Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Барьер потенциальный атома

    Зависимость (212.2) может быть представлена графически в трехмерном пространстве или в виде изоэнергетических линий в двухмерной системе координат п и гг. Расчет энергии такой системы, состоящей из 3 ядер и 3 электронов, был сделан методом МО ССП с расширенным базисом. На рис. 188 приведены результаты одного из таких расчетов. Изоэнергетические линии системы вычерчены при изменении п и гг. Диаграмма подобна топографической карте. Рассмотрим, как будет изменяться внутренняя энергия при столкновении молекулы АВ с атомом С. Внутренняя энергия исходного состояния молекулы АВ (На) принята равной —440 кДж/моль, энергия атома С (атома Н) — равной нулю. Пусть кинетическая энергия поступательного движения молекулы АВ и атома С по линии, соединяющей центры атомов, будет равна (,. Примем за исходное состояние системы состояние, обозначенное на рис. 188 точкой 1. В этом состоянии атом С находится на расстоянии г% =2 10 м. Энергия межмолекулярного взаимодействия между АВ и С невелика, поэтому внутреннюю энергию системы можно принять равной энергии исходного состояния. При приближении атома С к молекуле АВ преодолеваются силы отталкивания между одноименно заряженными ядрами атомов В и С. Внутренняя энергия системы при этом возрастает. Точка, характеризующая состояние системы, будет двигаться по линии минимальных энергетических градиентов, изображенной на рис. 188 пунктиром. В интервале между точками 2 ж 4 система находится на перевале, разъединяющем исходное и конечное состояния. На вершине энергетического барьера, в точке <3, при г = гг, атомы А и С энергетически тождественны. Система находится в переходном состоянии (см. 210). Однако в состоянии атомов А и С есть существенное различие. Атом С продолжает движение по направлению к атому В за счет кинетической энергии поступательного движения, а атом А совершает колебательное движение относительно атома В. На вершине потенциального барьера возникает взаимодействие в форме притяжения между атомом С и молекулой АВ, обусловленное обменным взаимодействием энергетических уровней молекулы АВ и атома С. В точке 4 система находится в состоянии мо-кулы ВС и атома А. На пути от точки 4 к точке 5 энергия отталкивания переходит в энергию поступательного движения молекулы ВС и атома А. Внутренняя энергия системы уменьшается до энергии конечного состояния (молекулы ВС и атома А), равной —440 кДж/моль. [c.570]


    НОВ и обладает наиболее высоким потенциальным барьером, что проявляется в высокой энергии активации большинства органических реакций. Однако всякое смеш,ение электронов в сторону одного или другого атома поляризует атом и тем самым снижает величину энергии активации. В пределе такой деформации ковалентной связи образуется истинно полярная, или ионная, связь, при которой энергия активации становится равной нулю, и реакции протекают моментально. [c.34]

    Для оценки величины AS° допустим, что все изменение свободной энергии активации определяется упругой энергией, возникающей в кристаллической решетке, когда диффундирующий атом переходит на вершину потенциального барьера, т. е. [c.346]

    Используя высокую чувствительность адсорбционной хроматографии к структуре молекулы адсорбата, можно реш ать и обратную задачу, т. е. определять некоторые параметры структуры молекулы на основании экспериментальных хроматографических определений константы Генри на том же адсорбенте. Применяя в качестве адсорбента ГТС, можно находить такие параметры геометрической структуры молекул, как двугранные углы, положения отдельных атомов и потенциальные барьеры внутреннего вращения. Используя полярные адсорбенты, можно опреде- [c.25]

    Возможны и такие случаи, когда при д < 15 ккал реакция идет медленно (при малом значении А). Первый случай возможен в реакциях между простыми молекулами, а второй — между сложными, требующими определенной ориентации для реакции. Чем больше энергия активации реакции, тем при более высокой температуре она совершается. Реакции между веществами с прочными ковалентными связями идут медленно. Часто это наблюдается в реакциях между органическими веществами. Очень высокий потенциальный барьер ( а порядка 100 ккал) в твердых телах препятствует, например, переходу термодинамически неустойчивого алмаза в графит при 298° К и 1 атм, хотя для этого перехода Д0%в8< 0 (—0,685 ккал/г-атом). Энергия активации в твердых телах зависит от прочности химических связей, которые могут быть очень большими. Поэтому состояние ложных равновесий в них часто сохраняется долго неизменным. [c.45]

