Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прибор газового анализа в инертных газах

    Прибор для полного анализа инертных газов схематически изображен на рис. 123. Эвакуировав предварительно всю систему, удалив из активированного угля, находящегося в баллончике 3, адсорбированные на поверхности угля газы (путем одновременного откачивания масляным или ртутным насосом и нагревания при 300—400°), впускают в прибор смесь газов, состоящую только из инертных газов и азота. Для получения вакуума в приборе и дегазации активированного угля можно пользоваться также баллончиком 4, который погружают в жидкий воздух, нагревая в то же время баллончик 3 до 300—400°. Удалив из газовой смеси азот путем нагревания его с металлическим кальцием, находящимся в трубке 2, погрузив затем баллончик с активированным углем 3 в сосуд Дьюара с жидким воздухом, разделяют инертные газы на легкую (Не, Не) и тяжелую фракции (Аг, Кг, Хе). Легкую фракцию нацело откачивают и анализируют по методу теплопроводности в приборе 6. В качестве стандартного газа применяют чистый гелий или неон. После анализа гелий и неон удаляют из камеры прибора 6. Подняв температуру активированного угля в баллончике 3 от —180° до —120°, откачивают из угля аргон, чистоту которого определяют также методом теплопроводности, имея в качестве эталона чистый аргон. Удаляют аргон из камеры прибора 6. Далее, откачивают из угля при комнатной температуре (или при температуре 100°) бинарную смесь, состоящую из криптона и [c.274]


    Прибор (рис. 124) предназначен для определения микроконцентраций инертных газов, для которых применение обычных вакуумных кранов в установках вакуумного типа ведет к большим аналитическим ошибкам [5]. Автор прибора применил поэтому взамен вакуумных установок прибор с ртутными затворами, при использовании которых анализируемый газ в вакуумной своей части не соприкасается с кранами. При работе с микрогазоанализатором на редкие газы следует обратить особое внимание на тщательность и полноту очистки редких газов от их спутников. Для этой цели, кроме обычно применяемой при анализе инертных газов трубки с металлическим кальцием для поглощения азота и кислорода в прибор дополнительно введены колонка для сжигания примеси водорода и две трубки с фосфорным ангидридом — для поглощения паров воды. Ход анализа редких газов — разделение их на фракции и анализ по методу теплопроводности (или по методу плотности с помощью газовых микровесов) — описан выше. [c.275]

    Эти приборы применяются для анализа бинарных газовых смесей, в частности для определения содержания инертных газов, образующихся в ходе протекания циклических процессов. Пробы газа ионизируются бета-частицами, и разность в силе ионных токов в промышленном потоке и в эталонной пробе является мерой концентрации второго компонента в смеси. [c.11]

    При анализе пробы воздух вытесняют из прибора, как описано выше. После удаления инертного газа из газовой бюретки из воронки 3 подают раствор хлорида меди в реакционную колбу 1, содержащую навеску пробы. Отмечают время. Затем через воронку в колбу приливают 50—75 мл воды, не допуская попадания воздуха в прибор. Реакционную смесь нагревают до кипения и кипятят до окончания разложения пробы, что определяют по минимальному размеру пузырьков, преходящих через газовую бюретку. Нагревание прекращают, прибор оставляют на 5—10 мин для установления температурного равновесия, причем все это время продолжают пропускать ток диоксида углерода. Пользуясь уравнительной склянкой, отсчитывают объем собравшегося в газовой бюретке газа. Отмечают температуру и атмосферное давление. В измеренный объем газа вносят поправку, определенную в холостом опыте с диоксидом углерода, и поправку на давление водяного пара над раствором гидроксида калия. [c.517]


    Для автоматической пожарной защиты крупных компрессорных станций используют установки тушения пожара инертным газом в сочетании с мелкораспыленной водой. Кроме того, эти установки снабжены автоматической системой обнаружения опасных концентраций газа причем пробы воздуха отбираются из отдаленных точек. Система газового анализа работает на одном из трех режимов нормальном, поверочном и аварийном. При нормальном режиме контролируется концентрация газа в воздухе. При обнаружении опасной концентрации прибор автоматически переключается на режим проверки. На этом режиме прибор более точно проверяет правильность показаний датчика и в случае подтверждения данных о недопустимой концентрации переключается на аварийный режим. При этом автоматически включается световая и звуковая сигнализации и аварийная блокировка станции. [c.326]

