Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физические состояния полимеро и химические превращения

    Механизмы реакций полимеризации. Полимерное состояние вещества является высшей формой усложнения молекул. Оно характеризуется такими особенностями, как предельно большая, преобладающая роль конформационных превращений цепей молекулы и пространственного экранирования реакционных центров, постепенный переход от физико-химических свойств к функциям, в результате чего такие молекулы полимеров могут быть способны к обмену веществ, закреплению изменений, связанных с действием окружающих атомов и молекул, физических полей и т. д. [c.237]


    Скорость химических превращений высокомолекулярных соединений, а также однородность получаемых продуктов в значительной степени зависят от физического состояния полимера, так как большинство высокомолекулярных соединений растворимо в ограниченном числе растворителей и реакции их чаще всего протекают в гетерогенной среде. Большинство полимеров неоднородно. Кристаллические полимеры двухфазны и содержат кристаллические и аморфные области. Отдельные участки однофазных аморфных полимеров могут иметь различную степень упорядоченности и разную плотность упаковки молекул. [c.217]

    В указанных работах отмечено, что в связи с образованием при механической деструкции макромолекулярных свободных радикалов, скорость их дальнейших превращений, и в частности рекомбинация, будет в значительной мере зависеть от физического состояния полимера и наличия акцепторов свободных радикалов. Течение сшитых полимеров авторы назвали химическим, подчеркнув этим его деструктивную природу.  [c.47]

    Представлялось целесообразным рассмотреть специфику радиационно-химических превращений и особенности процесса окисления радиационно-модифицированных полиолефинов с учетом физического состояния полимера в блоке, его надмолекулярной организации. Это было тем более важно, что некоторые ранее полученные экспериментально результаты, казавшиеся противоречивыми или даже исключающими друг друга, нашли разумное объяснение с позиции представлений о надмолекулярных структурах, развитых академиком В. А. Каргиным и его школой. [c.6]

    Практикум состоит из трех частей. В первой части приведены работы, посвященные различны.м методам синтеза полимеров — полимеризации, сополимериза-ции, поликонденсации, полиприсоединению и химическим превращениям полимеров. Вторая часть посвящена физикохимии и физике полимеров и включает лабораторные работы по структуре и физическим состояниям полимеров, деформационным, механическим и электрическим свойства.м полимеров, свойствам их растворов, определению. молекулярных масс и молекулярно-массового распределения. Третья часть включает работы по основным методам исследования полимеров ИК- и УФ-спектроскопии, дифференциально-термическому анализу, полярографии и хроматографии. Практикум содержит описание 97 лабораторных работ, которые прошли успешную апробацию. [c.8]

    Для определения физических состояний полимеров и границ их существования часто используют метод термомеханического анализа (ТМА), который основан на изменении деформируемости полимеров в широком интервале температур. Наиболее важное значение метод ТМА имеет для установления температурных пределов существования стеклообразного, высокоэластического и вязкотекучего состояний. Метод ТМА позволяет определить те.мпературы кристаллизации и плавления, начала химического разложения, выяснить способность полимера к структурированию и разнообразным химическим превращениям. Метод используется также для изучения влияния пластификаторов, наполнителей и других добавок на технологические свойства пластмасс, для оценки перерабатываемости полимеров. [c.145]


    Учитывая влияние физического состояния полимера на кинетику химических и релаксационных превращений, мо но предположить, что переход из одного физического состояния в другое будет сопровождаться существенным изменением качественных и количественных соотношений процессов, ответственных за старение материала. Поэтому режим искусственных испытаний следует подбирать так, чтобы не происходил переход материала из ОДНОГО физического состояния в другое. В качестве ориентировочного критерия может служить температура стеклования или теплостойкость. [c.201]

    Основные итоги исследований радикалов в полимерах методом ЭПР состоят в следующем. Идентифицирована химическая природа различных радикалов, образующихся в полимерах при окислении, радиолизе и фотолизе, при механодеструкции и всех прочих видах воздействия на полимер. Установлена их относительная стабильность, температурные области гибели, зависимость гибели от физического состояния полимеров и т. д. Исследованы взаимные превращения радикалов, кинетика гибели радикалов, определены энергии активации гибели, сформулированы механизмы рекомбинации радикалов (см. гл. III). [c.29]

    Таким образом, химические реакции полимеров имеют много общего с подобными реакциями их низкомолекулярных аналогов. Однако специфика полимеров вносит и существенные отличия. Для полимеров характерно неполное превращение реагирующих фупкциопальпых групп. Физическое, фазовое состояние полимеров может заметно влиять на это отличие—доступ реагента может быть облегчен или затруднен к местам расположения функциональных групп в макромолекулах. Поэтому характерным признаком продуктов химических превращений полимеров является их композиционная неоднородность. Классификация химических реакций полимеров учитывает изменения как химической, так и физической структуры макромолекул. Примеры полимераналогичных, внутримолекулярных и межмакромолекулярных реакций хорошо подтверждают этот тезис. Химические реакции определяют пути стабилизации и модификации свойств полимеров. [c.230]

    Авторы сознательно следуют устоявшейся, но не вполне строгой терминологии, введенной Каргиным и Слонимским [19]. В 50-е годы термин физические состояния был рекомендован, чтобы подчеркнуть возможность резкого изменения многих физических свойств полимеров в узком диапазоне изменения температуры без каких-либо химических (типа вулканизации) превращений, а также без фазовых переходов. С точки зрения физики термин физические состояния не имеет большого смысла, ибо нефизических состояний вообще не существует. Гораздо лучше передает суть дела предложенный Волькенштейном термин релаксационные состояния или его механический эквивалент (предложенный Бартеневым и позже используемый в данной книге) деформационные состояния . —  [c.17]

    Статический метод применяют, как правило, для оценки химических превращений в полимере во времени. Динамический метод используют значительно чаще, поскольку он позволяет оценить не только структурные и химические изменения в полимере (переход из одного физического или фазового состояния в другое, деполимеризация, окисление), но и определить температуру начала и темп развития процессов деструкции. [c.143]

    Значительную склонность к образованию неравновесных систем с развитым переходным слоем имеют системы, получаемые в виде пленок из раствора. В этом случае, формирующаяся всей совокупностью процессов взаимодействия полимера и растворителя, физическая структура образцов, наряду с химическим строением цепей второго полимера, может оказывать влияние на скорость деструктивных превращений полимеров даже после полного удаления растворителя. Предыстория формирования полимерной композиции (химическая природа и термодинамическое качество растворителя в отношении каждого из полимеров, исходная концентрация раствора, соотношение компонентов, тип фазовой диаграммы) сказывается на ряде характеристик полимерной смеси -способности компонентов к взаиморастворимости, изменению конформационного состояния макромолекул каждого полимера, релаксационных свойствах образца. Все это в результате отражается на кинетике химических превращений полимеров. В пользу этого свидетельствуют данные по деструкции пленочных образцов ПВХ в смеси с СКН-18, полученных из совместного раствора в ДХ. