Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Форма волн и потенциалы полуволны

    Информация о качественном составе образца, которую мы получаем при анализе пробы, находит свое выражение в константах вещества 2/ (например, потенциал полуволн в полярографии, длины волн резонансных линий в атомно-эмиссионной спектроскопии, величина Rf в бумажной хроматографии и т. п.). Во многих методах инструментального анализа измерения проводят в интервале zv— Z2, т. е. от нижней до верхней границы значений, и появляющиеся сигналы записывают (рис. Д.174 и Д.175). При этом часто получают колоколообразную кривую, которая приближенно описывается функцией Лоренца или Гаусса (газовая хроматография, дифференциальный термический анализ, атомная спектроскопия и т. д.). В методах, дающих интегральную S-образную кривую, например в постояннотоковой полярографии, осуществляя дифференцирование при помощи определенной схемы, также можно получить аналогичную колоколообразную кривую. И наоборот, интегрирование колоколообразной кривой приводит к кривой S-образной формы. Координата максимума сигнала колоколообразной кривой или [c.448]


    Анализ полярографических волн. Потенциал полуволны. Часто можно получить полезные сведения относительно механизма электродных процессов, сравнивая действительную форму подъемов полярографических волн с таковыми же, вычисленными теоретически. Для того чтобы иллюстрировать это, выведем уравнение полярографической волны для процесса восстановления. [c.206]

    В большинстве случаев хиноны и гидрохиноны дают обратимые полярографические волны, потенциал полуволны которых почти равен стандартному потенциалу. Вследствие простоты реакции эту систему часто используют для испытания новых полярографических методов. Если не нужна высокая точность, полярография является более удобным методом определения стандартных потенциалов серии родственных хинонов, чем потенциометрия. Поляро-грамму легко записать для полярографии требуется очень небольшое количество вещества и ее можно применять к системам, в которых одна из форм претерпевает изменение за период времени, необходимый для потенциометрического титрования. Например, полярография была использована для определения влияния размеров внутреннего жета-мостикового кольца на процесс восстановления хинонов [35]. [c.116]

    Как и соединения многих других классов, карбонильные соединения могут протонироваться протонированные формы восстанавливаются при менее отрицательных потенциалах по сравнению с непротснированными. В полярографии это проявляется в сдвиге потенциала полуволны к мепее отрицательным значениям (при достаточно высокой скорости протонирования) при относительно малой скорости протонирования могут появиться (также прн менее отрицательных потенциалах) кинетические волны [22—33]. Предшествующее протонированне часто является определяющим моментом в препаративных электрохимических процессах, так как прн этом изменяются условия адсорбции, соотношение скоростей электродных и последующих химических стадий и т. п. Напрнмер, анион-радикал кумарина восстанавливается при более отрицательных потенциалах, чем нейтральная молекула, тогда как нейтральный радикал восстанавливается прн менее отрицательных потенциалах, чем прото-ннрованная молекула кумарина [34]. [c.321]

    Итак, в обоих рассмотренных частных случаях поляризационные кривые имеют форму волны. При Е=Е,/ , как следует их уравнений (31.23) и (31.24), ток оказывается равным °>/2 или—т. е. полу-высоте волны, откуда и возникло название потенциал полуволны . Поляризационная кривая оказывается симметричной относительно 1/,. Уравнения (31.23) и (31.24) можно привести к виду [c.158]


    Осуществление двух параллельных замедленных процессов превращения анион-радикалов, теоретически проанализированное С. Г. Майрановским, естественно сказывается на поляризационных характеристиках второй волны восстановления упомянутых соединений меняется форма волны, в зависимости ог изменения различных кинетических параметров наблюдается сдвиг ее потенциала полуволны /2. [c.256]

    Величина возрастает с увеличением напряжения до предельного значения и остается постоянной. Форма кривой при одноэлектронном восстановлении вещества на ртутном катоде напоминает волну, при двухэлектронном — двойную волну, трехэлектронном — тройную (рис. 8.4). На рис, 8.4 показаны две ступени восстановления порфиринового комплекса меди (II), конкретно Си-тетрафенилпорфина. Важнейшей характеристикой электрохимически активного вещества является потенциал полуволны Еу . Это потенциал такой точки на кривой —Е, которая соответствует точке перегиба первой, второй и т. д. волн. Полярографическая волна — это совокупность точек на кривой — Е, между начальными и предельным значениям или между двумя предельными значениями диффузионного тока (). Потенциал полуволн не зависит от концентрации вещества, а только от его химической структуры. Поэтому Еу является физической константой вещества, такой [c.294]

    Необратимость процесса можно экспериментально установить по следующим признакам потенциал полуволны окисленной формы деполяризатора отрицательнее, чем потенциал полуволны, соответствующей восстановленной форме с увеличением необратимости процесса наблюдается отделение анодной волны от катодной (рис. 117, а). Во многих случаях при полностью необратимом процессе получается волна только одной из форм деполяризатора (рис. 117, б), причем наклон необратимой волны больше, чем наклон обратимой. Разность между потенциалом полуволны при необратимом процессе (ф д ) и нормальным потенциалом, который при обратимом процессе практически равен ф д, называется полярографическим перенапряжением (г) )  [c.181]

    Характерная форма нолярограммы, или полярографической волны, представленной на рис. 72, позволяет получить информацию о том, что происходит на электроде при изменении нотенциала. Характеристиками нолярограммы, связанными с природой восстанавливающегося на электроде вещества и его концентрацией, являются соответственно потенциал полуволны 1/2 и сила тока /д. [c.166]

    В координатах 1(Е) хронопотенциометрическая кривая имеет форму (1 - Й1 ) . Характерный для полярографических кривых потенциал полуволны 1/2 ( = 0) в хронопотенциометрических условиях соответствует половине высоты волны зависимости ( (Е) и четверти высоты волны зависимости ((Е) ) = Тх/4. Поэтому в хронопотенциометрии его называют четвертьволновым потенциалом и обозначают символом Е а. [c.391]

    Потенциал полуволны окисленной формы деполяризатора отрицательнее, чем потенциал полуволны, соответствующий окислению восстановленной формы, если она вообще способна окисляться на ртутном капельном электроде. Если в растворе присутствуют обе формы деполяризатора, то в случае полярографически обратимой системы наблюдается плавный переход анодного тока в катодный полученная в этом случае анодно-катодная волна должна иметь значение углового коэффициента, отвечающее уравнению Нернста. В случае необратимой системы иногда также можно наблюдать плавный переход анодного тока в катодный, но угловой коэффициент кривой отличается от теоретического значения. С увеличением необратимости процесса наблюдается отделение анодной волны от катодной (рис. 89) в предельном случае анодная волна вообще не возникает при достижимых на капельном электроде потенциалах. Доказать обратимость электродного процесса можно следующим образом. Полярографируем сначала, например, окисленную форму вещества. Затем непосредственно в исследуемом растворе постепенно восстанавливаем ее чисто химическим путем и снова полярографируем, снимая анодную волну восстановленной формы. В случае обратимой волны 1/2 анодной и катодной волн должны совпадать. Если одна из форм деполяризатора неустойчива, то следует воспользоваться переключателем Калоусека [1] (см. гл. XXI). [c.180]

    Перекиси различных типов широко используются в качестве окислителей. Окислительные свойства органических перекисей могут изменяться в широких пределах. Окислителями являются почти все перекиси, поэтому можно смело сказать, что восстановление перекисной группы можно осуществить без труда очень легко осуществить восстановление перекисей электроаналитическим методом. Именно восстановление перекиси лежит в основе обескислороживания растворов при анализе полярографическим методом. При этом сначала происходит восстановление растворенного кислорода с образованием перекиси водорода, а затем восстановление самой этой перекиси. Обычно полярографическая волна восстановления перекисей оказывается необратимой, иными словами, термодинамически необратима соответствующая электрохимическая реакция, в результате чего эта волна не имеет желаемой 5-формы с почти вертикальным центральным участком. В действительности, волна, как правило, оказывается растянутой и несимметричной. Это затрудняет (если не делает вообще невозможным) определение потенциала полуволны однако несмотря на это, в анализе можно получить прекрасные количественные результаты. [c.200]


    Однако если химическая реакция протекает с небольшой скоростью или если восстановленная форма находится в виде амальгамы, то на ртутном капельном электроде могут одновременно протекать электрохимические реакции восстановления и окисления. Это имеет место и в случае ионов и 8п +, если они связаны в цитратный или тартратный комплекс [потенциал полуволны цитратного комплекса меди, соответствующий восстановлению 2- -0, равен —0,25 в, а потенциал полуволны комплекса олова, соответствующий окислению 2 -> 4, равен — 0,48 в (н. к. э.) при pH 7]. В этом случае на полярограмме получаются две отдельные волны. На рис. 82 кривая / соответствует восстановлению двухвалентных ионов меди из цитратного комплекса, а кривая 2 — окислению из соответствующего комплекса до Если в растворе в равных концентрациях одновременно находятся ионы и 5п +, связанные в комплекс, то получается кривая 3 (сплошная), которая представляет собой алгебраическую сумму кривых и. 2. В данном случае первая волна кривой 3, соответствующая восстановлению Си, расположена ниже нулевой линии гальванометра, т. е. на анодной стороне, вторая же волна кривой 3, соответствующая окислению комплекса находится выше нулевой линии гальванометра, т. е. на катодной стороне. В области потенциалов между точками Л и В на кривой 3 наблюдаемый ток равен нулю при этом на ртутном капельном электроде одновременно протекает окисление и восстановление. [c.175]

    Опыты с искусственным регулированием периода капания показали, что потенциал полуволны не зависит от скорости вытекания ртути. Установлена логарифмическая зависимость 1/2 от периода капания (рис. 99), причем коэффициент перед логарифмом для 20 " равен 0,058 в. Форма полярографической волны разряда ионов водорода, согласно выводам Куты [72, 73], определяется эмпирическим соотношением [c.210]

    Характерным признаком необратимого восстановления анионов является влияние концентрации и валентности индифферентного электролита на процесс восстановления. У анионов, которые восстанавливаются при потенциалах, значительно более отрицательных, чем потенциал максимума электрокапиллярной кривой, это влияние сказывается на форме волны и значении ее потенциала полуволны у анионов, восстанавливающихся при более положительных потенциалах, чем потенциал электрокапиллярного максимума, оно сказывается также на характере предельного тока. [c.214]

    Если адсорбция неактивной формы деполяризатора подчиняется изотерме Лэнгмюра, то при Рс 1 и г/ 1 форма квази-диффузионной поверхностной волны описывается уравнением (123) (см. стр. 171), в котором вместо пр стоит практически равное ему значение г д. Потенциал полуволны определяется выражением [c.181]

    Зависимости г V- от т) для катодных и анодных процессов имеют ту же самую общую форму, что и обратимая полярографическая волна [сравни с уравнением (35) при 4 = 0 или 4 = 0, но они сильнее растянуты вследствие появления в уравнении (37) коэффициентов а или (1—а). Потенциал полуволны 1/, зависит от отношения 7 °, характеризующего данный процесс, и, следовательно, является функцией скорости массопередачи иными словами, 1/, смещается в катодную сторону для необратимых катодных процессов и в анодную — для необратимых анодных процессов при увеличении скорости массопередачи. График за висимости логарифмического члена уравнения (37) от т] (или потенциала) линеен, и с его помощью можно вычислить значение коэффициента переноса электрона. [c.185]

    Было исследовано полярографическое восстановление 5-окси-и 8-оксихинолина (V) в диметилформамиде [8]. Эти соединения дают по две одноэлектронные диффузионные волны при очень близких потенциалах —1,8В и —2,6В отн. нас. к.э. Первые волны наблюдаются при менее отрицательных потенциалах, чем первая волна хинолина (—2,1В отн. нас. к. э), тогда как вторые волны во всех случаях имеют почти одинаковые потенциалы. Изменения в форме и положении волн такие же, как и для хинолина. Кроме того, найдено, что при добавлении гидроокиси тетраэтиламмония уменьшается высота первой волны и возрастает высота второй, а потенциал полуволны не изменяется. С учетом сказанного была предложена следующая схема превращений  [c.280]

    Потенциал восстановления ионов элемента на полярограм-ме определяется серединой полярографической волны (потенциал полуволны). Эта величина является характерной для каждого металла и зависит от природы раствора. Так, например, для свинца потенциал полуволны в нейтральной среде равен —0,48 в, а в щелочной —0,84 в, что свидетельствует о различных формах нахождения этого элемента в различных растворах. Влияние природы раствора на величину потенциала полуволны элемента широко используется в полярографическом анализе для выбора условий раздельного определения металлов. Так, например, потенциалы полуволн цинка и никеля в нейтральном растворе настолько близки (—1,06 и —1,11 в), что полярографические волны сливаются и определение этих металлов становится невозможным. В аммиачном же растворе потенциалы полуволн цинка и никеля раздвигаются (—1,36 и —0,96), благодаря чему раздельное определение металлов осуществляется довольно легко. [c.43]

    Флюоресцеин дает одну или две волны, в зависимости отГрН. До рН = 9 получается одна волна, а при рН=9—10,1—две волны. Потенциал полуволны каждой волны сдвигается к более отрицательным значениям с увеличением pH. При pH, равном О—6,5, происходит восстановление хиноидной формы, при больших pH—анионной формы, а при pH более [c.460]

