Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основания наивысшие по силе

    При этом основания равной силы, но с более высоким молекулярным весом могут не попасть в экстракт, так как растворимость их в нефтяной фазе гораздо больше, чем в водной. Общее распространение получил метод, по которому азотистые соединения делятся на основные и неосновные в зависимости от того, титруются ли они хлорной кислотой в растворе бензола и ледяной уксусной кислотой в соотношении 50 50 [135]. [c.44]


    В кислых и амфотерных растворителях с высокой диэлектрической проницаемостью многие основания полностью превраш ены в лиат-соли, т. е. полностью диссоциированы, благодаря чему они становятся одинаково сильными основаниями, их сила нивелируется (см. табл. 24). В этом [c.354]

    Такие иониты ведут себя подобно смеси многих кислот или оснований различной силы (например, подобно универсальным буферным смесям). У ионитов IV типа часто нельзя бывает определить предельное значение обменной способности, так как даже при очень высоких значениях pH (рОН) обменная способность их продолжает изменяться. [c.675]

    В кислых и амфотерных растворителях с высокой диэлектрической проницаемостью многие основания полностью превращены в лиат-соли, т, е. полностью диссоциированы, благодаря чему они становятся одинаково сильными основаниями, их сила нивелируется (см, табл. 65). В этом случае обратная величина коистанты диссоциации o6g и константа ассоциации Касс равна нулю. [c.666]

    Этот Процесс вследствие высокой силы кислоты происходит уже при действии сравнительно слабых оснований это привело к тому, что первичные и вторичные нитросоединения уж е давно называют псевдокислотами, а иногда даже постулируют для нитрогруппы две формы — нитро- и аци-иитро -форму ). [c.347]

    Алифатические и алициклические амины, как правило, по силе основных свойств близки к аммиаку, в то время как ароматические амины значительно слабее. Их запахи весьма разнообразны от аммиачного до запахов, напоминающих гнилую рыбу. Гидроокиси четвертичного аммония — очень сильные основания, по силе их можно сравнить с едким натром или едким кали. Растворимость этих органических оснований в органических растворителях делает их важным классом катализаторов для органических реакций. Молекулярная ассоциация аминов в жидком состоянии не столь высока, как спиртов, что объясняет их относительно низкую температуру кипения по сравнению с температурой кипения спиртов с близким молекулярным весом. Амины, имеющие более низкий молекулярный вес, растворимы в воде и, за [c.57]

    Из всех приведенных кислот наиболее сильной является трифторуксусная —0,26 (см. табл. 6.3 и примечание к ней), высокая сила кислотности которой приписывается сильному электронооттягивающему индукционному эффекту трифторметильной группы. Эта группа, оттягивая электроны от частично положительно заряженного карбоксильного углерода, повышает силу кислоты и в то же время, оттягивая электроны от карбоксильного аниона, уменьшает силу сопряженного основания. Таким образом, индукционные эффекты в карбоновой кислоте и в сопряженном основании усиливают друг друга. Качественно аналогичный эффект наблюдается для кислот, несущих другие электроноакцепторные заместители. Влияние включения между карбоксилом и группой, обусловливающей индукционный эффект, атомов углерода (например, метиленовых групп) иллюстрируется следующим рядом  [c.376]


    Катионы -элементов с зарядом 2+ (Mg2+, Са +, 8г2+ и Ва +) имеют более высокую поляризующую способность, чем ионы 5-элементов с зарядом 1-1-, они образуют менее растворимые гидроксиды. Самые высокие поляризующие свойства из этой группы катионов имеет М 2+, а наименьшие — Ва2+, поэтому гидроксид магния представляет собой малорастворимое основание средней силы, а гидроксид бария — довольно хорошо растворимое сильное основание. Гидроксиды кальция и стронция по силе и растворимости занимают промежуточное положение. Осадки Са(0Н)2, 5г(ОН)2 и Ва(0Н)2 образуются только из достаточно концентрированных растворов. [c.67]

