Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплекс хлорофилл кислород

    К числу наиболее важных природных хелатирующих агентов относятся производные порфина, молекула которого схематически изображена на рис. 23.6. Порфин может образовывать координационные связи с ионом металла, роль доноров при этом выполняют четыре атома азота. При комплексообразовании с металлом происходит замещение двух указанных на рисунке протонов, которые связаны с атомами азота. Комплексы, полученные с участием производных порфина, называк тся шорфи-ринами. Различные порфирины отличаются друг от друга входящими в них металлами и фуппами заместителей, присоединенными к атомам углерода на периферии лиганда. Двумя важнейшими порфиринами являются гем, который содержит атом желе-за(П), и хлорофилл, который содержит атом магния(П). О свойствах гема мы уже говорили в разд. 10.5, ч. 1. Молекула гемоглобина-переносчика кислорода в крови (рис. 10.10)-содержит четыре гемовые структурные единицы. В геме четыре атома азота порфиринового лиганда, а также атом азота, который принадлежит бе1сковой структуре молекулы гемоглобина, координированы атомом железа, который может координировать еще молекулу кислорода (в красной форме гемоглобина, называемой оксигемоглобином) либо молекулу воды (в синей форме гемоглобина, называемой де-зоксигемоглобином). Схематическое изображение оксигемоглобина дано на рис. 23.7. Как отмечалось в разд. 10.5, ч. 1, некоторые группы, например СО, действуют на гемоглобин как яды, поскольку они образуют с железом более прочные связи, чем О2. [c.376]


    Хлорофилл и гемин содержат четыре ядра — производных пиррола, составляющие циклическую систему порфирина, которая включает ион металла как центральный атом. Хлорофилл — это зеленый пигмент растений, встречающийся в природе в связанном состоянии с молекулой белка. Он функционирует как механизм для превращения световой энергий в химическую в процессе фотосинтеза, столь важного в растениях. Гемоглобин, одна из составных частей красных кровяных шариков в крови позвоночных, состоит из гемина (красный пигмент), связанного с белком. Он действует как переносчик кислорода из легких к тканям животного. Эта функция основана на присутствии железа в комплексе. Ядовитые свойства окиси углерода связаны с ее способностью заменять кислород в этом процессе и оказывать, таким образом, удушающее действие. На рис. 22.2 приведены формулы хлорофилла и гемина. [c.499]

    Хлорофилл — вещество, ответственное за зеленый цвет в растениях, является комплексным соединением, в котором четыре пиррольных цикла связаны в виде комплекса с магнием. Основное значение хлорофилла в природе — его участие в процессе фотосинтеза, в преобразовании световой энергии в химическую [8]. Хотя механизм фотохимического превращения двуокиси углерода и воды в углеводы и кислород еще не совсем ясен, первичной реакцией должно быть фотовозбуждение хлорофилла с последующим использованием этой энергии для окисления воды и восстановления двуокиси углерода. Известны два хлорофилла а и 6 (XII, XIII), которые мало отличаются по структуре, причем главным образом ответствен за фотосинтез первый из них. Полный синтез XII и XIII был осуществлен в 1960 г. [9] (схема 4). [c.318]

    В растительном организме каротиноиды выполняют важнейшую функцию. Совместно с хлорофиллом они входят в состав молекулярного комплекса, участвующего в превращении энергии световых квантов в энергию химических связей (фотосинтез). При этом роль каротиноидов состоит в защите фотосинтетического аппарата от разрушения синглетным кислородом, возникающим как побочный продукт фотосинтетических реакций. Как уже говорилось, фотосинтез — это процесс создания органического вещества из атмосферного диоксида углерода и воды, в результате которого образовалось и постоянно образуется все современное органическое вещество Земли. [c.260]


    Гемоглобин и миоглобин —комплексы железопорфиринов с белками, выполняющие функцию фиксации и транспорта молекулярного кислорода в организмах животных. Цитохромы, имеющие аналогичную принципиальную структуру, выполняющие роль переносчика электрона в схемах фотосинтеза, дыхания, окислительного фосфорилирования и др. окислительно-восстановительных реакциях, найдены у всех животных, растений и микроорганизмов. Хлорофиллы — главные участники процессов фотосинтеза — содержатся в высших растениях, водорослях и фотосинтезирующих бактериях. [c.265]

    Например, для всех растений жизненно важное значение имеет зеленый координационный комплекс магния, известный под названием хлорофилла. Комбинация магния и координированных вокруг него групп придает хлорофиллу электронные свойства, которыми не обладает данный металл или его ион в частности, хлорофилл способен поглощать видимый свет и использовать его энергию для химического синтеза. Все организмы, которые дышат кислородом, нуждаются в цитохромах, координационных соединениях железа, которые играют важную роль в процессах расщепления и сгорания пищи, а также в накоплении высвобождающейся при этом энергии. Более сложные организмы нуждаются в гемоглобине-еще одном комплексе железа благодаря координированным к железу группам гемоглобин связывает молекулы кислорода, не окисляясь при этом. Многие области биохимии на самом деле представляют собой не что иное, как прикладную химию координационных соединений переходных металлов. В данной главе мы познакомимся со строением и свойствами некоторых координационных соединений. [c.205]

    Результаты исследований методом импульсного фотолиза, а также методом тушения позволяют считать вероятным, что в реакции фотовосстановления принимает участие триплетное состояние хлорофилла. Последнее может с высокой эффективностью превращать кислород, всегда присутствующий и образующийся при фотосинтезе, в синглетный кислород. Вследствие разрушительного действия синглетного кислорода на компоненты клетки система фотосинтеза могла бы самоуничтожаться. Очевидно, именно для устранения такой опасности система фотосинтеза всегда содержит каротин, который является высокоэффективным тушителем синглетного кислорода. Каротин тушит также и триплетное состояние хлорофилла. Очевидно, эта бимолекулярная реакция сколько-нибудь эффективно не конкурирует с фотореакциями, происходящими внутри комплекса хлорофилла, так что к. п. д. аппарата, осуществляющего фотосинтез, как уже отмечалось, высок. [c.352]

    Сигнал ЭПР хлорофилла в растворе принадлежит комплексу хлорофилла с молекулярным кислородом. [c.216]

    Например, хлорофилл, ответственный за фотосинтез в растениях, является комплексным соединением магния, а гемоглобин, снабжающий кислородом клетки животных организмов,— комплексом железа. Витамин В12 — это комплексное соединение кобальта. [c.258]

    Координационные соединения имеют большое значение в химической промышленности и в быту. В 1963 г. Нобелевская премия по химии была присуждена доктору Циглеру в Институте Планка в Германии и профессору Миланского университета Натта в Италии. Их исследования внесли существенный вклад в развитие метода полимеризации этилена при низком давлении, при помощи которого в настоящее время делают тысячи предметов домашнего обихода. Катализатор Циглера — Натта для полимеризации этилена представляет собой комплексное соединение алюминия и титана. Важность комплексов в жизни становится очевидной, если учесть, что хлорофилл, ответственный за фотосинтез в растениях, является комплексом магния, а гемоглобин, снабжающий кислородом клетки животных,— комплексом железа. [c.9]

    Если при вовлечении молекул субстрата в комплекс мы часто встречаемся с комплексами, содержащими кислород в координационной сфере, то комплексы интересующего нас типа, как правило, характеризуются наличием азота. Это касается не только природных биокатализаторов хлорофилла, порфириновых соединений и т. п., но и тех моделей активных групп окислительных ферментов, которые изучались в нашей лаборатории за последнее десятилетие. Так, активными моделями про-стетической группы каталазы являются комплексы меди со всевозможными аминами [3]. Амины определенного типа позволяют построить модели полифенолоксидазы (Р. Д. Корпусова и Л. А. Николаев [4]), комплекс медь-—гистидин моделирует аскорбиноксидазу, причем адсорбция этого комплекса иа инсулине дополнительно активирует его [5] и т. д. Наоборот, во всех этих реакциях кислородсодержащие комплексы оказываются мало или вовсе неактивными. В частности, комплексы медь — аминокислоты в десятки тысяч раз менее активны в каталаз-ном процессе, чем комплексы медь — амин . [c.241]