    Для квазиобратимого процесса, когда 2-й и 3-й члены знаменателя в выражении (9.9) равнозначимы, форма полярографической волны теряет симметричность относительно потенциала полуволны. Поскольку при достаточно отрицательных потенциалах фарадеевский ток во всех рассмотреннь1х случаях лимитируется диффузией, величина предельного тока ii (или /а(/к) в таст-режиме) оказывается инвариантной по отношению к необратимости электрохимической реакции, т.е. к величине к°. [c.328]

    В большинстве описанных выше случаев рассматривалось ускорение или торможение электрохимических процессов с участием неорганических деполяризаторов [9—32, 34—38, 41—51, 56—62, 70, 72—78, 98—106]. Меньше внимания было уделено влиянию поверхностноактивных веществ на электродные процессы с участием органических деполяризаторов. И в этом случае присутствие адсорбирующихся веществ влияет на число волн и их форму, на потенциалы полуволны и механизм обратимых и, особенно, необратимых процессов. Например, ингибирующее влияние эозина на полярографическое восстановление некоторых хиионов было описано в работе Визнера 18]. Эозин снижает предельный ток обратимой катодной волны хинона, не влияя на потенциал полуволны. При более отрицательных потенциалах наблюдается дополнительная волна, соответствующая заторможенному восстановлению хинона на новерхности электрода, покрытой адсорбировавшимся веществом. При необратимом восстановлении могут иметь место оба вида торможения, как обусловленного образованием иленки, так и изменением %-потеициала (в случае поверхностноактивных веществ ионного типа). Подобные факты описаны в ряде работ 1111—114]. В частности, отмечался значительный эффект тетраалкиламмониевых солей, которые часто применяются в качестве фона при исследоваиии органических деполяризаторов при этом влияние оказывают и концентрация, и размер тетраалкиламмониевых ионов. Так как полярографические данные (особенно значения потенциалов полуволн) часто используются для устаиовле- [c.311]

    Потенциал полуволны обратимой волны является константой, характерной для каждого деполяризатора. Его величина не зависит ни от концентрации деполяризатора, пи от характеристик капилляра, ни от чувстви-татьности гальванометра. Если восстановленная форма деполяризатора не образует амальгаму, потенциал полуволны практически равен нормальному окислительно-восстановительному потенциалу [уравнение (11)1. Если же в результате электродного процесса образуется амальгама, то потенциал полуволны соответствует нормальному потенциалу амальгамного электрода (см. разд. 6). Если при постоянной чувствительности гальванометра изменять концентрацию одного и того же вещества, то цри полярографировании получаются кривые, которые отличаются друг от друга высотой и потенциалом выделения (см. гл. I). С увеличением концентрации электрохимически активного вещества потенциал выделения его сдвигается к более положительным значениям, а потенциал полуволны остается постоянным (рис. 50). [c.111]

    Тот факт, что введение поправки на сферическую диффузию при образовании амальгамы приводит к уменьшению тока при потенциалах, более положительных, чем потенциал полуволны, и его увеличению при более отрицательных потенциалах, может на первый взгляд показаться непонятным. Однако это непосредственно вытекает из различия диффузионных пространств окисленной и восстановленной формы для случая, когда восстановленная форма образует амальгаму. Окисленная форма диффундирует снаружи к сфере, поэтому фронт диффузии постепенно сокращается в случае же линейной диффузии он остается постоянным. Поэтому к сферическому электроду в единицу времени подойдет больше вещества, чем это имело бы место при линейной диффузии. Восстановленная же форма диффундирует от сферической поверхности, где ее концентрация максимальна, внутрь капли, так что сечение диффузионного пространства по мере удаления от поверхности сокращается и скорость диффузии оказывается меньшей, чем при линейной диффузии. Диффузия внутрь капли, таким образом, затрудняется, так что концентрация восстановленной формы у поверхности электрода постепенно возрастает со временем. При потенциалах, значительно более отрицательных, чем потенциал полуволны, величина тока определяется прежде всего диффузией окисленной формы, так как в этом случае значение Р столь велико, а величина [Ох1остоль мала, что разность ([Ох]—[Ох]о), определяющая скорость диффузии окисленной формы, практически не изменится даже при значительном увеличении [Red[о- При потенциалах же, соответствующих нижней части полярографической волны, величина тока определяется преимущественно диффузией восстановленной формы внутрь капли. Отсюда легко видеть, что при потенциалах, более отрицательных, чем потенциал полуволны, поправка к уравнению Ильковича должна быть положительной, а при более положительных, чем Ei/ , потенциалах — отрицательной (см. работу Вебера [24]). [c.126]