    Фосфор имеет целый ряд аллотропных модификаций. Основные черный, красный и белый фосфор. При нормальных условиях наиболее устойчив черный фосфор. Иначе говоря, его свободная энтальпия минимальна. Но потенциальный барьер, препятствующий переходу метастабильных модификаций в черный фосфор, велик, поэтому при обычных условиях черный фосфор не образуется. Здесь тоже сказывается то интересное правило периодической системы элементов, о котором говорилось в гл. IX при описании строения щелочных металлов. Подобно графиту, черный фосфор состоит из слоев Рд (рис. 50). Атомы фосфора в слое группируются в шестиугольники. Каждый атом химически связан с тремя соседними атомами фосфора. [c.205]


    Однако в отличие от обычных химических реакций в электрохимических процессах энергия активации может существенно изменяться в зависимости от потенциала электрода, как это происходит, например, при поляризации. Рассмотрим изменение потенциальной энергии, происходящее при разряде Н3О+, т. е. на стадии I. Здесь конечным состоянием является адсорбированный атом водорода. Этот атом имеет значительно меньший размер, чем гидратированный протон (ион гидроксония Н3О+). Поэтому равновесное расстояние, на котором атом находится от электрода, мало по сравнению с соответствующим расстоянием для Н3О+. При разряде протон получает от катода электрон и отрывается от Н3О+, а атом водорода адсорбируется на электроде. Такой переход невозможен без преодоления энергетического барьера, разделяющего адсорбированный атом водорода и Н3О+. Вершина барьера соответствует энергии переходного состояния. [c.270]

    При фиксированном значении эффективного напряжения, т. е. превышения приложенного напряжения над напряжением сил трения Ат = т — Тд, образование скоплений приводит к локальной концентрации напряжений (и, следовательно, давления в окрестности дислокаций) до величины пАт [6]. Именно это значение напряжений определяет химический потенциал поверхностных атомов металла, так как перед поверхностным потенциальным барьером расположена головная дислокация скопления. [c.53]

    Лондон был первым, кто дал объяснение этого барьера в терминах квантовой механики. В описанной выше реакции атомы Ч Ъ первоначально связаны простой связью, т. е. двумя электронами с противоположно направленными спинами, в то время как атом X имеет неспаренный электрон. С приближением X к V — Z взаимодействие между этими тремя электронами вызывает уменьшение силы связи V — Ъ, так что V и 7 стремятся разойтись. Следовательно, приближение X к V — Ъ сопровождается увеличением потенциальной энергии системы, которое лишь отчасти компенсируется образованием связи X — V. В конце концов, достигается точка, где доминирующим становится притяжение X — У, а Ъ покидает систему, что сопровождается уменьшением полной потенциальной энергии системы. Можно продемонстрировать это графически откладывая полную потенциальную энергию системы в ходе протекания реакции, как это показано на рис. 14.1. [c.308]

    Оценка спектроскопических возможностей имеет большое значение для дальнейшей работы с атомным разрешением и является основной целью аналитической химии поверхности. Главная проблема заключается в том, что локальный потенциальный барьер не специфичен для определенного элемента. Таким образом, анализ все еще ограничен в большой степени случаями, когда компоненты известны. На рис. 10.5-5 видно, как единственный атом кислорода, адсорбированный на поверхности арсенида галлия, четко наблюдается на СТМ-фотографии (режим ТПТ). Кривая < //< 7 для поверхности арсенида галлия с адсорбированным атомом кислорода отличается от аналогичной кривой для чистого арсенида галлия. [c.373]

    Здесь Fg—максимум потенциальной энергии, или высота барьера ф — угол между плоскостью, в которой находится атом водорода, и плоскостью, от [c.456]