    Природа комплекса активированная СО2 — хлорофилл, обозначенного в реакции (6.8) символом Хл.СОг, недостаточно ясна. Активация углекислоты, по-видимому, тесно связана с карбоксилированием у-аминомасляной кислоты, в результате которого образуется глутаминовая кислота. В последующей темновой реакции (6.9) 2/3 кислорода, выделившегося при световой реакции (6.8), и 2/3 одновременно ассимилированного углерода вновь образуют углекислоту. Эта в значительной степени экзергоническая реакция сопряжена с регенерацией комплекса активированная СО2 — хлорофилл (в реакции 6.10). Суммарное уравнение фотосинтеза содержит [c.283]


    Следует также сказать несколько слов относительно влияния растворенных газов на спектр поглощения растворов хлорофилла. Падоа и Вита [82] описывают изменения в спектрах поглощения растворов хлорофиллов а и в бензоле при насыщении растворов азотом, кислородом, окисью углерода и углекислотой. Сильное изменение спектра наблюдалось под действием СО. Авторы рассматривают это как указание на существование комплекса хлорофилл — окись углерода, подобного карбоксигемоглобину. Однако спектры, представленные в работе Падоа и Вита, так сильно отличаются от настоящего спектра хлорофилла, что они принадлежат скорее каким-то продуктам разложения, чем нормальному пигменту. Катц и Вассинк [89] получили практически идентичные кривые экстинкции для коллоидных водных экстрактов бактериохлорофилла в атмосфере кислорода, сероводорода, азота, водорода и воздуха. [c.56]

    Основная задача, которую ставили перед собой авторы книги, по существу решена — мы рассмотрели все те вопросы, которые считали важными. Однако нам представляется интересным показать, как, используя рассмотренные нами простые реакции, можно осуществить чрезвычайно важные процессы, которые могут дать определенный экономический эффект. Мы должны также помнить, что ионы металлов входят во многие биологические системы и активный центр такой системы можно рассматривать как металлокомплекс. Термин реакции координированных лигандов можно применить к реакциям, протекающим в системах, играющих важную роль во многих процессах, таких, например, как перенос кислорода (гемоглобин включает комплекс железа с макроциклическими тетрадентатными лигандами, в котором атомами-донорами служат атомы азота), фотосинтез (хлорофилл — магниевый комплекс другого макроциклического тетраден-татного лиганда, роль атома-донора в нем также выполняет азот) и многие ферментативные процессы. [c.245]

    Большую роль играют хелатные соединения и в природе. Так, гемоглобин состоит нз комплекса — гема, связанного с белком — глобином. В геме центральным ионом является ион Fe2+, вокруг которого координированы четыре атома азота, принадлежащие к сложному лиганду с циклическими группировками. Гемоглобин обратимо присоединяет кислород и доставляет его из легких по кровеносной системе ко всем тканям. Хлорофилл, участвующий в процессах фотосинтеза в растениях, построен аналогично, но в качестве центрального нона содержит Mg +. [c.588]

    Mg++, Са++ и Мп++ имеют тенденцию образовывать комплексы с лигандами, несущими заряженный кислород. Исключение составляет хлорофилл, в котором образование координационных связей с атомами азота, вероятно, обусловлено избытком ионов Mg++ и их малыми размерами. Fe+ Со++ и Ni++ предпочтительно образуют комплексы со смешанными лигандами, имеющими заряженный кислород и азот. Обратите внимание на инверсию относительных стабильностей комплексов с Ре++, сравнив константы образования комплекса с этилендиамином и константы [c.404]

    Сильный окислитель в системе II ответствен за производство молекулярного кислорода. Комплексы марганца, вероятно, содержащие два атома марганца в молекуле, восстанавливают окислитель, который рециркулирует с использованием ёще одной молекулы хлорофилла (рис. 18.5) [9—11]. [c.573]

