Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциалы диффузионные стандартные

    При работе с ртутным капельным электродом приложенная э. д. с. приводится к желаемой величине потенциометром и введением реостатов, пока вся система не будет уравновешена. Делают это так же, как описано в п. 1, до тех пор пока не достигнут равных отклонений стрелки в обе стороны от нуля гальванометра. Таким же образом определяют силу тока, измеряя падение потенциала в стандартном сопротивлении. Величина интервалов между точками на кривой зависит от той области, которая подлежит измерению. На подъёмах волн отсчеты следует брать с интервалами около 25 милливольт, особенно если кривая подлежит логарифмическому анализу. В области постоянного диффузионного тока отсчеты берут с интервалами 0,1 вольта. Возрастающие отрицательные потенциалы капельного элект- [c.219]


    Диффузионный потенциал Сопротивление, Ом Скорость вытекания раствора, мкл/ч Стандартный потенциал относительно стандартного водородного электрода, мВ (25 °С) Применение [c.69]

    Для концентрационного элемента, составленного из металла А в растворах электролита В с концентрациями nti и моль/1000 г, рассчитайте ЭДС при 298 К. Активность вычислите по среднему коэффициенту активности, взятому из справочника [М.], или (для разбавленных растворов) по ионной силе. Для элемента, составленного из водородного электрода в растворе электролита С с концентрацией uig моль/1000 и и каломельного полуэлемента с концентрацией КС1 моль/1000 г, вычислите ЭДС и pH раствора, содержащего электролит С. Диффузионную ЭДС не учитывайте. При 298 К стандартный потенциал каломельного электрода (о ,,- = 1) равен 0,2812 В, а ионное произведение воды 1,008 10 . Константы диссоциации слабых электролитов найдите в справочнике [М.]. [c.334]

    Наиболее распространен и универсален метод постоянной ионной силы. Если известен качественный состав анализируемого образца, готовят стандартные растворы, одинаковые по составу с анализируемым раствором. Для более сложных систем, образцов с переменным составом необходимо применять стандартные растворы, содержащие избыток индифферентного электролита, позволяющий создать постоянную ионную силу как в анализируемом, так и в стандартных растворах. Тем самым осуществляется стандартизация условий, обеспечивающая постоянство коэффициентов активности, диффузионного потенциала и влияний других факторов во всей серии измерений. В этом случае можно использовать график зависимости Е—рс,. [c.113]

    Метод стандартных добавок рекомендуется использовать для определения ионов в сложных системах, содержащих высокие концентрации посторонних веществ. Предварительно необходимо изучить область обратимости электрода относительно определяемого иона по стандартным растворам. Затем в пробу испытуемого раствора вводят одну или последовательно несколько порций стандартного раствора с таким условием, чтобы добавки не вызвали заметного изменения ионной силы раствора. При выполнении этого условия небольшим изменением коэффициента активности определяемого иона и диффузионного потенциала можно пренебречь, а наблюдаемые изменения э. д. с. считать зависимыми от концентрации определяемого иона. Тогда можно записать  [c.115]

    Потенциал полуволны ( 1/2) является важнейшей полярографической характеристикой это потенциал, при котором достигается величина тока, равная половине диффузионного (см. рис. 47) Ец2 не зависит от концентрации электроактивного вещества и является табличной величиной. Величина потенциала полуволны определяется главным образом величиной стандартного окислительно-восстановительного потенциала системы, соответствующей электродному процессу (например, Zn2+/Zn или Fe +/Fe2+), и несколько изменяется с изменением ионной силы раствора. Необходимо учитывать, что в полярографии значения потенциалов принято относить к значению потенциала насыщенного каломельного полуэлемента "нас. к. э = 0,2484 В. [c.155]


    Здесь, как и в табл. 31, поверхность раздела двух фаз, между которыми имеет место скачок потенциала, обозначена вертикальной линейкой. Двойная линейка означает, что в месте соприкосновения двух растворов скачок потенциала, обусловленный различной скоростью диффузии ионов (так называемый диффузионный потенциал), снят и его можно не учитывать при вычислении э.д.с. этого элемента. Металл с большей величиной стандартного потенциала (положительный электрод) принято писать слева, а с меньшей величиной (отрицательный электрод) —справа. [c.229]