    Как правило, соотношение между pH и формой полярографической кривой в трополонах сходно с таковым для бензальдегида. При pH 4 происходит одноступенчатое одноэлектронное восстановление трополона, с повышением pH появляется двухступенчатая волна, которая при pH 8 превращается снова в одноступенчатую волну, соответствующую двуэлектронному процессу. Потенциал полуволны для трополона равен —1,1 в при pH 4 и —1,46 в при pH 8. Он почти не изменяется при переходе к алкилтрополонам, однако 4,5-бензотрополоны восстанавливаются значительно легче, чем тропон [266]. Метиловый эфир трополона дает в щелочной среде отличающуюся от трополона полярограмму [54, 266, 397]. [c.371]

    Поскольку отношение коэффициентов диффузии окислителя и восстановителя очень близко к единице, потенциал полуволны обратимой реакции очень тесно связан со стандартным потенциалом соответствующей реакции. Потенциал полуволны независимо от того, измерен ли он по катодной, по анодной волне или по волне, которая является частично катодной, а частично анодной, после введения поправки на i должен быть равен нормальному электродному потенциалу реагирующей системы. Если вещество вначале полярографируют в окисленной форме, а затем в восстановленной и получают идентичные потенциалы полуволны, которые соответствуют нормальному потенциалу той же системы, определенному потенциометр ически, то это служит очень хорошим критерием обратимости данной системы. Потенциалы полуволны не зависят от концентрации электроактивного вещества, так как в точке полуволны отношение концентраций окисленной и восстановленной форм "на поверхности электрода имеет одно и то же постоянное значение. Это значение близко к единице независимо от концентраций в объеме раствора. Поскольку потенциалы разложения зависят от концентрации, в сводках полярографических окислительных и вое- [c.345]

    Потенциал полуволны, диффузионный ток, число и форма волн зависят от состава исследуемого раствора. Необходимость растворять образец в подходящем инертном растворителе, обеспечивающем достаточную электропроводность, сильно ограничивает применение полярографической методики к анализу. полимеров. За исключением относительно небольшого количества водорастворимых полимеров, измерения чаще всего проводят в смесях воды с 1,4-диоксаном, N,N-димeтилфopмaмидoм, моноалкиловыми эфирами этиленгликоля (целлозольвы), в тройных смесях вода — этанол (или метанол) — бензол или в неводных средах. Для того чтобы увеличить растворимость в смесях органических растворителей с водой, применяют аэрозоль МА и аэрозоль АУ (дигексил- и диамнлсульфосукцинат натрия), которые оказались эффективными для таких соединений, как тре/п-бутилгидроперекись [210]. Вследствие того что величина диффузионного потенциала между исследуемым раствором и электродом сравнения неизвестна, значения потенциалов включают некоторую неопределенную величину. Если в качестве анода используют слой ртути, то его потенциал изменяется в зависимости от среды и должен измеряться отдельно. Четвертичные аммониевые соли при использовании в качестве фона можно растворять в 30—85%-ном диоксане. Однако этот растворитель трудно очистить, и при стоянии он быстро образует перекиси. Четвертичные соли растворимы в этаноле, имеющем концентрацию вплоть до 80%. Целлозольвные растворители легко очищаются, не ухудшаются при хранении и растворяют достаточное количество электролита для образования проводящих растворов. Наиболее подходящими для анализа являются концентрации определяемых компонентов, равные [c.361]

    Ионы водорода участвуют во многих электродных реакциях органических соедр1нений. Часто pH и ионная сила среды сильно влияют на потенциал полуволны, число волн и форму кривой сила тока — напряжение. Для того чтобы получить воспроизводимые результаты, необходимо использовать буферные растворы при этом природа и концентрация соответствующей буферной системы в каждом случае индивидуальны. Добавление водного буферного раствора к органическому растворителю или к смеси растворителя с водой может значительно изменить pH буфера. Это связано с изменением активности ионов и кажущихся констант диссоциации различных присутствующих в системе диссоциирующих частиц. Обсуждение влияния pH, буферов и ионной силы в органической полярографии было проведено Элвингом [60]. [c.362]


Смотреть страницы где упоминается термин Форма волн и потенциалы полуволны: [c.55]    [c.125]    [c.126]    [c.141]    [c.152]    [c.98]    [c.158]    [c.172]    [c.165]    [c.200]    [c.128]    [c.145]    [c.210]    [c.215]    [c.373]    [c.450]    [c.451]    [c.185]    [c.106]    [c.9]   
Смотреть главы в:

Новые проблемы физической органической химии -> Форма волн и потенциалы полуволны




ПОИСК





Смотрите так же термины и статьи:

Волна форма

Потенциал полуволны



© 2025 chem21.info Реклама на сайте