    Водный раствор, очень разбавленное или слабое основание Высокий pH и малая ионная сила буферного раствора [c.278]

    СЯ частица обладает высоким дипольным моментом, что можно объяснить только наличием ионных зарядов в молекуле аминокислоты, поскольку дипольный момент молекулы NHj— Hj—СООН не может быть высоким. В этих условиях нельзя ожидать и замещения протона группой —СНа—СООН в молекуле аммиака (который является основанием средней силы, р/С = 9,2) с образованием слабого основания с р/С 2. Оба факта можно объяснить, только предположив, что при pH 2 имеет место протолитическая реакция [c.63]

    Стэкинг-взаимодействие — неполярное взаимодействие между параллельно уложенными основаниями в двухспиральной структуре ДНК- Если водородные связи обеспечивают специфичность спаривания оснований, то силы стэкинг-взаимодействия обусловливают высокую степень стабилизации спиральной структуры ДНК- [c.82]

    Способность растворителей к специфической сольватации обусловлена наличием у них электронодо-норных или электроноакцепторных свойств. По Льюису акцепторы электронов являются кислотами, а доноры — основаниями, и поэтому сольватация — это взаимодействие льюисовских кислот и оснований разной силы. Введя понятие жестких и мягких кислот и оснований, можно предсказать характер сольватации обменивающихся ионов. По Льюису к жестким основаниям относятся донорные частицы, обладающие высокой электроотрицательностью и-низкой поляризуемостью (0Н , F , СО3 ). Донорные частицы с низкой электроотрицательностью и высокой поляризуемостью относятся к мягким основаниям (1 , S N , R3P). К жестким кислотам относятся акцепторные частицы с низкой поляризуемостью (Н+, Li+, Na+, BF3), а к мягким — акцепторные частицы с высокой поляризуемостью (Ag+, I , Ь). [c.30]

    Абсолютный размер молекул ДНК генома накладывает определенные ограничения на хроматографические и электрофоретические методы, которые могут быть использованы для разделения этих соединений. Даже вирусные ДНК во много раз длиннее встречающихся в природе РНК. Хромосомы большинства бактерий состоят из единственной молекулы ДНК с молекулярной массой около 3-10 (10 пар оснований), а молекулярная масса содержащейся в клетках животных ядерной ДНК еще на три порядка больше (молекула состоит из 10 пар оснований). В силу очень высокого отрицательного заряда и значительных по величине неионных взаимодействий высокомолекулярных ДНК с сорбентом разделение этих соединений с помощью анионообменной хроматографии практически невозможно. В случае гель-электрофореза также приходится сталкивать- [c.183]

    Адсорбция [5.24, 5.31, 5.55]. Метод основан на поглощении одного или нескольких компонентов твердым веществом — адсорбентом — за счет притяжения молекул под действием сил Ван-дер-Ваальса. Адсорбционный метод нашел широкое применение в промышленности при регенерации органических растворителей, очистке газов, паров и жидкостей. Достоинство его — возможность адсорбции соединений из многокомпонентных смесей, а также высокая эффективность при очистке низкоконцентрированных сточных вод. В качестве адсорбентов могут служить практически любые твердые материалы, обладающие развитой поверхностью. Наиболее эффективными адсорбентами являются активные угли (АУ). Адсорбент в процессе очистки используется многократно, после чего его подвергают регенерации. При регенерации образуются водные растворы или газы, которые необходимо дополнительно обработать с целью утилизации уловленных соединений [5.32, 5.33, 5.52]. [c.486]

    В пылеочистительной технике большое распространение получили циклоны различных конструкций, однако принцип их работы одинаков и основан на использовании центробежной силы. В циклонах линейная скорость пылегазовой смеси колеблется в пределах 15—20 м/с. Пыли имеют большую электроемкость и способны приобретать заряды статического электричества в результате адсорбции ионов газа, трения, ударов частиц друг о друга. При транспортировании пыли электрический потенциал возрастает с ростом скорости движения газа. При скорости угольной пыли свыше 2,25 м/с потенциал достигает 7500 В. Мощные заряды статического электричества могут создаваться в пылеобразующих материалах при транспортировании их по трубам и при перемещении в циклонах с высокой скоростью. При разряде статического электричества могут образовываться искры, способные воспламенить пылевоздушные смеси. Поэтому при устройстве и эксплуатации средств пневмотранспорта и сепарации пыли в циклонах следует принимать эффективные меры, предупреждающие накопление больших зарядов статического электричества и образование пылевоздушных смесей взрывоопасных концентраций. [c.156]


    Из органической химии известно, что образование химических связей обусловлено короткодействующими силами. Это дает основание для утверждения о протекании хемосорбции лишь в монослое. Хемосорбция — обычно довольно медленный процесс, протекающий вслед за физической адсорбцией. При низких температурах скорость хемосорбции может быть настолько малой, что становится заметной лишь физическая адсорбция. И наоборот, при высокой температуре физическая адсорбция почти незаметна и происходит в основном хемосорбция. [c.184]

    По мере возрастания сил сцепления между частицами агрегаты начинают возникать внутри слоя, достигая некоторого равновесного размера. Они могут оставаться псевдоожиженными или, напротив, увеличиваться в размерах до тех цор, пок 1 не начнется сегрегация, вызывающая прогрессирующее нарушение псевдоожижения. Если подобное агрегирование происходит в процессе псевдоожижения, то оно может быть сведено к минимуму подачей крупнозернистых материалов и применением высоких скоростей ожижающего агента Частицы, выпадающие в основание слоя, могут быть удалены через разгрузочный люк, установленный на уровне решетки вместо использования обычного переливного устройства .  [c.713]

    Для ароматических углеводородов благодаря высокой устойчивости соответствующих карбоний-ионов можно непосредственно измерить силу основания в безводном НР путем измерения электропроводности при 20° С найдены константы равновесия К.  [c.42]

    Размер частиц обычно определяется их диаметром, выраженным в микронах. Частицы размером более 10 мкм можно легко отделить от газа в обычном сепараторе. Более мелкие частицы отделить от газа очень трудно даже при использовании силы тяжести, соударения, центробежной силы и фильтрования. Сепарацию, основанную на других принципах, использовать для газовых потоков высокого давления пока пе удается. [c.85]

    Для измерения высоких давлений обычно применяется поршневой манометр. Принцип его работы основан на определении давления как силы, действующей на единицу площади (фиг. 3.1, а). Жидкость (например, масло) под давлением р входит в цилиндр и перемещает поршень вверх. Перемещение поршня уравновешивается приложением к нему внешней силы. Этой силой обычно является вес специально калиброванных грузов. При очень высоких давлениях вместо грузов применяется [c.76]

    Приближения более высокого порядка должны включать поляризуемость первой молекулы, индуцированной диполем второй молекулы, и т. д. Взаимодействия такого типа обусловливают силы, которые с достаточным основанием можно рассматривать как силы третьего порядка. Вероятно, они пренебрежимо малы, хотя Букингем и Поил [58] предложили учитывать их по крайней мере членом, пропорциональным [c.198]

    Высокие значения температуры удобнее и точнее можно замерять нри помощи термопар. Этот способ замера основан па возникновении электродвижущей сил ,[ в месте спая двух проводников. Значение э, д. с. зависит от природы проводников и темнературы спая. Измерительная установка представляет собой цепь, состоящую из двух проволок-проводников, спаянных на концах в цепь включен потенциометр или милливольтметр. [c.15]

    Высокая электроотрицательность галогена обусловливает пониженную электронную илотносгь на атоме углерода в положении 3 кольца, непосредственно связанного с трихлорметиль-ной группой. Тем самым облегчается атака нуклеофильных агентов. Характер процесса зависит от основности нуклеофильного агента. Слабые основания (гидразин, амнны) и основания средней силы (водная щелочь, этилат натрия в ДМФА) присоединяются к кольцу с отщеплением трихлорметильной группы [c.44]

    Структура длинных цепеобразных молекул целлюлозы, выведенная на основании химических данных, полностью подтверждается рентгеновским анализом. Подвергнутые действию монохроматических рентгеновых лучей, волокна целлюлозы дают резкие диффракционные пятна (рис. 1), свидетельствуюш,ие о высокой степени молекулярной ориентации (см. стр. 280). Два глюкозных остатка, расположенных так, как показано в вышеприведенной формуле целлюлозы, имеют размеры точно равные 10,3 А вдоль оси волокна. Нерастворимость целлюлозы и отсутствие термопластичности должны быть приписаны высоким силам кохезии между цепями. Эти свойства могут быть до известного предела изменены этерификацией. Чем больше этерифи-цирующая группа, тем ниже температура, при которой обнаруживается термопластичность. Подобным же образом сопротивление на разрыв волокон сложного эфира тем ниже, чем больше замещаюш ая группа. [c.162]

    На основании измерений- проводимости цеолитов, например шабазита, Вуд развил, по существу, другие теории он считает, что в связи с частым образованием трещин и других неоднородностей в кристаллах колнчестаенные результаты изменяются в широких пределах. Удельное сопротивление плохо проводящего шабазита равно 1100 110 ом см для хорошо проводящего кристалла из другого месторождения оно составляет только 0,1 -10 ом- см. Согласно Вуду, применимость закона Ома наблюдается только для самой малой силы тока, тогда как при высокой силе тока и высоком напряжении выявляются различные аномалии и процессы гистерезиса. Температурная зависимость проводимости у сильно обезвоженного шабазита значительно меньше, чем у менее обезвоженного цеолита. Сопротивление сильно понижается с повышением температуры при этом наблюдается отчетливая электролитическая проводимость, которая оказывается вместе с тем явно обратимой функцией от содержания воды. [c.664]

    Акцепторы электронов (кислоты) Мулликен разделяет на я-акцепторы, например полинитроароматические соединения, которые обладают ярко выраженной склонностью присоединять я-основания (и которые мы почти не будем рассматривать), на ионные ( ) кислоты, например протон, и на кислоты с вакантными орбиталями (и), например электрононенасыщенные галогениды металлов типа катализаторов реакции Фриделя — Крафтса, которые имеют особую склонность присоединяться к м-основаниям. Галогены, так же как и галогеноводороды, могут присоединяться как к я-, так и к я-основаниям. Движущей силой взаимодействия в обоих случаях является высокая электроотрицательность атома галогена. Для того чтобы атом галогена мог принять отрицательный заряд передаваемого ему электрона, он должен ослабить свою уже имеющуюся ковалентную связь с другим атомом галогена или с водородом, что приводит, когда это возможно, к диссоциации. Хотя галогеноводороды и являются довольно слабыми кислотами Льюиса, в тех случаях, когда неблагоприятное окружение препятствует диссоциации, они могут стать очень сильными кислотами Брен-стеда, если имеются подходящие условия сольватации и диэлектрическая проницаемость растворителя достаточно высока. [c.201]

    Из приведенных в табл. 11.1 титрантов гидроокись натрия, этилат натрия и гидроокись тетрабутиламмония обычно применяются в концентрации порядка 0,01 н. Гидроокись натрия применяют для определения органических кислот с константами диссоциации выше 10" остальные два — для кислот, имеющих еще более низкое значение этой константы. Теоретически можно приготовить титрант с самой высокой силой основности для определения кислых функций, лежащих в широком интервале силы кислотности. Однако практАчески это невозможно, особенно в микроанализе. Например, алюмогидрид лития и трифенилметилнатрий нельзя использовать в виде 0,01 н. растворов, так как эти соединения чрезвычайно чувствительны к двуокиси углерода, кислороду и влаге. Трудно поддерживать крепость даже их 0,1 н. раствора. Метилат калия более сильное основание, чем метилат натрия, и более растворим в бензоле. Это имеет большое значение, поскольку метанол обладает кислотными свойствами и весьма желательно уменьшать относительную долю метанола в его смеси с бензолом. Однако металлический калий, используемый для приготовления метилата, значительно опаснее натрия. Метилат лития может быть удобным реагентом при микроопределениях. Единственным неудобством при работе с металлическим литием является то, что его трудно резать при комнатной температуре. Поэтому рекомендуется пользоваться литиевой лентой, которую можно резать ножницами. Казо и Че-фола рекомендовали сульфаминовую кислоту в качестве первичного стандарта для установления титра растворов метилата лития. Двуокись углерода при этом не мешает, а конечную точку титрования можно определять потенциометрически. [c.375]