    Переходное состояние для бимолекулярного механизма имеет строение, изображенное на стр. 82. Четыре атома (углеродный атом — центр реакции и три связанных с ним) располагаются в одной плоскости, тогда как входяш ая и уходяш ая группы находятся на прямой, перпендикулярной этой плоскости. Существенно то, что в переходном состоянии центральный атом углерода связан с пятью группами, тогда как в исходной молекуле — только с четырьмя. Поэтому всякое увеличение объема этих групп скажется более резко на напряженности переходного состояния при увеличении объема заместителей потенциальный барьер увеличится, энергия активации возрастет и реакция замедлится. Таким образом, в случае механизма 3 2 пространственные нагрузки вблизи центра реакции скажутся как пространственные затруднения, что и наблюдается в действительности. [c.516]

    У — максимальная величина потенциального барьера для вращения адсорбированной молекулы. V (ст) — функции формы атом-атомного потенциала У (ст) = и/е РУ — потенциальная энергия изолированной молекулы Хг — обобщенная сила, соответствующая г-му геометрическому параметру системы [c.376]

    Хотя атомный углерод присутствует в некоторых высокотемпературных пламенах, таких как ацетилен-кислородное, оценить его количество трудно. Потенциальный барьер образования углерода из свободных атомов слишком велик чтобы выделить атом углерода из углеводорода, требуется около 586 кДж/м ль (140 ккал/моль) [1, с. 182]. [c.181]

    Приближение А к ВС сопрово/кдается увеличением потенциальной энергии системы, обусловленным возрастанием сил отталкивания между А и ВС и уменьшением притяжения между В и С (рис. 17). Переходное состояние соответствует вершине энергетического барьера реакции, который должны преодолеть реагирующие вещества. После того, как атом А приблизится к атому В настолько, что станет возможной химическая связь, атом С оттолкнется, и потенциальная энергия системы начнет уменьшаться. Активированный ко.мплекс представляет собой своеобразную молекулу, устойчивую ко всем направлениям, за исключением одного, перемеш.аясь вдоль которого она может распадаться до конечного состояния или, с равной вероятностью, возвращаться в исходное состояние системы. Отсюда следует, что на вершине энергетического барьера исходные молекулы должны находиться в равновесии с активированным комплексом. Константа равновесия [c.89]


    Для полимерной цепи двухуровневая модель представлена на рис. 2.3. (Оо — потенциальный барьер при разрыве, По — при рекомбинации связи Пп — энергия диссоциации при одновременном разрыве всех связей в цепи ип —энергия диссоциации концевого атома Кт — расстояние от минимума — точка А— до максимума — точка С.) Можно представить два случая распада полимерной цепи. Первый, когда все связи в цепи разрываются одновременно, и вся цепь полностью диссоциирует на атомы (этот случай представлен на рис. 2.2). Второй, когда рвется одна связь и вся полимерная цепь распадается на два фрагмента (этот случай приведен на рис. 2.3). При этом атом переходит из объемного состояния (Л) в поверхностное (В), проходя через максимум (С). Потенциальная кривая 1 относится к внутреннему атому цепи, а кривая 2 — к концевому. Такая двухуровневая модель будет рассмотрена применительно к термофлуктуационной теории долговечности в последующем. [c.26]

    Рассмотрим теперь влияние полярного фактора на положение активированного комплекса на поверхности потенциальной энергии. Пусть реагентом является атом хлора. Его высокое электронное сродство ведет к поляризации активированного комплекса, который можно представить в виде R+- -Н- - h. Такая поляризация обеспечивает добавочную движущую силу за счет дальнодействую-щих кулоновских сил. Снижается потенциальный барьер реакции (см. табл. 15.1) и активированный комплекс сдвигается из области А [c.150]

