Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связи Типы ковалентных

    Координационные структуры. Координационными называются решетки, Б которых каждый атом (нон) окружен определенным числом соседей, находящихся на равных расстояниях и удерживаемых одинаковым типом химической связи (ионной, ковалентной, металлической). К координационным относятся ранее рассмотренные решетки хлорида натрия и хлорида цезия (см. рис. 58), алмаза (см. рис. 64) и металлов (см. рис. 65). [c.106]


    Основные положения теории химического строения органических соединений А, - М. Бутлерова. Квантовомеханические представления в химии. Гибридизация атомных орбиталей. Природа и виды химической связи в органических молекулах. Ковалентная связь и ее особенности. Направленность в пространстве. Семиполярная связь. Типы органических реакций. Понятие механизма химических реакций. [c.169]

    На симметрию кристаллической решетки -элементов их (п - 1) -электроны практически не влияют. Но если атом металла содержит неспаренные -электроны, то эти электроны могут взаимодействовать с -электронами соседних атомов металла и образовывать дополнительные ковалентные связи. Аналогичное взаимодействие возможно и для р-элементов. В этих металлах существуют металлическая и ковалентная связи одновременно. Ковалентная локализованная связь обладает свойством направленности, а металлическая — ненаправленная связь. Поэтому первый вид связи обуславливает более упорядоченное состояние, а второй — менее упорядоченное, т. е. с большей энтропией. При более высоких температурах на структуре кристаллической решетки и свойствах простого вещества сказывается, в основном, наличие металлической связи. Понижение температуры приводит к уменьшению отрицательного энтропийного (—Т Д5) вклада в изменение энергии Гиббса и начинает преобладать более упорядоченная локализованная ковалентная связь. Типичным примером является олово. Так, стабильной модификацией олова при i > 13,2 °С является мягкий металл ( белое олово), в то время как при более низких температурах устойчивее серое олово, представляющее собой твердый и хрупкий порошок с кристаллической решеткой типа алмаза — кристалла, с ковалентной связью  [c.321]

    Атомные и ионные радиусы. Условно принимая, что атомы и ионы имеют форму шара, можно считать, что. межъядерное расстояние с/ равно сумме радиусов двух соседних частиц. Очевидно, если обе частицы одинаковы, радиус каждой равен У 2 Так, межъядерное расстояние в металлическом кристалле натрия й == 0,320 нм. Отсюда металлический атомный радиус натрия равен 0,160 нм. Межъядерное расстояние в молекуле Маа составляет 0,308 нм, т. е. ковалентный радиус атома натрия равен 0,154 нм. Таким образом, атомные радиусы одного и того же элемента зависят от типа химической связи. Величины ковалентных радиусов зависят также от порядка химической связи. Например, при одинарной, двойной и трой- [c.152]


    Все это показывает, что интерметаллиды можно рассматривать как соединения со смешанной межатомной связью (металлической, ковалентной и ионной). Относительная доля того или иного типа связи 3 разных интерметаллидах меняется при этом в широких пределах. [c.254]

    До открытия электрона невозможно было понять природу химической связи. Правда, понятие о валентности существовало уже в 1852 г. и в эти же годы существовали некоторые представления о геометрических формах молекул. Вант Гофф и Лебель установили тетраэдрическую структуру атома углерода, а Вернер создал стереохимию комплексных ионов. Очевидно, для того чтобы молекула имела определенную геометрическую форму, должны существовать какие-то связывающие силы между ее частями. В структурных формулах такую химическую связь между связанными атомами изображали черточкой. Она указывала на существование связи, но, разумеется, не давала никакого описания ее природы. Незадолго до открытия электрона Аррениус предположил существование свободных ионов. На основе этого предположения были сделаны многочисленные попытки найти объяснение силам, связывающим атомы. Хотя эти попытки были неудачными, они содействовали представлению об электрическом заряде как основе образования связи. После открытия электрона стало возможно дальнейшее развитие теории связи. В течение немногих лет, основываясь на положительно и отрицательно заряженных атомах, было предлол<ено много разных объяснений образованию связи, но почти не было попыток связать заряды атома с его строением. В 1916 г. Льюис предложил свою теорию валентности. С тех пор было много сделано в области применения математики в теории валентности, но в основе представления о химической связи лежит по-прежнему теория Льюиса. Согласно Полингу , химическая связь возникает между двумя атомами в том случае, если связывающая атомы сила настолько велика, что приводит к образованию достаточно устойчивого агрегата, чтобы обеспечить его существование в виде самостоятельной частицы. Обычно различают пять типов химической связи ионная, ковалентная, металлическая, связь, обусловленная силами Ван-дер-Ваальса, и водородная, причем три первых очень прочны. Все эти связи одинаково важны, но металлическая связь здесь не будет рассмотрена о ней можно прочесть в других источниках . [c.134]

    По природе связей между атомами твердые тела делят тоже на две группы ионные, к которым относятся полупроводники и изоляторы, и ковалентные, включающие металлы. К ионным твердым телам относят вещества с большой долей ионной связи—типа галогенидов щелочных металлов, а также некоторые тела, у которых ионность невелика и преобладают ковалентные связи. Общим для них является изменение электрических свойств — от свойств, типичных для изоляторов, до свойств, проявляющихся у полупроводников. Такие вещества связывают адсорбат посредством электронной пары либо за счет проявления полярности. К ковалентным твердым телам помимо металлов относят элементарные полупроводники и отдельные полупроводниковые соединения. Объединяет их способность связывать адсорбат за счет свободных связей. [c.180]

    Взаимодействие атомов, приводящее к образованию молекул простых и сложных веществ, а также кристаллов, называют химической связью. Взаимодействие атомов многообразно, поэтому многообразны и химические связи, которые часто сводят к нескольким основным типам —ковалентной, ионной, донорно-акцепторной, водородной связи и др. Однако все эти взаимодействия можно описать с позиций единой теории химической связи. Эта теория призвана объяснить, какие силы действуют между атомами, как атомы объединяются в молекулы, что обеспечивает устойчивость образовавшейся сложной частицы (то же относится к кристаллам, жидкостям и другим телам). Теория должна объяснить опытные факты, лежащие в основе клас- [c.50]

    Одним из надежных способов интерпретации электронных спектров ионизованных форм адсорбированных молекул является параллельное исследование адсорбционных систем методом ультрафиолетовой спектроскопии и ЭПР. В этом случае удается выделить полосы поглощения образовавшихся на поверхности радикал-катионов [64]. Однако известная неопределенность остается и при таком подходе. Так, в соответствии с классическим определением считается, что кислотно-основными реакциями льюисовского типа являются реакции, в которых электронная пара молекулы основания передается акцептору с образованием связи типа ковалентной. Образование же радикал-катионов при адсорбции связано с передачей одного электрона. Вследствие этого в ряде работ [72, 73] предложено различать эти два процесса. [c.329]

    Важно отметить, что в карбонильных производных, как правило, замещение СО-групп или атомов водорода происходит прежде всего за счет химических связей типа ковалентных  [c.22]

    Если атом кобальта в карбониле сохраняет неизменной свою электронную структуру, то с каждым из двух центральных атомов координируются по три молекулы окиси углерода, заполняющие своими электронами три вакантных 4 р-ячейки атома металла. Две молекулы окиси углерода образуют два мостика между центральными атомами металла. Третий холостой 3 d электрон каждого из двух центральных атомов устанавливает химическую связь типа ковалентной со вторым атомом кобальта. Расстояние между атомами металла почти в точности сов- [c.135]


    В первой модели для образования связей типа ковалентных каждый из атомов кобальта спаривает свои холостые Зё-электроны с такими же электронами трех соседних атомов металла. Кроме того, для заполнения своих трех свободных 4р-ячеек каждый атом кобальта получает шесть электронов от шести молекул окиси углерода. Во второй модели каждый атом кобальта также получает по одному электрону от трех соседних центральных атомов (для организации трех связей типа ковалентных с тремя холостыми Зс1-электронами) и по два электрона от трех молекул окиси углерода, координирующихся с тремя свободными 4р-ячейками атома металла [14, 76]. Вторая модель является, видимо, единственно правильной, тогда как первая представляет собой необычное построение с 12 мостиками и 24 водородными связями. [c.146]

    Как известно, связи в органических соединениях главным образом атомного типа (ковалентные) и характеризуются направленностью действия, а также углом между этими направлениями. Расстояние между атомами в молекуле можно приближенно рассчитать, суммируя значения ковалентных радиусов атомов. В случае двух одинаковых атомов, связанных друг с другом, ковалентный радиус равен половине расстояния между ними. Так, расстояние между двумя атомами углерода С—С в цепи парафинового углеводорода равно 1,54 А, и, следовательно, ковалентный радиус -атома углерода при ординарной связи равен 0,5-1,54 = 0,77 А. Длина ковалентного радиуса зависит от того, какая связь существует между атомами. Например, для С=С ковалентный радиус атома углерода составляет 0,5-1,20 = 0,60 А. [c.63]