    Кроме того, нуждается в разъяснении вопрос о возможном существовании обратимого комплекса хлорофилл — кислород . Во всех вышеприведенных уравнениях действие кислорода объяснялось встречами между молекулами СйР, 1СЫ, гСЫ или г8 и свободным кислородом. Поэтому эффективность небольших концентраций кислорода могла считаться признаком существования долго живущего активированного состояния хлорофилла. Однако эту эффективность можно объяснить также и обратимым связыванием хлорофилла с кислородом в комплекс, насыщаемый при очень низких парциальных давлениях кислорода. Вспомним, что алломеризация, предотвращающая изменение цвета хлорофилла в фазовой пробе, приписывается Конентом и Фишером поглощению одной молекулы кислорода. [c.496]

    Помимо хлорофилла, в процессах фотосинтеза участвуют пигменты группы каротиноидов, в состав которых входят только водород п углерод, и ксантофиллы, имеющие в составе молекул еще и кислород. Пигме1 ты встречаются в тилакоидных мембранах всех фотоавтотрофных организмов. Каротиноиды играют роль антенных пигментов, чувствительных к солнечному свету в диапазоне волн, недоступном для хлорофилла. Они передают энергию солнечного света в центры реакций и, кроме того, как светофильтры экранируют хлорофилл в листьях, предохраняя его от фотодеструкции, фотоокисления. Этот защитный эффект связывают с наличием конъюгированных двойных связей (их может быть 9 или более), способных гасить возбужденное состояние молекул хлорофилла. Каротиноиды могут выводить кислород из находящегося в возбужденном состоянии комплекса хлорофилл — кислород, предотвращая тем самым окисление хлорофилла (его обесцвечивание). Каротин — протеиновый комплекс С550, расположенный в акцепторной части ФС И, также может участвовать в окислительно-восстановительных процессах. [c.85]

    Уровень ДПС, который достигается при адсорбции хлорофилла из раствора, определяется не только числом молекул пигмента, образующих л-л-комплексы. По всей вероятности, эта величина ограничивается и тем количеством кислорода, которое было внесено в адсорбционный слой с исходным препаратом хлорофилла. Введение дополнительного количества кислорода привело к возрастанию числа комплексов хлорофилл—кислород, и ДПС увеличивается. Усиление сигнала ЭПР обусловлено взаимодействием кислорода с л-я-агрегатами хлорофилла, возникшими в ходе формирования адсорбционного слоя в условиях дефицита кислор)ода. [c.217]

    Поддержание жизни обусловлено химическими процессами двух типов 1) фотохимическим превращением солнечной энергии в электрохимическую, необходимую для ассимиляции двуокиси углерода и воды с образованием восстановленных органических веществ и кислорода, и 2) процессом, обратным первому, т. е. окислением органических веществ с образованием двуокиси углерода и воды и с освобождением энергии. Ионы металлов участвуют в процессах обоих этих типов. Энергия солнечного излучения усваивается биосферой при участии магнийпорфириновых комплексов — хлорофиллов. Затем может происходить перенос электрона через ряд промежуточных переносчиков, таких, как цитохромы (Ре +/Ре +), ферредоксин (Ре Ре +) и пластоцианин (Си+/Си ) молекулярный кислород образуется при участии комплекса марганца. В процессах типа 2 участвуют ферменты, которые регулируют биосинтез и распад органических веществ. Поскольку биологические системы термодинамически неустойчивы, регулируемое освобождение энергии, происходящее во многих случаях при участии металло-ферментов, является основным условием существования жизни. [c.7]

    Эта интерпретация как будто бы подтверждалась и другим опытом Эмерсона и Арнольда. Если комплекс хлорофилл — СО2 действительно образуется, то низкое содержание хлорофилла и низкая концентрация СО2 должны вызывать сходный эффект, а это значит, что низкое содержание хлорофилла нельзя компенсировать путем удлинения темнового периода. Количество хлорофилла в клетках hlorella pyrenoidosa, выращиваемых под неоновыми лампами, приблизительно в 4 раза меньше, чем количество хлорофилла в клетках, освещаемых ртутными лампами. Кривые зависимости выхода кислорода от продолжительности темнового периода для тех и других клеток имели такую форму, как если бы опыты проводились при двух уровнях концентрации СО2 (фиг. 103). Можно было совместить кривые, соответствующие разным концентрациям хлорофилла, умножая значения, полученные при низкой концентрации, на некую постоянную величину. Это могло бы означать, что содержание хлорофилла в клетках влияет на световую реакцию, но не на темновую. Кроме того, такой результат, конечно, согласовался с первой (позднее отвергнутой) гипотезой, согласно которой только хлорофилл участвует в световой реакции. Однако Эмерсон и Арнольд в другой своей статье [77] высказали мнение, что этот результат был случайным. На эту мысль их натолкнули данные, показывающие, что культуры, выращенные под неоно- [c.234]

    Когда листья помещают в эфир, или охлаждают жидким воздухом,, или кипятят в воде, полоса поглощения смещается к положению, соответствующему истинному раствору это указывает на вероятное разложение белково-хлорофильного комплекса (Вильштеттер и Штоль [119] Зейбольд и Эгле [156]). В убитых таким способом листьях хлорофилл гораздо чувствительнее к кислороду и кислотам, чем до убивания. Таким образом, представ-вдется вероятным, что хлорофилл и другие пигменты хлоропластов связаны в живой клетке с клеточными белками, а также с некоторыми липофильными соединениями. Возникает вопрос, осуществляется ли эта связь в стехио-метрическом отношении и затрагивает ли она в равной мере весь хлорофилл, содержащийся в клетке  [c.386]

    Флуоресценция MgXл(a) возрастает по мере добавления экстралиганда, если используется абсолютно сухой бензол. Из табл. 5.3 следует, что в бензоле хлорофилл(а) координируется даже с молекулами, имеющими я1с-связанную электронную пару (первые два лиганда). Молекулы со свободной парой электронов образуют весьма устойчивые комплексы, независимо от того, координируется атом кислорода или азота. Обращает на себя внимание очень высокое сродство к воде (Ку = 3 10 ) и стабилизация экстракомплекса длинными алкилами (С7, С ), что важно для процессов комплексообразования, протекающих в биосистемах. [c.268]

    Этот аквакомплекс достаточно пррчед в ассоциатах хлорофилла и в водно-органическом окружении живой клетки зеленого листа. В этом комплексе молекула координированной воды уже частично окислена, так как электронная пара атома кислорода сильно смещена к [c.738]

    Главным фактором, регулирующим развитие фотосинтетических мембран и синтез пигментов, по-видимому, является парциальное давление кислорода. Если оно выше определенного уровня, дыхание может происходить с достаточной эффективностью, но образования фотосинтетических мембран или синтеза пигментов при этом не наблюдается. Низкое парциальное давление кислорода стимулирует образование фотосинтетического аппарата и пигментов, в первую очередь реакционных центров и главного комплекса светособирающей антенны Р-875. В ответ на изменение интенсивности освещения изменяется и состав пигментов. Так, у Rhodopseudomonas spp., свет низкой интенсивности стимулирует синтез бактериохлорофилла и каротиноидов, поскольку происходит формирование вторичного комплекса светособирающей антенны Р-800-850. Свет высокой интенсивности подавляет формирование этого комплекса, и в результате содержание пигментов снижается. В случае Rhodospirillum rubrum, которая не содержит антенны Р-800-850, содержание пигмента главной светособирающей антенны Р-875 регулируется интенсивностью освещения. О том, как протекают и регулируются процессы, в ходе которых фотосинтетические пигменты образуются и включаются в мембраны, известно немного. Гены, контролирующие синтез хлорофилла и каротиноидов, а также, возможно, развитие активного фотосинтетического аппарата в целом, локализованы в хромосоме (но не в плазмиде) и расположены очень близко друг к другу. В кодировании фотосинтетического аппарата может участвовать одна большая генетическая единица. [c.364]

    Хорошо известно, что циклические амины (в отличие от краун-эфиров) образуют комцлексы с ионами переходных и тяжелых металлов, являющимися "мягкими" кислотами, так как донорные атомы циклических аминов -атомы азота - принадлежат к "мягким" основаниям. В области циклических полиаминов значительные успехи бцли достигнуты в биохимии и биофизике порфирина, включая гем [комцлекс порфирина с Fe(II)] и хлорофилл [ комплекс хлорина с Mg(II) ], которые можно отнести к краун-соединениям. Были получены различные комплексы металлов, установлена их структура и изучено взаимодействие с молекулярным азотом, кислородом и т.д. Успехи в исследовании порфиринов отражены в обзорах Иошида и Огоши [11, [c.186]