    В реагирующей системе А ВСт1АВ С атомы В тл С соединены простой связью, т. е. парой электронов с противоположными спинами, а А имеет неподеленный электрон. При присоединении А к ВС взаимодействие электронов дает снижение обменной энергии, в результате связь ВС ослабевает и нарастает тенденция к разрыву молекулы. При достижении определенного энергетического уровня атом С начинает удаляться из молекулы, а А—внедряться. В некоторый момент силы связей атомов А и С с В будут уравновешены, и система вступает в переходное состояние. Изменение потенциальной энергии системы при этой реакции представлено графически на рис. 27. В точке пересечения барьера образуется активированный [c.131]

    В дальнейшем различными авторами были предприняты попытки уточнить эту Теорию и устранить некоторые ее противоречия. Так, из-за большого различия в энергиях связи протона со ртутью ( 29 ккал1г-атом) и с молекулой воды в ионе Н3О+ ( 280 ккал1г-ион) углы б и у в точке пересечения потенциальных кривых на рис. 150, б должны быть разными, а величины а — значительно превышающими 0,5. О. А. Есин предложил учитывать энергию отталкивания между адсорбированным атомом водорода и молекулами воды. Учет этого взаимодействия должен был увеличить наклон восходящей ветви на потенциальной кривой Над (см. рис. 150). При учете туннельного разряда водорода теория Гориути — Поляни дает возможность истолковать различную скорость выделения протия, дейтерия и трития за счет их различной способности просачиваться через потенциальный барьер. Наконец, в работах Дж. Бокриса квантовомеханические представления были использованы для расчета трансмиссионного коэффициента х. [c.296]

    Энергетический барьер экзотермической химической реакции обусловлен перестройкой электронной структуры реагирующих частиц. Если атом А реагирует с молекулой ВС, то в реакции рвется связь В - -С и образуется связь А — В. Такую перестройку приближенно можно описать как суперпозицию двух волновых функций г з = а 115а, вс 4 + С Фав, с, где г15д, вс описывает взаимодействие А с молекулой ВС, а я1)ав, с — атома С с молекулой АВ коэффициенты а и с меняются вдоль координаты реакции. Качественное представление об общем характере поверхности потенциальной энергии дает рассмотрение двух независимых поверхностей, одна из которых описывается функцией 1 А, вс, другая Фав, с- Эти две поверхности пересекаются. При взаимодействии А с ВС пересечение исчезает и образуются нижняя и верхняя поверхности потенциальной энергии, система движется по нижней поверхности. В реакции атома водорода с молекулой водорода функции [c.87]

    Задача проникновения через потенциальный барьер очень часто встречается в физике. Рассмотрим, например, процесс а-распада, при котором а-частица покидает ядро радиоактивного элемента. Каково взаимодействие а-частицы и ядра На больших расстояниях между ними должно иметь место кулоновское отталкивание, поскольку и ядро, и а-частица имеют положительный заряд. Однако на близких расстояниях ( 10 см) включаются специфические ядерные силы, обеспечивающие прочность ядер, и энергия а-частицы должна понил<аться. В итоге возникает зависимость потенциальной энергии взаимодействия а-частицы с ядром, изображенная на рис. XXI.3. [c.438]

    Величина Jq = 2Kv К — стерический фактор v — средняя частота колебательного движения атома атом подходит к потенциальному барьеру 2v раз в секунду). Величина 1// = т представляет среднее время, которое каждая частица находится окдло положения равновесия. [c.146]

    Если в амидной группировке атом водорода заменить на группу —СНз, то между молекулами вместо прочной водородной связи возникнут более слабые вандерваальсовы силы. В этом случае благодаря ослаблению межмолекулярных сил потенциальный барьер уменьшается, цепи делаются более гибкими, а получающийся продукт — эластичнее. [c.189]