    Из механизма диссоциации ясно также, что диссоциировать будут вещества, обладающие ионной или полярной связью, поэтому степень диссоциации зависит от природы растворенного вещества, вернее, от типа связи в его молекулах. Следовательно, из приведенных примеров растворов Na l (ионная связь), НС1 (полярная связь) и I2 (ковалентная связь) диссоциировать будут Na l и ИС1, а хлор в растворе будет находиться в виде молекул хлора. Если же в растворе оказываются сложные молекулы с различным типом химической связи, то распад на ионы произойдет в том месте молекулы, где существуют ионная и полярная связь. Так, молекула азотной кислоты HNO3 диссоциирует на ионы водорода Н + и кислотный остаток N0 , , который не распадается под действием воды, так как азот с кислородом связаны здесь ковалентной связью. [c.44]

    Водородная связь представляет собой как бы вторую побочную валентность водородного атома, которую он может проявлять по отношению к сильно отрицательным атомам, если основная валентность связывает его с атомом, тоже сильно отрицательным. В жидком состоянии фтористый водород имеет молекулу H Fg. При растворении его в воде образуются ионы Н+ и НРГ. В анионе HFF водород связывает оба атома фтора не двумя ковалентными связями, так как он не может иметь больше одной такой связи, а электростатическим взаимодействием протона Н+ с ионами Р . Сильно электроотрицательный атом F отнимает электрон от атома Н и последний превращается в протон Н+, способный своим зарядом довольно прочно связать второй ион F . Это ведет к образованию водородной связи типа X . ., H+X , которую называют водородным мостиком. [c.79]

    Образование рассмотренных выше типов химической связи (ионной, ковалентной и металлической) сопровождается перестройкой электронных оболочек взаимодействующих атомов. Кроме этих связей, существуют молекулярная и водородная связи, при образовании которых происходит не перестройка электронных оболочек, а главным образом их деформация (т).  [c.37]

    Вследствие тетраэдрического расположения водородных связей кристалл льда имеет алмазоподобную структуру типа a-ZnS и -ZnS (см. рис. 236). Поскольку водородная связь длиннее ковалентной, структура льда в отличие от ZnS довольно рыхлая и имеет много свободных полостей. Этим объясняется необычно малая плотность льда и способность образовывать так называемые клатратные соединения (стр. 285). [c.137]

    Различным типом ковалентных связей объясняется переход от неполярного молекулярного вещества к полимерному соединению. [c.560]

    Теория молекулярных орбит. Невозможность достаточно полного описания свойств комплексов на основе теории валентных связей и теории кристаллического поля в значительной степени проистекает из-за того, что обе они исходят из абстрактного предположения о природе связи в комплексах (чисто ковалентная двухэлектронная связь типа ГайТлера—Лондона в теории валентных связей или чисто ионная связь в теории кристаллического поля). С другой стороны, в теории кристаллического поля адденды рассматривали, не принимая во внимание их электронную структуру. [c.258]

    Характер и типы ковалентной связи. Гибридизация орбита-лей. Параметры молекул - длина, углы и прочность связей. Изображение структуры молекул [c.24]

    Величина константы спин-спинового взаимодействия протонов зависит от числа и типа ковалентных связей, через которые могут взаимодействовать протоны, и от геометрической ориентации этих связей. Спин-спиновое взаимодействие быстро ослабевает с увеличением числа химических связей между взаимодействующими ядрами и, как правило, наблюдается только через одну, две или три простые связи. Взаимодействие протонов через четыре и более простых связей (так называемое дальнее взаимодействие) проявляется в очень редких случаях, зато в системах, содержащих двойные и тройные связи, взаимодействие через четыре и более связей не является редкостью. [c.131]

    СИГМА-СВЯЗЬ И пи-связь (а-свяэь и я-связь) — типы ковалентных химических связей. о-С. может образоваться при взаимодействии (перекрываннн) атомных орбиталей любого типа. Она характеризуется цилиндрической симметрией и одной областью перекрывания. Благодаря этому возможно свободное вращение фрагментов молекулы вокруг линии ст-связи. Простейшим случаем а-связи является молекула На, в которой -электроны водородных атомов имеют антипараллельные спины. Максимальная плотность электронного облака а-связи находится на линии связи. Во всех органических веществах простые ковалентные связи между атомами углерода и другими атомами являются ст- С. я- С. возникают в ненасыщенных органических веществах только за счет р-электронов, оси орбиталей которых располагаются параллельно и перекрывание орбиталей происходит в двух областях. Последнее создает энергетический барьер для взаимного вращения фрагментов молекулы вокруг линии связи и обусловливает существование цис-транс-изомерш. Таким образом, двойная связь состоит из двух типов связи — о-С. и я-С. Тройная связь соответственно состоит из одной а-С. и двух П-С., расположенных в двух взаимно перпендикулярных плоскостях. [c.226]