    Прибор может быть использован либо как газовый индикатор, либо как экспресс-анализатор газовых смесей. Индикатор устроен без сравнительной камеры. Служит он главным образом для определения более или менее значительного количества примесей в воздушной среде, используя при этом неодинаковое отношение различных газов к действию инфракрасного излучения. Одни газы, например, водород, азот, кислород, инертные газы, не поглощают инфракрасных лучей, другие же — окись углерода, бензин и т. п. — активны, они энергично поглощают лучи. Поэтому, если поместить чистый, без примесей, воздух, состоящий в основном из смеси кислорода и азота, в газовую камеру 3, то звуковой эффект при наличии прерывистого излучения не получится, стрелка гальванометра не отклонится от своего нулевого положения. Но как только к воздуху подмешивается примесь, например, окиси углерода, появляется звук, регистрируемый через микрофон и усилитель гальванометром. Для экспрессного анализа газовых смесей применяется дифференциальная схема. В прибор добавляют вторую, сравнительную камеру, в которую вводят достаточно большую концентрацию одной из возможных в газовой смеси примесей. Пучок инфракрасных лучей разде- [c.236]

    Объектами спектрального анализа чаще всего являются инертные газы, их смеси и среда различных газонаполненных приборов. Обычно для анализа отбирается определенная порция газовой смеси в специальную разрядную трубку (рис. 48), в которой возбуждается нужный разряд. Анализ газового наполнения готового прибора иногда удается сделать без его разрушения, возбуждая подходящий разряд непосредственно в приборе. [c.94]

    КУЛОНОМЕТРИЯ — один из электрохимических методов анализа, основанный на измерении количества электричества, расходуемого на электролитич. восстановление или окисление. Необходимое условие для применения К. — 100%-ный выход по току данного вещества. В частности, при катодном процессе должны отсутствовать такие побочные процессы, как восстановление ионов водорода или растворенного кислорода, а также продуктов, образующихся ва аноде. Первый из этих процессов устраняется применением ртутного катода, обладающего высоким перенапряжением для выделения водорода, остальные — работой в атмосфере инертного газа и применением серебряного анода (при электролизе галогенидов) или соответствующих анодных деполяризаторов. Сила тока во время электролиза не остается постоянной поэтому для измерения количества электричества обычно пользуются кулонометрами различных типов (медным, серебряным, газовым) предложены электронные схемы приборов. [c.443]

    В этой главе рассматриваются наиболее распространенные или перспективные универсальные методы газового анализа и приборы для определения основных компонентов в газовых смесях, встречающихся в технологии инертных газов. Описаны также приборы, представляющие интерес при решении некоторых специфических газоаналитических задач. [c.247]

    Выпускаемые промышленностью термокондуктометрические газоанализаторы типов ТКГ-4 и ТКГ-5 снабжаются датчиками с плечевыми чувствительными элементами из платиновой нити диаметром 0,1 мм. В приборе ТКГ-4 сравнительные камеры заполнены воздухом и герметизированы. Этот анализатор после соответствующей градуировки может быть использован в технологии инертных газов для анализа многих бинарных и некоторых более сложных газовых смесей [6]. Прибор ТКГ-5 — дифференциального типа. Одна из модификаций этого газоанализатора, ТКГ-5Б, предназначена для анализа водорода в аргоно-азото-водородной смеси после контактных аппаратов установки очистки аргона (см. гл. III) и снабжена вспомогательной печью с окисью меди для поглощения водорода из пробы между рабочей и сравнительной камерами. [c.250]


    В последнее время все большее применение получает хроматографический метод анализа. Благодаря разработке быстро анализирующих автоматических приборов, способных отбирать и анализировать газ непосредственно из производственного иоток.ч, ) также вследствие высокой точности анализа и возможности опре деления большого числа компонентов, этот метод может быть успешно применен для оперативного автоматизированного управления процессом. Определение состава газов хроматографическим методом основано на адсорбции компонентов газа поверхностью адсорбентов. В качестве адсорбента можно применять активированный уголь, силикагель, алюмогель, так называемые молекуляр иые сита (газовая хроматография) и нелетучие жидкости, нанесенные на инертный носитель, например толченый кирпич, гравий (газо-жидкостная хроматография). [c.88]