    Если температура жидкости выше таковой в паре (трубке), то начнется перенос жидкости через перегородку, то есть осуществится своеобразный тепловой насос. Расчет показывает, что в случае воды при разнице температур в 100°С, процесс подъема прекратится, когда высота жидкости в трубке будет составлять несколько километров. Таким образом, этот тепловой насос способен поднимать жидкость на высоту, измеряемую в километрах. При термодиффузии градиент температуры вызывает перенос примеси. Величина такого переноса должна зависеть от механизма его осуществления. В простой теории Виртца, описывающей вакансионный механизм переноса, учитывается, что при совершении элементарного акта блуждания атом пёреходит от одной температуры к другой. При этом энергию, необходимую для преодоления активационного барьера, частица получает в начале блуждания и отдает в конце. Подобный переход возможен, если вакансия образуется в конце пути и исчезает в начале. В итоге тепло переноса должно составлять разницу энергий, равную высоте потенциального барьера и энергия образования вакансии. [c.539]

    На рис. 2.4 представлена потенциальная кривая вращения вокруг связи С—О в СН2С1ООН. Наиболее устойчивым 5[вляется ОН—И-анти-кои-формер, поскольку в нем реализуется единственное взаимодействие непо-деленной электронной пары (НЭП) с атомом хлора. Наибольший барьер вращения (51.1 кДж/моль) соответствует ОН—С1-заслоненной структуре. На 24.1 кДж/моль выше абсолютного минимума лежит ОН—С1-он/пм-кон-формер. Повыщение энергии связано с реализацией в этой конформации двух взаимодействий НЭП атома кислорода с атомом С1. Качественно аналогичный вид имеет конформационный потенциал вращения вокруг связи С-О в дихлорметилгидропероксиде (рис. 2.5). Две 0Н-С1 заслоненные структуры характеризуют вращательные барьеры высотой 39.7 и 34.9 кДж/моль. Третий максимум значительно ниже, всего 13.8 кДж/моль. Среди трех минимумов энергия ОН—Н <зн/им-конформера на 1.5 кДж/моль ниже энергии несимметричного ОН—С1 он/им-конформера. Предпочтительность первой структуры объясняется [18] тем, что в ней расстояние ООН—С1 несколько меньше (2.851 и 2.907 А соответственно). Наконец, третий минимум находится на 8.6 кДж/моль выше второго вследствие того, что атом Н гидропероксигруппы ориентирован в нем по направлению к атому водорода метильной группы. [c.85]

    Плоская конфигурация макромолекул обусловлена энергетическими причинами. Существует энергетический барьер, препятствующий свободному вращению атомов и групп атомов. Величина этого барьера непостоянна и меняется в зависимости от угла вращения т4ким образом, что потенциальная энергия молекулы минимальна в том случае, когда заместители наиболее удалены друг от друга (заторможены или находятся в тра с-положении). Наиболее благоприятным является расположение, когда каждый последующий атом цепи принимает заторможенную конформацию относительно предыдущего атома. Это соответствует полностью выпрямленной плоской конформации. [c.105]

    Низко- и высокомолекулярные жидкости имеют различную структуру соответственно различаются н механизмы их течения. Движенне низкомолекулярных жидкостей происходит путем мгновенного перескока образующих их ато.мов или молекул из одного положения в другое Эти перескоки возможны и при отсутствии течеиня В этом случае частота перескоков Уо зависит от высоты потенциального барьера (рис. 4.8), разме- [c.254]

    Адсорбция, ответственная за катализ, должна быть более сильной, чем ван-дер-ваальсова адсорбция, так как она обусловлена химическими силами. Поэтому для того чтобы оторвать адсорбированный атом А молекулы, образовавшийся при полном разрыве связи А—В, из ложбины V между атомами катализатора, требуется затратить большую энергию. Однако это не значит, что адсорбированные атомы должны находиться неподвижно на данном месте поверхности. Все зависит от высоты потенциального барьера между двумя соседними ложбинами. Условием, определяющим относительную свободу движения, является небольшая высота этого барьера. Тогда возможна миграция атома (нли радикала) по Леннард-Джонсовым долинам, т. е. долинам минимума потенциальной энергии, расположенным между выступающими частями атомов или ионов кристаллической грани. [c.17]