    Кристаллические тела классифицируются или по симметрии кристаллов, например кубические, тетрагональные, ромбические, гексагональные, или по осуществляемому в них типу химической связи ионные, ковалентные, металлические, вандерваальсовы. Оба этих вида классификации взаимно дополняют друг друга. Классификация по симметрии более удобна при оценке оптических свойств кристаллов, а также каталитической активности кристаллических веществ. С другой стороны, оценку теплот плавления, твердости, электропроводности, теплопроводности, растворимости удобнее проводить на основании типа связи в кристалле. [c.73]

    При относительной простоте теория кристаллического поля оказалась полезной при решении таких вопросов химии комплексных соединений, как их магнитные свойства, происхождение спектров, изменение ряда физических свойств в рядах сходных комплексов, количественные характеристики и -г. п. Вместе с тем эта теория имеет и недостатки, основной из которых состоит в пренебрежении электронной структурой лигандов, приводящее к игнорированию возможности образования различного типа ковалентных связей между центральным ионом и лигандами. Этот недостаток был устранен использованием метода МО к координационным соединениям переходных элементов. [c.120]

    В современной химии различают следующие типы связей в соединениях 1) ионная связь 2) ковалентная связь 3) полярная связь 4) водородная связь 5) межмолекулярная связь. [c.26]

    Различают несколько типов химических связей ионную, ковалентную, металлическую, водородную. Образование их можно представить, рассматривая силы взаимодействия между атомами (или ионами). [c.10]

    Выше указывалось, что в полимерных (многоядерных) карбонилах между атомами-комплексообразЬвателями образуется симическая связь типа ковалентной. Каждая такая связь увеличивает эффективный атомный номер на один электрон. Отсюда приходим к определению степени полимерности молекулы карбонила аналогично формуле Д. И. Поспехова [29, 30]. [c.17]

    Многие белки содержат также некоторое количество ковалентных связей, сшивающих цепи. Наиболее часто это - дисульфидные связи типа показанных на рис. УП.9,г. Дисульфидные мостики образуются между остатками цистеина (аминокислотный остаток - это та часть аминокислоты, которая присутствует в бепкотюй цепи). Группа К цистеина содержит группу -8-Н. Два остатка цистеина могут реагировать этими группами, теряя водород и образуя дисульфидную связь  [c.455]

    Синтез схем химического превращения на основе концепции изомеризма. В основе метода лежит использование закона сохранения вещества в процессе химического превращения и предположение о том, что атомы, составляющие молекулярную структуру, можно рассматривать состоящими из ядер со стабильными внутренними электронами и валентных электронов, способных образовывать химические связи типа ионной, ковалентной и мпо-гоцентровой [12, 13]. Исходя из этих положений разработана математическая модель химических соединений и реакций, заключающаяся в следующем. [c.444]

    Еще к концу XIX в. четко выявилось существование по крайней мере двух типов химической связи и соответственно двух типов химических соединении. Было установлено, что в соединениях одного типа атомы, образующие молекулы, обладают зарядами разных знаков, в соединениях же другого типа атомы являются не-заряженцыми. Первые соединения получили название гетерополяр-ных, вторые — гомеополярных. В наше время связь, отвечающую соединениям первого типа, называют ионной (или иногда элек-тровалентной) связью, а связь, отвечающую соединениям второго типа, — ковалентной связью. Впрочем, терминология и границы, понятий здесь еще не вполне установились. (Существуют и другие виды связи между атомами — см. 24, 25). [c.56]

    Строение алкацов. Основные положения теории строения атомов и органических молекул. Квантово-химические представления о лри-ррде и типах ковалентной связи в органических молекулах. Способы изображения органических молекул. Понятие о конформационном анализе.  [c.188]

    Координационными называются реп1етки, в которых каждый атом (ион) окружен определенным числом соседей, находящихся на равных расстояниях и удерживаемых одинаковым типом химической связи (ионной, ковалентной, металлической). [c.91]

    Характер и типы ковалентной связи. Гибридизация орбита-лей. Параметры молекул - длина, углы и прочность связей. Способы изображения структуры. иолеку.г. Изомерия, конформации [c.26]

