфоресценции уменьшается на несколько порядков в интервале от 77 К ДО комнатной температуры и чрезвычайно сильно зависит от вязкости растворителя. Причинами резкого падения эффективности и времени жизни фосфоресценции могут быть увеличение скорости безыз-лучательной конверсии йдт и тушения триплетного состояния примесей но пока не ясно, которая из этих причин является главной. [c.63]

    В присутствии значительных концентраций тушителей наблюдается статическое тушение, приводящее к уменьшению квантового выхода фосфоресценции без изменения времени затухания (аналогично статическому тушению флуоресценции). Некоторые соединения, в особенности содержащие тяжелые атомы, способствующие ин-теркомбинационной конверсии, образуют комплексы с фосфоресцирующим соединением, приводя к изменению времени затухания фосфоресценции и иногда даже к увеличению квантового выхода фосфоресценции вследствие увеличения константы скорости испускания фосфоресценции в таких комплексах. При этом затухание фосфоресценции происходит неэкспоненциально. В простейшем случае кинетика затухания представляет собой сумму двух экспонент, одна из которых соответствует свободным молекулам М, а другая— комплексу (М-р). Соотношение вкладов этих двух экспонент зависит ие только от концентрации комплексообразователя, по также от продолл<ительности возбуждающего импульса, поскольку время достижения стационарного состояния при заданной интенсивности возбуждающего света для частиц с разным време- [c.99]

    Поглощение излучения на синглет-триплетном переходе мало, поскольку он запрещен в такой же степени, как запрещена фосфоресценция на триплет-синглетном переходе. Следовательно, возбуждение верхнего фосфоресцирующего уровня непосредственно из основного является неэффективным, гораздо чаще фосфоресценция возникает в результате радиационного распада триплетных уровней, заселяемых безызлучательными переходами с синглетных уровней, возбуждаемых поглощением из основного состояния. Диаграмма последовательности событий показана на рис. 4.1. В результате поглощения заселяется уровень Si" после быстрой релаксации (по крайней мере в конденсированных средах) по колебательным уровням молекула оказывается на уровне Si°, где она может потерять энергию либо за счет излучения (фосфоресценции), либо в результате безызлучательного перехода на уровень T l — интеркомбинационной конверсии (IS ), либо в результате безызлучательного перехода на уровень — внутренней конверсии (1 ). Возможно, это может показаться странным, что ISG на уровень Ti , являющийся запрещенным по спину согласно правилам отбора для безызлучательных переходов, может эффективно конкурировать с разрешенной по спину флуоресценцией или внутренней конверсией на So " однако фосфоресценция наблюдается во многих случаях, когда можно предположить, что 1 5i 5o относительно неэффективна. Для полного понимания процессов фотохимии молекул необходимо знать эффективность (квантовый выход) всех процессов, происходящих в ней. Даже если возбужденные частицы не вступают в химические реакции, не подвержены процессам разложения или тушения, то необходимо уметь определять квантовый выход флуоресценции ((pf), фосфоресценции (фр), интеркомбинационной конверсии " So (fis ) и внутренней конверсии 51 5о(ф1с). Учитывая, что суммарная эффективность всех процессов равна единице, получим [c.84]

    Скорость запрещенных по спину переходов может быть существенно изменена под влиянием внешнего окружения. Такое воздействие можно наблюдать при добавлении парамагнитных молекул в растворитель. Хотя О2 и N0 уменьшают выход фосфоресценции вследствие своего участия в эффективном бимолекулярном тушении, они вызывают одновременно рост скоростей оптического перехода и IS . Поглощение при переходе T l- -So также возрастает по интенсивности в тех случаях, когда присутствуют парамагнитные соединения. Например, поглощение при переходе Ti- -So в бензоле ( 310—350 нм) практически исчезает, когда удаляются последние следы кислорода. Наиболее драматическую картину поглощения 7- -S представляют растворы пирена, которые в обычном состоянии бесцветны, но приобретают насыщенный красный цвет в присутствии кислорода при высоком давлении. Тяжелые атомы в своем окружении способствуют также росту вероятности излучательных и безызлучательных переходов путем индуцирования заметного спин-орбитального взаимодействия в растворе. Так, растворы антрацена и некоторых его производных начинают слабее флуоресцировать при добавлении бромбензола, тогда как интенсивность триплет-триплетного поглощения возрастает в результате усиления IS Si T i. Как мы отмечали ранее, эти процессы наиболее значительны для переходов, включающих возбужденные состояния (л, л ). Спин-орбитальное взаимодействие всегда пренебрежимо мало в симметричных ароматических соединениях, и именно здесь изменение скоростей переходов под воздействием окружения наиболее заметно. В то же время сильное спин-орбитальное взаимодействие всегда существует в состояниях (п, л ), и в этом случае воздействие внешнего возмущения более слабое. Эти эффекты наблюдаются как в твердых, так и в жидких растворах. Например, фосфоресцент-ное время жизни в бензоле, растворенном в стеклообразной матрице при 4,2 К, уменьшается от 16 с в СН4 или Дг до 1 с в Кг и до 0,07 с в Хе отношение <рр/ф1 возрастает, и все процессы IS Si T i, T,- So+hv и Ti So протекают быстрее в растворителе с большей атомной массой. [c.107]