    Проводят холостой опыт с диоксидом углерода следующим образом. Когда весь воздух из прибора будет вытеснен, скопившийся в газовой бхЮретке инертный газ удаляют и измеряют число пузырьков, проходящих через счетчик в 1 мин (подходящая скорость — 2 пузырька в 1 с). Через каждые 15 мин по шкале газовой бюретки устанавливают объем газа, который собирается за это время. Диоксид углерода пропускают через прибор 2—3 ч. Рассчитывают среднее значение объема инертного газа, образующеюся за 15 мин при данной скорости потока газа. При анализе пробы диоксид углерода пропускают с той же скоростью. Замечают время которое требуется для полною разложения пробы, rie- [c.516]

    Спектральный анализ газовых смесей находит все большее применение как в ярор/.ышленности, так и в лабораторной практике. Однако до сих пор он остается молодой ветвью общих спектрально-аналитических методов и имеет свои специфические особенности и трудности. В области эмиссионного анализа эти трудности отчасти связаны со своеобразием возбуждения спектральных линий в газоразрядной плазме низкого давления, отчасти с тем, что неизбежное выделение и поглощение газов стенками разрядной трубки снижает точность анализов. Тем не менее в ряде случаев удалось с успехом применить спектральные методы для определения состава газовых смесей. Анализ инертных газов на чистоту в процессе их заводского производства, контроль за газами, выделяемыми при работе различных вакуумных приборов, анализ воздуха и многие другие задачи проще и быстрее всего уже сегодня решаются спектральными методами. [c.7]

    В настоящее время газовая хроматография начинает находить применение в анализе инертных газов. Еще недавно широко использовались для этих целей приборы Хлопин-Герлинга, основан Ные на низкотемпературной адсорбции активированным углем аргона, криптона и ксенона и на удалении азота путем его сожжения в кальциевой лампе. М. Г. Гуревич разработал прибор, основанный на этом принципе, в котором до начала анализа инертных газов состав газовой смеси упрощают с помощью поглотительного1 метода анализа и сжигания горючих компонентов над окиськ> меди. Поэтому на таких приборах определяется легкая фракция, содержащая гелий и неон, и тяжелая — аргон, криптон и ксенон. Легкая фракция принимается за гелий, а тяжелая за аргон, что, несомненно, является грубым приближением. Современные методики газовой хроматографии, рассмотренные в настоящей работе, позволяют с высокой чувствительностью определить раздельное содержание азота и всех благородных газов. Количественное определение гелия и аргона имеет важное значение для удовлетворения растущих нужд народного хозяйства и для решения задач поисковой геохимии. [c.120]

    Осн. части прибора узел выделения (печь сопротивления или высокочастотная печь), вакуумная установка или устройство для очистка и подачи тока инертного газа и анализатор. Чаще всего примен. анализаторы, основанные на измерении давл. в калиброванном объеме (при последоват. удаления отд. составляющих газовой смеси), теплопроводности или ИК спектров. Определение газов выполняют также методами кулонометряч. титрования, хроматографии, касс-спектрометрии. Для арбитражных анализов использ. варкант с изотопньш разбавлением (см. Изотопного разбавления метод) в этом случае нет необходимости в полном извлечении определяемых газов из образца. [c.91]