    Твердые молекулярные соединения очень разнообразны и многочисленны. Но по обилию и сложности форм они не идут ни в какое сравнение с атомными и атомно-молекулярными твердыми соединениями. Это связано с тем, что при отвердевании последних межмолекулярное взаимодействие отступает на задний план, и направление этого процесса всецело определяется действием направленных межатомных связей. Соединение ковалентными связями протяженных структурных единиц, обрывков цепей, сеток, фрагментов каркаса, принимающих самую причудливую форму и любые положения, исключает их плотную укладку вместо кристаллизации обычно идет неупорядоченное структурообразование, в частности, при высокой температуре в расплаве — стеклообразование, при низкой температуре в растворе — гелеообразование. Заметим, что плавление и отвердевание стекла или смолы — химический процесс, так же как и образование геля в результате полимеризации или поликонденсации. Ведь и в том, и другом случае разрываются и вновь образуются межатомные химические связи. Для атомных твердых соединений характерно образование различных рядов. Классификацию соединений этого типа мы рассмотрим отдельно (см. гл. XIII). [c.18]

    Элементарные окислители, или оксоиды, — вещества, построенные из атомов одинаковых окислительных элементов. В газовом состоянии существуют в виде преимущественно двухатомных молекул, в которых атомы связаны неполярными ковалентными связями. В конденсированном состоянии элементарные окислители характеризуются летучестью, отсутствием электропроводности (как в твердом, так и в жидком состояниях) и непрочностью образуемых кристаллических решеток молекулярного типа. [c.36]

    Анионы А " связываются с молекулами воды водородной связью. Сильное воздействие анионов может привести к полному отрыву протона от молекулы НгО - водородная связь становится ковалентной. В результате образуется кислота или анион типа Н5 , НСОГ и т. п. Взаимодействие анионов К с протонами тем значительнее, чем больше заряд аниона и меньше его радиус. Таким образом, интенсивность взаимодействия вещества с водой определяется силой поляризующего влияния К" и А " на молекулы Н2О. Так, катионы элементов побочных подгрупп и непосредственно следующих за ними элементов подвергаются более интенсивному гидролизу, чем другие ионы одинаковых с ними заряда и радиуса, так как ядра первых менее эффективно экрлнируюгся с/-электронами. [c.283]

    Линейную комбинацию АО лигандов как одну так называемую групповую орбиталь 7 ,. Тогда искомая МО примет вид 1/=С/ Групповая орбиталь лигандов и АО центрального иона должны относиться к одному и тому же типу симметрии, характерному для точечной группы симметрии комплекса, иначе линейная комбинация невозможна (см. 25). Число МО комплекса будет равно общему числу АО лигандов и центрального иона. Коэффициенты С/ и можно найти вариационным методом. Если с/ =0,5 (интегралом перекрывания пренебрегаем), связь чисто ковалентная. При с, = 1 и с,. = О МО сосредоточена целиком на центральном атоме, связь между ним и лИгапдами чисто ионная. Это и есть предельный случай, рассматриваемый в теории кристаллического поля. Большей частьвз ближе к 1, чем к УбЗ, т.е. связь ближе к ионной, чем к чисто ковалентной. [c.247]

    Строение силикатных расплавов. Поскольку кристаллические силикаты и алюминаты состоят в основном из решеток ионного типа, их расплавы также являются ионными. В первом приближении расплавы можно рассматривать как жидкости — диссоциированные электролиты, состоящие из ионов Са-+, Mg=+, Si +, 0 - и т. д., что объясняется наличием ковалентных связей. Степень ковалентности в расплавах больше, чем в кристаллах, при этом связи между анионами 0=- и катионами Ме+, Ме + имеют в основном ионный характер, а связи между О - и Si +, А1 +, Р + — смешанный, ионно-ковалентный, с различной долей этих типов связей. Катионы с большей долей ковалентной связи (З В +) образуют в расплавах комплексные, например кремнекислородные, анионы различной формы и размера, как это имеет место у кристаллических силикатов. Степень комплексообразования в расплаве зависит от атомарного отношения О Si, В расплаве SiOj атомарное отношение [c.99]

    Радикалы и атомы, несущие заряд, являются первичными частицами, из которых создаются хемосорбционные слои. При хемосор бции может образоваться любой из трех главных типов, химической связи — ионный, ковалентный и координационный.. [c.348]


Смотреть страницы где упоминается термин Связи Типы ковалентных: [c.79]    [c.184]    [c.67]    [c.89]    [c.205]    [c.79]   
Теория резонанса (1948) -- [ c.53 , c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Ковалентность

Связи ковалентные Связи

Связь ковалентная

типы связ



© 2025 chem21.info Реклама на сайте