    Принципиальная технологическая схема процессов химической абсорбции не отличается от обычной схемы абсорбционного процесса. Однар(0 в конкретных условиях в зависимости от количества кислых газов в очищаемом газе, наличия примесей, при особых требованиях к степени очистки, к качеству кислого газа, и других факторов технологические схемы могут сун ест-венно отличаться. Так, например, при использовании аминных процессов при очистке газов газоконденсатных месторождений под высоким давлением и с высокой концентрацией кислых компонентов широко используется схема с разветвленными потоками абсорбента (рис. 53), позволяющая сократить капитальные вложения и в некоторой степени эксплуатационные затраты. Высокая концентрация кислых комионентов требует больших объемов циркуляции поглотительного раствора. Это не только вызывает рост энергетических затрат на перекачку и регенерацию абсорбента, но и требует больших объемов массообменных аппаратов, т. е. увеличения капитальнрлх вложений. Вместе с тем из практики известно, что в силу высоких скоростей реакций аминов с кислыми газами основная очистка газа происходит на первых по ходу очищаемого газа пяти—десяти реальных таре, 1-ках абсорбера на последующих тарелках идет тонкая доочистка. Этот факт послужил основанием для подачи основного количества грубо регенерированного абсорбента в середину абсорбера, а в верхнюю часть абсорбера — меньшей части глубоко-регенерированного абсорбента. Это позволило использовать абсорбер переменного сечения (нижняя часть большего диаметра, верхняя — меньшего), что снизило металлозатраты, а также сократить затраты энергии за счет глубокой регенерации только части абсорбента. [c.171]

    Несмотря на отмеченные недостатки результатов H.H. Павловского, есть основания для их сопоставления с соответствующими результатами трубной гидравлики. Важно подчеркнуть, что критические значения числа Рейнольдса, подсчитанные по формуле (1.11), намного меньше тех, которые в трубной гидравлике соответствуют переходу ламинарного течения в турбулентное. Это служит одним из доводов в пользу того, что причины нарушения закона Дарси при высоких скоростях фильтрации (увеличение влияния сил инерции по мере увеличения Re) не следует связывать с турбулизацией течения. Отсутствие турбулентности при нарушении закона Дарси было доказано также прямыми опытами, изложенными Г. Шнебели. [c.21]

    Феноменологический состоит в изучении свойств взаимодействующих объектов системы путем анализа условий и количественных зависимостей превращений энергии, происходящих в системе. Этот подход не связан с какими-либо конкретными представлениями о внутреннем строении объектов системы, силах взаимодействия между ними и характере их движения. Подход макроскопичен от начала до конца и в его основе лежат некоторые априорно вводимые постулаты (начала или законы термодинамики), которые получены на основании громадной экспериментальной практики, не противоречат ни одному из известных физических явлений и обладают, таким образом, очень высокой степенью общности. Феноменологический [c.23]

    С помощью набора трубок мультициклонного коагулятора, расположенных параллельно, потоку удается сообщить высокую скорость, которая необходима для отделения от газа мельчайших частиц. Число и размеры трубок, применяемых при определенной скорости потока, зависят от относительной плотности газа и отделяемых частиц. Например, для отделения капель воды требуется меньшая центробежная сила, чем для улавливания капель углеводородного конденсата такого же размера при одинаковой скорости потока, поэтому при сепарации влаги можио применять трубки большего диаметра. Чем больше плотность газа, тем труднее отделить от него канли жидкости и частицы пыли. Поэтому все сепарационные устройства, в том числе основанные на использовании центробежной силы, при повышенных давлениях имеют меньшую эффективность. На рис. 52 показана эффективность сепарации газа при различных скоростях, потока в трубках н следующем составе примесей  [c.93]