    В настоящее время электродным потенциалом называют э. д. с. электрохимической цепи, построенной из стандартного водородного электрода и электрода окислительно-восстановительной полуреакции. В стандартном водородном электроде (с. в. э.) платинированный платиновый электрод в растворе кислоты с единичной активностью (фактически используют растворы с а = 1, хотя теоретически следовало бы использовать растворы с ан+ =1) омывается током водорода, давление которого равно 1 атм (1,01-10 Па). Предполагается, что диффузионный потенциал на границе двух растворов элиминирован, а на границе второго электрода с раствором протекает исследуемая окислительно-восстановительная полуреакция. При записи электродного потенциала стандартный водородный электрод всегда располагается слева  [c.114]

    Однако подавляющее большинство химических цепей — это цепи с переносом, в которых имеется или непосредственное соединение двух растворов, или их соединение через солевой мостик. Комбинируя различные окислительно-восстановительные полуреакции, можно построить очень большое число химических цепей. Разность соответствующих стандартных потенциалов позволяет в первом приближении оценить э. д. с. этих цепей. Точное значение разности потенциалов на концах химической цепи с переносом рассчитать не удается, во-первых, из-за невозможности точного определения диффузионного потенциала и, во-вторых, из-за неизбежной замены активностей отдельных ионов в формуле Нернста средними активностями или просто концентрациями этих ионов. В качестве примера химической цепи с переносом можно привести цепь элемента Даниэля — Якоби  [c.127]

    Нужно отметить, что абсолютные значения pH нельзя определить следствие невозможности нахождения коэффициентов активности отдельных ионов и наличия диффузионных скачков потенциала. В настоящее время разработаны методы определения pH с достаточно высокой точностью, в основе которых лежит использование стандартных растворов с известными значениями pH. [c.130]

    Вычисленные из этих измерений значения pH не представляют собой точных величин, так как они осложнены не только диффузионными, но и фазовыми потенциалами, возникающими на границе раздела водный стандартный раствор — неводный исследуемый раствор. Если при измерении в одном растворителе имеется возможность снизить значения диффузионных потенциалов, то в случае измерений в разных средах скачок потенциала на границе раздела нельзя ни устранить, ни оценить, в связи с чем ошибки при измерениях оказываются неопределенными. [c.408]

    Диффузионную э. д. с. не учитывать. При 298 К стандартный потенциал каломельного электрода (ас1 =1) равен 0,268 в, а ионное произведение воды 1,008-10 . Константы диссоциации слабых электролитов найти по справочнику [М.]. Концентрации (моляльности) даны в кмоль на 1000 кг воды. [c.285]

    Справа расположен данный электрод, а слева — стандартный водородный . Диффузионный потенциал считается при этом элиминированным, что обозначается двумя вертикальными чертами, разделяющими растворы. Э.д.с. элемента представляет алгебраическую сумму трех слагаемых  [c.502]

    Измерение рН неводного раствора принципиально не отличается от измерения pH водного раствора. Для этого необходимо иметь вспомогательный электрод, стандартные буферные растворы, приготовленные на неводном растворителе, уметь элиминировать диффузионный потенциал. В случае смешанных растворителей с относительно большим содержанием воды можно применить элемент [c.597]

    Скачки потенциалов на границах фаз 365 2. Электродвижущая сила гальванического элемента 368 3. Типы электродов 371 4. Стандартные электродные потенциалы и правило знаков 373 5. Концентрационные элементы. Диффузионный потенциал 375 6. Зависимость ЭДС от температуры 377 7. Измерение некоторых физико-химических величин методом ЭДС 380 8. Электродные процессы 382" [c.400]

    Если некомпенсированный диффузионный потенциал в течение проведения опыта остается постоянным, его можно объединить с другими постоянными величинами. Таковыми являются потенциал электрода сравнения и стандартный потенциал индикаторного электрода. Обозначим объединенную постоянную величину ЭДС гальванического элемента тогда алгебраически складывается из этой величины и члена, показывающего зависимость потенциала индикаторного электрода от активностей ионов, участвующих в электродной реакции. Если индикаторным служит электрод первого рода или ионоселективный электрод, получают формулу [c.267]


    Величину pH стандартных растворов устанавливают путем измерения ЭДС цепей без переноса, в которых диффузионный потенциал отсутствует. Чаще всего для этой цели используется цепь типа [c.178]