    Суммарная реакция ассимиляции 1 молекулы углекислоты с одновременным выделением 1 молекулы кислорода (реакция 6.11) состоит из одной световой и двух темновых реакций (реакции 6.9 и 6.10). В световой реакции 1 молекула кислорода образуется из комплекса активированная СО2 — хлорофилл, названного Варбургом фотолит фотосинтеза . [c.283]

    Если комплекс активированная СОг — хлорофилл декар-боксилирован путем прибавления фторида, то фотосинтез будет происходить только после добавления кислорода. Кислород требуется для реактивации углекислоты с помощью реакций (6.9) и (6.10). Эта активация, по-видимому, включает реакцию [c.284]

    В главе XIV мы увидим доказательства в пользу существования хлорофилл-белкового комплекса. Сохранность этого комплекса может быть необходима для фотосинтетической способности хлорофилла. Были разработаны различные методы экстрагирования этого комплекса из листьев, и оказалось, что такие экстракты имеют некоторые из свойств хлорофилла в листе (например, абсорбционный спектр, химическая устойчивость и флуоресценция). Однако и у них отсутствовала фотосинтетическая активность. Эйслер и Порт-гейм [21] сообщили, что искусственные хлорофилл-белковые комплексы, приготовленные добавлением лошадиного серума к хлоро-фильным растворам, могут восстанавливать двуокись углерода и выделять кислород на свету однако методы этих исследователей были грубы и отсутствовало детальное изложение опытов. Нет ничего удивительного в том, что хлорофилл-белковые комплексы неспособны к фотосинтезу, если вспомнить, что изолированные хлоропласты в лучшем случае сохраняют лишь часть своей нормальной фото-синтетической активности. Речь идет не о том, способны ли хлорофильные препараты к полному фотосинтезу, а о том, сохраняются ли в них какие-либо свойства, связанные с ролью хлорофилла в фотосинтезе. Как указано в главе Ш, эта роль сводится к утилизации световой энергии для переноса водородных атомов против градиента химического потенциала. Хлорофилл может это осуществлять или путем чисто физического переноса энергии к клеточной окислительно-восстановительной системе, или же, что более вероятно, прямым химическим участием в этой системе. Отсюда, следовательно, и возникает вопрос, образует ли хлорофилл in vitro окислительно-восстановительную систему, а если это происходит, то увеличивается ли при поглощении света окислительная способность окисленной формы или восстановительная способность восстановленной формы (или и то и другое). [c.73]

    Не все известные случаи, в которых хлорофилл стабилизируется по отношению к молекулярному кислороду, могут быть объяснены отвлекающими или каталитическими действиями. То e, очевидно получается и при ассоциации пигмента с некоторыми веществами,, делающими его светоустойчивым, причем эти вещества сами не подвергаются постоянному иди временному сенсибилизированному окислению. Это истинно защитное действие можно объяснить, например, ускорением рассеяния энергии возбуждения в комплексе пигмент — защитное вещество. Если такое рассеяние конкурирует с флуоресценцией, то защищенный пигмент не будет флуоресцировать. Так как мы принимаем, что фотохимическим преобразованиям часто предшествует таутомернзация, то рассеяние может конкурировать только с последним процессом, не затрагивал флуоресценцию. Действие защитных коллоидов, согласно исследованию Вюрмзера зб], можно характеризовать следующим скорость выцветания хлорофилла понижается на 50% добавлением всего 0,05%, желатины пли казеина, но требуется 0,86% альбумина или 1,45% гуммиарабика для достижения того же эффекта, тогда как крахмад  [c.506]

    В ту же категорию можно отнести и защитное действие белков. Оно наблюдалось Ноаком [43] в искусственных комплексах белок-хлорофилл и Любименко [41] и Смитом [60] в коллоидальных бел-ково-хлорофильных экстрактах из листьев. Катц и Вассинк [59] отмечают значительную устойчивость коллоидальных экстрактов из пурпурных бактерий к свету и кислороду, в противоположность чрезвычайной чувствительности молекулярно-дисперсного бактериохлорофилла. [c.507]

    Отсутствие флуоресценции у хлорофилл-белковых комплексов указывает на то, что связь хлорофилла с этими соединениями еще более сокращает продолжительность жизни коротко живущего флуоресцентного состояния. Высокое парциальное давление кислорода, требуемое для сенсибилизированного хлорофилл-белковыми комплексами фотоокислепия (см. фиг. 73), показывает, что в этих комплексах вообще отсутствуют долго живущие активные состояния. [c.507]

    Обсуждая явления сенсибилизации в растворах, мы обращали большее внимание на механизмы типа Л, которые можно называть сенсибилизациями вследствие кинетических взаимодействий , чем на механизмы типа Б, являющиеся передачей энергии иди окисли-телщо-восстановительными реакциями внутри комплекса. Мы решили, что комплексообразованне растворенного хлорофилла с кислородом невозможно (глава ХУШ), а его связь с органическими субстратами сенсибилизируемых реакций представляется бодее вероятной, но ни в одном случае не доказанной прямыми фактами. [c.552]

    Изава и Гуд [179] провели обширное исследование с целью выяснить число точек в изолированных хлоропластах шпината, которые чувствительны к ингибиторам выделения кислорода при фотосинтезе. Помимо монурона, они испытали М-(3,4-ди-xлopфeнил)-N N -димeтилмoчeвинy (диурон) и 2-хлор-4-этил-амино-6-изопропиламино-сил<л1-триазин (атразин). Поглощение всех трех ингибиторов хлоропластами оказалось состоящим из трех процессов 1) необратимое связывание одной молекулы ингибитора на каждые 1000 молекул хлорофилла (связанные молекулы не оказывают ингибирующего действия) 2) разделение ингибитора между внешней средой и хлоропластами выше этого порога концентрации 3) поглощение, определяющее степень ингибирования и обусловленное, возможно, образованием комплекса фермент — ингибитор. С учетом первого из этих процессов два метода анализа результатов, основанные на явле- [c.278]

    Действием ультразвука, механическим разрушением, обработкой детергентами из хлоропластов удается выделить фракции частиц, отличающиеся по размерам, а главное, по содержанию пигментов, марганца, меди, цитохрома, дополнительных пигментов, по спектроскопическим характеристикам агрегатов хлорофилла и их фотохимической активности, по другим параметрам. Эти частицы исследователи относят к фрагментам хлоропластов, отвечающих комплексу элементов фотосистемы I или фотосистемы II (см. табл. на с. 31). Например, в более крупных частицах, сепарированных центрифугированием хлоропластов после обработки поверхностно-активными веществами, оказалось больше марганца, хлорофилла Ь, ксантофиллов, их модельные реакции отвечали фотосистеме II. Только в них присутствовали ксанто-филы, виолаксантин и зеаксантин, обратимые реакции эпоксиди-рования-дезэпоксидирования которых ранее связывали с выделением кислорода. [c.30]

    Исследования порфириновых структур проводятся в последние годы весьма интенсивно. Большой интерес к этим соединениям вызван тем, что порфиновый скелет лежит в основе строения гемоглобина и хлорофилла. Общеизвестна роль, которую играет в жизненных процессах комплекс гемоглобина с трехвалентным железом. Кобальтовый аналог этого комплекса называется кобоглобин. Порфиринаты кобальта (П1) обладают замечательным свойством в присутствии органических оснований, например имидазола, присоединять кислород, обратимо илн необратимо в зависимости от температуры. [c.229]


Смотреть страницы где упоминается термин Комплекс хлорофилл кислород: [c.496]    [c.84]    [c.223]    [c.422]    [c.1056]    [c.244]    [c.99]    [c.544]    [c.273]    [c.591]   
Фотосинтез 1951 (1951) -- [ c.496 , c.527 , c.528 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорофилл

Хлорофилл хлорофилл



© 2025 chem21.info Реклама на сайте