    В [52] на основании лабораторных исследований грунтов на крупномасштабных моделях показано изменение горизонтального давления на стенку от ее перемещения. Как видно из рис. 4, даже при незначительном перемещении стенки Л до 0,5 мм коэффициент бокового давления = Оз/я резко уменьшается. При последующем увеличении смещения влияние бокового распора сыпучего тела прекращается и наступает период, когда часть сыпучего материала начинает скользить в направлении к стенке. В этом случае на нее будет действовать активное давление. В каталитических реакторах абсолютные значения температурных расширений стенок на порядок выше. Перемещения стенок также имеют место при работе реакторов в непостоянном температурном режиме (рабочий цикл — регенерация, пуск — остановка и др.). Было замечено, что в реакторах каталитического крекинга после нескольких пусков и остановок, т. е. при незначительных расширениях и сжатиях слоя, частицы катализатора в определенных зонах слоя уплотнялись и в ряде случаев подвергались повышенному истиранию [53] по лпниям активного и пассивного давлений. Авторами [54] при исследованиях высоких слоев сыпучего материала было установлено, что величина сил трения между частицами стремится к максимальному значению у стенки емкости и к минимальному — в ее центре, что приводит к перераспределению по сечению горизонтальных и вертикальных давлений. В связи со строительством крупнотоннажных зернохранилищ, цементохранилищ, коксовых башен исследуется проблема взаимодействия сыпучего материала со стенкой емкости из-за возникновения в последней по высоте и по диаметру неоднородных растягивающих, изгибающих и температурных напряжений [39, 55, 56]. Интересными являются исследования взаимодействия сыпучего материала и податливых стен силосов [c.34]

    Адсорбция твердыми поглотителями основана на избирательном извлечении вредных примесей из газа при помощи адсорбентов — твердых зернистых материалов, обладающих высокой уделЕ ной поверхностью. В газоочистке применяется как физическая адсорбция, основанная на ван-дер-ваальсовых силах, так и хемосорбция. В качестве адсорбентов для очистки газов применяют высокопористые материалы, чаще всего активированный уголь, силикагель и синтетические цеолиты (молекулярные сита). Для промышленной практики наиболее важны высокая поглотительная способность адсорбента, его адсорбционная активность, избирательность действия, термическая устойчивость, длительная служба без изменения структуры и свойств поверхности, легкость регенерации, малое гидравлическое сопротивление потоку газа. Активированные угли различных марок и силикагели уже давно и успешно применяются в промышленности. [c.235]

    Анализ основан на строго определенном значении массы атома, молекулы или иона данного вещества определенного изотопного состава. Масс-спектраль-ный анализ веществ, в частности газов и паров, сводится, во-первых, к временному и пространственному разделению на группы различных по массе ионов, содержащихся в пробе вещества (электрически нейтральные атомы и молекулы предварительно подвергаются ионизации), посредством воздействия электромагнитного поля в высоком вакууме (до 10" мм рт. ст.), где взаимовлияние частиц сводится к минимуму, и, во-вторых, к измерению ионного тока, образуемого суммарным зарядом частиц одинаковой массы и характеризую-нюго их относительное содержание (концентрацию) в пробе. В результате последовательного изменения значения электромагнитных сил измерению подвергаются поочередно ионные токи (10" —10" й), соответствующие группам [c.603]


Смотреть страницы где упоминается термин Основания наивысшие по силе: [c.259]    [c.168]    [c.361]    [c.85]    [c.459]    [c.495]    [c.351]    [c.437]    [c.247]    [c.171]    [c.109]    [c.129]    [c.93]    [c.11]   
Неорганическая химия (1987) -- [ c.202 , c.203 ]




ПОИСК





Смотрите так же термины и статьи:

Основания сила



© 2024 chem21.info Реклама на сайте