    Так как стандартные потенциалы Фси +уси равны между собой, то электродвижущая сила такой цепи (без учета диффузионного потенциала) будет определяться в конечном итоге только концентрацией (активностью) ионов в обоих растворах, т. е.  [c.180]

    Таким образом, потенциал электрода определяют как э. д. с. элемента, одним из электродов которого является исследуемый, а другим - стандартный водородный электрод. Поскольку электродный потенциал представляет собой электродвижущую силу, то для него используют обозначение Е. Чтобы исключить неоднозначность в понимании смысла этой величины, обычно применяют индексы. Следует подчеркнуть, что данное определение электродного потенциала справедливо, если отсутствует диффузионный потенциал. [c.107]

    Измерение редокс-потенциалов может осложняться еще и тем, что часто нельзя избежать диффузионного потенциала из-за существования границы жидкость/жидкость. Кроме того, вследствие побочных процессов, таких как гидролиз, комплексообразование и др., неизвестны с достаточной точностью истинные концентрации окисленной и восстановленной форм. По этим причинам, а также потому, что во многих работах активности ионов отождествлялись с концентрациями, в литературе зачастую приводятся различные значения стандартных редокс-потенциалов. [c.119]

    Для некоторых из упомянутых выше полярографических волн потенциал полуволны смещается в зависимости от pH раствора. Однако потенциал полуволны для первой полярографической волны не зависит от pH и эту волну можно использовать для количественного анализа солей диазония. Если вести анализ в растворе с буфером при pH, примерно равном 7, то эта первая волна хорошо отделена от других волн и диффузионный ток легко измерить при потенциале —0,3 В относительно каломельного электрода сравнения. Это лежит в основе и амперометрического титрования фенольных соединений стандартным раствором соли диазония [4]. [c.332]

    Описанный способ прост и может быть использован в любой лаборатории. Однако погрешности определения рНа этим способом очень велики, что объясняется наличием диффузионного потенциала и необходимостью определения pH стандартных растворов. Однако в большинстве случаев интересные для практических целей растворы являются буферными (см. гл. XVIII, 12, стр. 491). Однозначно определить активность Н+ в стандартном растворе можно путем экстраполяции данных для раствора сильной кислоты к бесконечному разведению. Но такой раствор имеет ничтожную буферную емкость и не может служить стандартом. [c.588]

    Выбор электрода сравнения определяется условиями эксперимента. Обычно в исследовательской практике в качестве электрода сравнения используют стандартный водородный электрод, а для ведения серийных анализов в производственных условиях применяют насыщенный каломельный или хлорсеребряный электроды. Объясняется это тем, что водородный электрод — высокообратим и отличается очень хорошей воспроизводимостью потенциала. Каломельный и хлорсеребряный электроды, хотя и уступают водородному в точности, но выгодно отличаются неприхотливостью при эксплуатации в производственных условиях, а также почти полным отсутствием диффузионного потенциала. [c.244]

    Тогда е киол можно измерить как потенциал погруженного а раствор платинового электрода, насыщенного водородом, если активности кислоты и сопряженного с ней основания равны. Это всегда имеет место в случае чистого растворителя. Растворители, таким образом, можно расположить в порядке возрастания нормальных кислотных потенциалов. Однако при измерении этих потенциалов появляются значительные ошибки, связанные с наличием диффузионных потенциалов на границе раздела растворителей, включенных в измерительную ячейку. Для их устранения электрод сравнения, применяемый при из-МбНСНИИ ё кисл необходимо заполнять тем же растворителем, какой находится в измерительной ячейке. Нормальный потенциал каждого обратимого к ионам электрода зависит от энер- ии сольватации соответствующих ионов, различной для разных растворителей. Поэтому В. А. Плесков предложил в качестве стандарта использовать малополяризуемые ионы с возможно большими диаметрами, такие, как КЬ+ или Сз+. Энергия сольватации этих ионов мала и почти не меняется ири переходе от растворителя к растворителк . Применив стандартный рубидиевый электрод, Плесков показал, что константы диссоциации сильных кислот в муравьиной кислоте в 10 раз больше, а в безводном гидразине в 10 раз меньше, чем в во- [c.339]