    Мягкие ткани и многие другие радиоактивные биологические образцы можно перед измерением радиоактивности перевести в жидкое состояние обработкой четвертичными аммониевыми основаниями, такими, например, как гидроксиды гиамина или (и-диизобутилкрезолок-сиэтоксиэтил)диметилбензиламмония. Однако при этом в присутствии тканевых белков часто может наблюдаться сильная фосфоресценция. На основе четвертичных аммониевых оснований созданы также различные коммерчески доступные солюбилизаторы, не обладающие этим недостатком. Солюбилизацию образцов необходимо проводить при энергичном встряхивании или ультразвуковой обработке помогает подогрев до 50°С, но более высокие температуры вызывают дополнительное окрашивание, что в дальнейшем может приводить к усилению тушения. [c.460]

    Мощность флуоресцентного и фосфоресцентного излучения, испускаемая пробой, является прямой функцией квантового выхода. Поэтому квантовый выход интересующего процесса люминесценции должен быть постоянным и воспроизводимым, если необходимо разработать успешный флуориметрический или фосфориметрический метод анализа. Когда квантовый выход значительно уменьшается, то говорят, что люминесценция затухает. К сожалению, многие посторонние вещества могут оказывать влияние на квантовый выход и тушить люминесценцию. В частности, тяжелые атомы или парамагнитные частицы сильно влияют на скорость интеркомбинационной конверсии, которая, в свою очередь, изменяет квантовый выход флуоресценции или фосфоресценции, тем самым приводя к погрешности в анализе. В фосфориметрии, конечно, желательно увеличить скорость интеркомбинационной конверсии, в то время как в флуориметрии — уменьшить. Поэтому, для того чтобы предотвратить тушение в большинстве флуориметрических методик, тяжелые атомы и парамагнитные частицы должны быть удалены из раствора пробы. Кислород, будучи парамагнитным, является особенно серьезной помехой, и его также удаляют, пропуская азот через анализируемые растворы. [c.660]

    При очень низких температурах может наблюдаться фосфоресценция, которую можно использовать для фрсфориметрических определений. Еще один фактор, способствующий определению отдельных соединений в смесях, — тушение фосфоресценции (реакция первого порядка), которое может быть измерено при помощи фосфороскопов. [c.378]

    Зависимость скорости тушения флуоресценции или фосфоресценции А молекулой D, находящейся в основном состоянии, от полярности можно понять, обративщись к упрощенной кинетической схеме, показанной ниже, и воспользовавшись нашим анализом фотореакционной способности в гл. 4. [c.289]

    Флуоресценция является результатом излучательного перехода из возбужденного синглетного состояния в основное состояние. Возбужденное синглетное состояние представляет собой своего рода бирадикси, в котором электроны находятся на незаполненных орбиталях. Можно ожидать, что такие состояния будут чрезвычайно реакционноспособными и будут дезактивироваться при димеризации, при реакции с кислородом, под действием ингибиторов свободнорадикальных процессов и т. д. Следовательно, мы должны ожидать, что все те факторы, которые будут увеличивать вероятность реакций возбужденного синглетного состояния, будут способствовать тушению флуоресценции. Очевидно, фосфоресценция будет подвержена влиянию тех же факторов ожидаемое различие будет определяться различием в реакциях и реакционной способности синглетного и триплетного состояний. [c.805]

    В жидких растворах скорость излучательного /"[ о-пере-хода гораздо меньше скоростей интеркомбинационной конверсии и (или) тушения триплетного состояния примесями. Поэтому эффективность фосфоресценции в жидких растворах мала, и до последнего времени ее наблюдали чрезвычайно редко. Первые количественные измерения провела в 1930 г. Будэн [31]. При помощи визуального фосфороскопа она наблюдала при комнатной температуре долгоживущую фотолюминесценцию эозина в глицерине, время жизни которой составляло 1,1 мс, а интенсивность была в 400 раз ниже интенсивности быстрой флуоресценции. Несколько лет спустя Каутский [32] сообщил о долгоживущем испускании ряда красителей в растворах, освобожденных от кислорода. В последующие годы этому вопросу уделяли мало внимания. Положение изменилось после того, как была развита методика импульсного фотолиза. Применив ее, Бекстрём и Сандрос [33] исследовали тушение триплетного состояния диацетила — вещества, уже давно известного своей способностью фосфоресцировать. [c.50]

    Перенос энергии от триплета к синглету в жидкости впервые изучили Бекстрём и Сандрос. Они нашли [33], что вещества, способные тушить фосфоресценцию диацетила, можно разбить на два класса. В первый класс они включили соединения со слабо связанным атомом водорода первичные и вторичные амины, фенолы, альдегиды и спирты. Они предположили, что тушение этими веществами сводится к фотохимической реакции с триплетным диацетилом, в результате которой от молекулы тушителя отрывается атом водорода. Тушение соединениями второго класса обусловлено переносом энергии от триплета к синглету [уравнение (109)]. Авторы предположили, что вероятность переноса повышается с увеличением степени перекрывания спектра фосфоресценции диацетила со спектром Ti-t-So-поглощения тушителя, а также с ростом силы осциллятора индивидуальных переходов. Эти же авторы [107] наблюдали в жидких растворах сенсибилизованную фосфоресценцию и тогда, когда акцепторами служили фосфоресцирующие дикетоны — диацетил, бензил и анизил, а сенсибилизатором — бензофенон, триплетный уровень которого расположен на 0,4 мкм выше триплетного уровня диацетила. Эта разность достаточно велика для того, чтобы [c.95]


Смотреть страницы где упоминается термин Фосфоресценция тушение: [c.89]    [c.205]    [c.616]    [c.179]    [c.124]    [c.153]    [c.495]    [c.95]   
Фото-люминесценция растворов (1972) -- [ c.92 , c.95 , c.472 ]




ПОИСК





Смотрите так же термины и статьи:

Тушение

Фосфоресценция



© 2025 chem21.info Реклама на сайте