    Сильное влияние гибкости цепи на температуры плавления I-блюдается у простых полиэфиров. При замещении группы —СН, в цепи полимера на атом кислорода или серы температура плав ния понижается, несмотря на увеличение энергии когезии. Это < носится н к мономерам, и к полимерам. Все простые полнэфИ имеют более низкие Гпл по сравнению с полиметиленом, что с условлено незначительной величиной потенциального барьера В( щения вокруг направления связей С—О—С и С—5—С, и завис щей от этого повышенной гибкости цепей простых полиэфир< При большом содержании серы превалирующую роль начинг играть энергия когезии, и Тпл повышается. [c.140]

    Прежде всего эта роль определяется значением нековалентпых взаимодействий в формировании пространственной структуры белков и иуклеиновы,ч кислот. В полипептидной цепи каждый хиральный атом углерода связан простыми <т-связя-ми с группами С=0 и NH, что означает возможность заторможенного вращения с низким активационным барьером вокруг этих связей. Вращение вокруг собственно-пептидной связи затруднено, поскольку вследствие р, г-сопряжения эта связь не является строго одинарной. Таким образом, в полипептидной цепи длиной вминокислотных остатков возможно заторможенное вращение вокруг 2N связей. Если принять, естественно с некоторой степенью условности, что каждой из таких связей соответствуют три значения торсионных углов, соответствующих минимумам потенциальной энергии вращения (по аналогии с классической картинкой для вращения вокруг связи С—С в дихлорэтане), то число различных конформаций, которое может принимать полипептидная цепь, составит я Считая, опять-таки с большим элементом условности, что время отдельного поворота вокруг <г-связи имеет порядок 10 с и вращение вокруг всех связей может происходить независимо друг от друга, число поворотов в секунду можно оценить как 2УУ-101 , что для небольшого белка, состоящего всего из 100 аминокислотных остатков, составит 2-10 2. Если бы молекула белка представляла собой статистический клубок, непрерывно случайным образом изменяющий свою конформацию, то некоторую биологически значимую конформацию, необходимую для функционирования белковой молекулы, она принимала бы один раз за 10 с, что абсурдно велико не только по сравнению с временем, реально необходимым для выполнения той или иной функции, но и с временем существования Вселенной вообще. Аналогичная оценка, проведенная для такой достаточно сложной органической молекулы, как NAD, где основная цепочка атомов содержит 14 таких <т-связей, показывает, что время, необходимое для достижения некоторой определённой конформации, существенной для функционирования этой молекулы в химических превращениях и в биохимических системах, составит величину порядка 0,07 с, [c.68]

    Известный закон распределения Максвелла по скоростям атомов или по их кинетическим эиергиям является обш,им физическим законом, выражающим флуктуацпонную природу движения частиц, независимую от агрегатного состояния вещества. Согласно этому закону, имеется характеризуемая средним временем ожидаЕШя т вероятность того, что данный атом или группа атомов в полимерной цепи получит кинетическую энергию, достаточную для разрыва химической связи. Произойдет разрыв, или деструкция связи, которая, если температура не слишком высока, практически немедленно вновь восстановится (рекомбинирует), так как внешних растягивающих сил, стремящихся удержать атомы в разорванном состоянии, нет. Минимальную кинетическую энергию, которая необходима для разрыва связи, называют энергией активации разрыва связи б о. При приложении растягивающей силы ] = соиз1 энергия активации 11 станет меньше /о, так как на пути Хш (см. рис. 1.2) при преодолении потенциального барьера совершается еще и работа внешних сил, равная кт - Поэтому энергия активации будет равна 7 = = и,-Хга . [c.20]


Смотреть страницы где упоминается термин Барьер потенциальный атома: [c.101]    [c.27]    [c.71]    [c.100]    [c.177]    [c.301]    [c.8]    [c.96]    [c.140]    [c.309]    [c.39]    [c.150]    [c.140]    [c.321]    [c.322]    [c.516]   
Электрические явления в газах и вакууме (1950) -- [ c.384 ]




ПОИСК





Смотрите так же термины и статьи:

Барьер

Потенциальная яма

Потенциальные барьер



© 2025 chem21.info Реклама на сайте