    Систематические ошибки измерения могут искажать значение параметра 2 , применяемого для получения информации о качественном составе веществ. 11апрнмер, в полярографии при определении потенциала полуволны могут быть получены неправильные значения напряжения ячейки, потенциала электрода сравнения, диффузионного потенциала и т. д. Ситуацию в таких случаях можно улучшить добавлением стандарта с определенным известным значенибм 2ст, например ионов Т1+, значение потенциала полуволны которых. —0,49 В, измеренное относительно насыщенного каломельного электрода, не зависит от фонового электролита. Координаты стандартного сигнала используют также н методах оптической атомной эмиссионной спектроскопии, ЯМР и т. д. [c.451]

    Двойная хингидронная цепь. Для измереиия pH в практике часто применяется двойная хингидронная цепь, т. е. цепь, составленная из двух хпнгидронных электродов. Эта цепь составляется следующим образом. В один стакан наливают раствор, pH которого известен. Обычно в качестве стандартного раствора берут буферную смесь, состоящую из одного объема 0,1 н. НС1 и 9 объемов 0,1 н. КС1. Такой раствор, именуемый раствором Вейбеля, имеет pH 2,04. В другой стакан наливают исследуемый раствор, pH которого необходимо определить. В оба стакана добавляют в избытке хингидрон и вставляют платиновые электроды. В целях устранения диффузионного потенциала цепь соединяется через агаровый сифон с насыщенным раствором КС1. Схематически двойную хингпдронную цепь можно записать так  [c.252]

    В настояшее время электродным потенциалом называют ЭДС электрохимической цепи, построенной из стандартного водородного электрода и электрода окислительно-восстановительной полуреакции. В стандартном водородном электроде (с. в. э.) платинированный платиновый электрод в растворе кислоты с единичной активностью (фактически используют растворы с а =, хотя теоретически следовало бы использовать растворы с током водорода, давление которого равно 1,01Х Х 0 Па (1 атм). Предполагается, что диффузионный потенциал на границе двух растворов элиминирован, а на границе второго элестрода с раствором протекает исследуемая окислительно-восстановительная полуреакция. При записи электродного потенциала стандартный водородный электрод всегда располагается слева Pt, Hj I H l раствор (1) Mi Pt Pt, H, I H l i раствор(II) i M, I Pt Предположим, что на границах раздела раствор(I)/Mi и раствор (11)/Мг в этих цепях осуществляются электродные процессы соответственно (Г) и (Д). Электродные потенциалы Е и Ei соответствуют, однако, не этим процессам, а полным химическим реакциям [c.126]

    Величина электродного потенциала в соответствии с международным соглашением определяется как ЭДС электрической системы, в которой справа расположен данный электрод, а слева стандартный водородный электрод, потенциал которого условно прх1нят равным нулю. Диффузионный потенциал при этом считается устраненным. [c.323]

    Это значит, что стандартный потенциал электрода содержит контактный и неучтенный диффузионный потенциал, т. е. содержит неизмеримые величины и поэтому не является абсолютным. Однако он точно определяет при стандартных условиях (р= 1,013-10 Па и Т = 298 К) стандартную энергию Гиббса той окислительно-восстановительной реакции, которая протекает на электроде. Таким образом, за стандартный потенциал (относительно СВЭ) принимают потенциал электрода с активностью ионов, равной единице, при стандартных условиях. Так как фконт входит в стандартный потенциал электрода, а Фдифф сводят к минимуму с помощью солевого мостика, то выражение для ЭДС элемента принимает вид [c.173]

    Электродный скачок потенциала в условной шкале водородного электрода называется электродным потенциалом и обозначается ф. Он равен ЭДС электрохимического элемента, состоящего из стандартного водородцого и данного электродов. Запись такого элемента всегда начинается с водородного электрода, т. е. он считается л е-в ы м. Форма записи и знак отдельного электрода определяются правилом, утвержденным конвекцией Международного союза по чистой и прикладной химии (Стокгольм, 1953). По этому правилу слева записывается ионная форма реагирующего вещества далее прочие фазы в той последовательности, в которой они соприкасаются друг с другом. Справа должен стоять символ молекулярной формы вещества, участвующего в электродной реакции, или химический символ металла. Фазы, нанесенные на поверхность металла, отделяются запятой границы раздела жидких и твердых фаз отмечаются вертикальными черточками, а границы между жидкими фазами (растворами) — двумя вертикальными черточками (если между ними нет диффузионного скачка потенциала). Активности веществ указываются в скобках. [c.287]