    Основным физическим методом, использованным при открытии изотопов стабильных элементов, стал метод катодных лучей, впервые применённый для анализа масс элементов Дж.Дж. Томпсоном — метод парабол [5. Исследуя газовую составляющую воздуха, Томпсон в 1913 году впервые наблюдал раздвоение на фотопластинке параболы, описывающей массы атомов инертного газа неона, что было невозможно объяснить присутствием в катодных лучах какой-либо с ним связанной молекулярной составляющей. Война прервала эти работы, но сразу с её окончанием Ф. Астон, работавший до войны с Томпсоном, вернулся к этой тематике и, критически пересмотрев метод парабол, сконструировал первый масс-спектрограф для анализа масс изотопов, имевший разрешение на уровне 1/1000 [6. В 1919 году он использовал новый прибор для исследования проблемы неона и показал, что природный неон является смесью двух изотопов — Ые-20 и Ме-22 [7], так что его химический атомный вес 20,2 (в единицах 1/16 массы кислорода), отличный от целого числа 20, можно объяснить, предполагая, что естественный неон — смесь двух изотопов, массы которых близки к целым числам, смешанных в пропорции 1 10. Тем самым Ф. Астон впервые убедительно экспериментально доказал принципиальное существование изотопов стабильных элементов, которое уже широко дискутировалось в то время в теоретических работах В. Харкинса в связи с проблемой целочисленности атомных весов [8]. Получив прямое подтверждение существования изотопов неона, Астон вскоре на том же приборе, развивая успех, показал сложный изотопный состав хлора, ртути, аргона, криптона, ксенона, ряда галогенов — иода, брома, нескольких элементов, легко образующих летучие соединения — В, 51, Р, 5, Аз, и ряда щелочных металлов — элементов первой группы таблицы Менделеева. Он также зафиксировал шкалу масс ядер, положив в её основу кислород (0-16) и углерод (С-12), в то время считавшихся моноизотопными, и провёл сопоставление их масс. К концу 1922 года им были найдены наиболее распространённые изотопы около трёх десятков элементов (см. табл. 2.1), за что 12 декабря 1922 года он получает Нобелевскую премию. Несколько раньше (1920) он, проанализировав первый экспериментальный материал, формулирует эмпирическое правило целочисленности атомных весов изотопов в шкале 0-16 [9]. В 1922 году в исследовании изотопов к нему присоединился А. Демпстер, предложивший свой вариант магнитного масс-спектро-метра с поворотом исследуемых пучков на 180 градусов [10]. Он открыл основные изотопы магния, кальция, цинка и подтвердил существование двух изотопов лития, найденных перед этим Ф. Астоном и Дж.П. Томпсоном (табл. 2.1). [c.39]

    Развитие газовой хроматографии, как и следовало ожидать, привело к исследованию все более и более сложных смесей и позволило идентифицировать высокомолекулярные органические соединения. Температуры, при которых происходит испарение жидкостей, до некоторой степени ограничили перечень соединений, которые можно исследовать с помощью газо-жидкостной колонки. Поэтому для изучения высококипящих углеводородов и твердых органических комплексов, подобных углю, был разработан новый метод анализа, названный пирохроматографией и заключающийся в использовании пиролиза и хроматографии. В новом аргоновом хроматографе Пай с очень чувствительным детектором были созданы условия для мгновенного нагревания соединений в потоке инертного газа. Возможность проведения анализов чрезвычайно малых количеств исходного образца (2—3 мг) делает этот прибор незаменимым для вышеуказанных исследований. В содружестве с фирмой Пай была сконструирована установка для пиролиза. Полученные на этой установке результаты характеризовались высокой точностью анализа. [c.45]

    Дальнейшее развитие статические исследования равновесия жидкость—пар методом газохроматографического анализа равновесной паровой фазы получили в работе Кольба [48]. В этой работе использовался стандартный газовый хроматограф, специально предназначенный для анализа равновесной паровой фазы ( Перкин-Элмер , модель F42). В отличие от описанных выше приборов этот прибор снабжен электропневматической дозирующей системой, обеспечивающей воспроизводимый отбор пробы паровой фазы из сосуда с пробой. При заданных входном давлении газа-носителя и продолжительности отбора пробы воспроизводимый объем равновесного пара V отбирается из равновесного сосуда и переносится газом-носителем в хроматографическую колонку. Если измерения проводятся в линейном динамическом диапазоне детектора (это следует проверить, например, путем разбавления пара инертным газом) и если концентрация пара в газе-носителе во всех случаях невелика, то площадь пика на хроматограмме Ft пропорциональна числу молей fii компонента г. Следовательно, [c.138]

    Наибольшее распространение в промышленности для этих целей получили хроматографические анализаторы, основанные на распределении компонентов между несмешивающимися фазами, одна из которых подвижная (жидкость, инертный газ), другая неподвижная (жидкость или твердое тело). В зависимости от агрегатного состояния подвижной и неподвижной фаз различают жидкостную и газовую хроматографию. Хроматограф состоит (рис. 4.70) из дозатора, осуществляющего ввод пробы газа вместе с газом-носителем в термостатированные колонки хроматографа, после которых устанавливаются детекторы, фиксирующие изменения выходящих составляющих. Сигнал из каждого детеюора через преобразователь поступает в микропроцессор и на регистрирующий прибор. В качестве детектора обычно применяют катарометр, работа которого основана на изменении электрического сопротивления проводника в зависимости от теплопроводности среды, т.е. анализируемого состава вещества. Для повышения эффективности способов избирательности анализа применяют селективные типы детекторов. Например, для органических соединений применяют детекторы ионизации пламени и фотоионизационный, для соединений серы и фосфора — пламенно-ионизационный фотометрический, для азот-, серо- и фосфорсодержащих соединений — термоионный и т.д. [c.437]

    Хроматографический газоанализатор ХЛ-3. Этот прибор, разработанный СКВ АНН и ВНИИ НП, предназначен для лабораторных анализов отдельных газовых проб. Хроматографическая колонка представляет собой спиральную трубку из нержавеющей стали длиной от 2 до 6 ж и внутренним диаметром 6 мм. В качестве наполнителей могут быть применены твердые адсорбенты (силикагель, алюмогель и др.), модифицированные адсорбенты или инертные носители, поверхность частиц которых покрыта пленкой нелетучей жидкости (газо-жидкостная хроматография). К хроматографу ХЛ-3 прилагается обычно модифрщированпый адсорбент, разработанный ВНИИ НП и представляющий собой специально обработанный трепел (Зикеевского карьера), к которому добавлено от 3 до 12% пафтено-парафипового масла. Для разделения пизкокипящих газов применяется силикагель МСМ. [c.272]

    Все без исключения промышленные хроматографы основаны иа способе проявительной газовой хроматографии, при которой анализируемая проба вводится в слой сорбента в дискретные 1м0,менты времени, транспортируется вдоль слоя потоком чистого и инертного в данной системе газа. Разделенные компоненты пробы вы.мываются из слоя сорбента и детектируются тем или инылг газоаналпзаторо.м. Другие варианты газохроматографического метода — фронтальный анализ, вакаитная хроматография, теплодинамический метод и т. д.— ие получили распространения в производственной хроматографии из-за определенных трудностей их реализации в промышленных вариантах приборов. В связи с этим любой промышленный хроматограф включает в себя следующие функциональные узлы (рнс. 144) устройства регулирования и стабилизации потока газа-иосителя, устройство ввода в поток газа-носнтеля пробы анализируемой смеси, хро.матографическую колонку с соответствующими электронными блоками поддержания ее температурного режима, детектор, фиксирующий результаты разделения компонентов смеси и, наконец, командный прибор для автоматического управления работой хроматографа. Различия. между отдельными типами приборов могут состоять в их назначении, принципе действия, в схемных и конструктивных решениях, а следовательно, и в параметрах как отдельных функциональных узлов, так и приборов в целом. [c.317]

    Исследование характерных элюционных объемов углеводородов в приведенном нами сл чае несколько усложняется, так как анализу подвергается сравнительно большое количество газа. Этот газ разбавляется газом-носителем во внутреннем пространстве прибора выше трех промывных склянок, содержащих КОН и Ва(0Н)2, в которых из газа поглощается СОг, и в осушителе, содержащем хлористый кальций. Продолжительность поступления анализируемых газовых компонентов в хроматографическую колонку является значительной. Определение характерных элюционных объемов отдельных компонентов возможно только путем йведения значения максимального элюционного объема яи акс для инертного компонента газовой пробы, в состав которых входят также анализируемые компоненты. [c.326]

    Все газы, за исключением инертных и двухатомных газов, имеют характерные спектры поглощения в инфракрасной области. Эти спектры значительно более специфичны, чем спектры веществ в ультрафиолетовой области. Поэтому особенно целесообразно использовать их для анализа газовых смесей. Монохроматическое излучение мало доступно для производственного контроля. Попытки получения монохроматического инфракрасного излучения при помощи светофильтров не привели к успеху. В связи с этим при разработке регистрирующего прибора иНАЗ , основанного на поглощении инфракрасного излучения (рис. 160, 161), был выбран приемник излучения с избирательной чувствительностью, позволяющей проводить специфические измерения концентрации газов, поглощающих в инфракрасной области спектра. [c.756]


Смотреть страницы где упоминается термин Прибор газового анализа в инертных газах: [c.388]    [c.145]    [c.170]   
Газовый анализ (1955) -- [ c.267 ]

Газовый анализ (1961) -- [ c.267 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ газо

Анализ газовый

Анализ приборы

Газы инертные

Инертный газ

Прибор инертного газа



© 2025 chem21.info Реклама на сайте