    При известных значениях стандартных электродных потенциалов, активности потенциометрически определяемого иона в растворе и диффузионного потенциала (или пренебрегая диффузионным потенциалом) можно путем измерения электродного потенциала Е электрода второго рода определить произведение растворимости вещества Если, например, потенциал хлорсеребряного электрода (табл. 4.2) при активности СГ-ионов 1 моль-л" оказался равным 0,2224 В по отношению к стандартному водородному электроду, то [c.120]

    Цепь типа (4.27) с электродами из одного и того же металла называется когщентрациотюй (для большей точности следует брать отношение активности ионов металла в обоих растворах и принимать во внимание диффузионный потенциал на границе растворов). Для стандартной температуры 25° С формула (4.28) принимает вид [c.84]

    На первый взгляд, выход из этого положения можно найти, используя уравнение (6.9) сравнением потенциалов водородного, электрода в растворе с точно фиксированным значением рН и в растворе с неизвестной величиной pH. Однако и этот путь не является вполне корректным вследствие погрешностей, привносимых за счет диффузионных потенциалов, возникающих на границе растворов различного ионного состава. В самом деле, при измерении потенциала Ех водородного электрода в растворе с фиксированным значением pH необходимо образовать гальванический элемент водородный электрод — стандартный электрод сравнения. Но тогда потенциал на границе двух электролитов неизбежно входит как слагаемое значение э. д. о. такого элемента. То же самого справедливо и в отношении измерения потенциала водородного электрода в растворе с неизвестным pH относительно того же самого электрода сравнения. Предположение о том, что в обоих случаях диффузионный потенциал совершенно одинаков, в какой-то степени можно допустить только в том случае, когда pH = рН . Такое положение явно не выполняется при всяком ином соотношении между pH стандартного и исследуемого растворов. Таким образом в целом необходимо признать, что, несмотря на широкое использование в самых различных целях потенциометрического метода определения концентрации водородных ионов, мы не распола-лагаем совершенно безупречным способом измерения этой величины. [c.120]

    Не принимается во внимание диффузионный потенциал, возникающий на границе между раствором, в котором содержится исследуемая окислительно-восстановительная система, и тем раствором, в каком находится стандартный электрод сравнения. До известной степени диффузионный потенциал устраняется использованием солевого мостика с насыщенным раствором КС1 или NH4NO3. [c.150]

    В больщинстве случаев И. э. представляет собой устройство, осн. элементом к-рого является мембрана, проницаемая только для определенного иона. Между р-рами электролитов, разделенных мембраной, устанавливается стабильная разность потенциалов, к-рая алгебраически складывается из двух межфазных скачков потенциала и диффузионного потенциала, возникающего внутри мембраны (см. Мембранный потенциал). Измерение концентрации определяемого иона в принципе возможно по значению эдс гальванич. элемента, составленного из находящихся в контакте исследуемого и стандартного р-ров, в каждый из к-рых погружены идентичные И. э., избирательно чувствительные к определяемому иону концентрация этого иона в стандартном р-ре СдТочно известна. Для практич. измерений гальванич. элемент составляют из И, э. и электрода сравнения (напр., хлоросеребряного), к-рые сначала погружают в стандартный, а затем в исследуемый р-р разность соответствующих эдс равна Е. Состав стандартного р-ра должен быть по возможности близок к составу измеряемого. Искомую концентрацию с вычисляют по ур-нию  [c.265]

    Большинство хим. Э. ц.- цепи с переносом, в к-рых р-ры (расплавы, твердые электролиты) соединены либо непосредственно, либо через солевой мостик. Комбинируя разл. окислит.-восстановит. полуреакции, можно построить большое число хим. Э. ц. Разность соответствзтощих стандартных потенциалов позволяет в первом приближении оценить эдс этих цепей. Точное значение эдс на концах цепи с переносом рассчитать не удается из-за невозможности точного определения диффузионного потенциала и из-за того, что в ур-нии Нернста термодинамич. активности отд. ионов заменяются ср. активностями или концентрациями этих ионов. [c.463]


Смотреть страницы где упоминается термин Потенциалы диффузионные стандартные: [c.162]    [c.159]    [c.205]    [c.316]    [c.106]    [c.111]    [c.138]    [c.284]    [c.177]    [c.323]    [c.424]    [c.426]    [c.341]   
Физическая и коллоидная химия (1974) -- [ c.272 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал диффузионный

Потенциал стандартны



© 2025 chem21.info Реклама на сайте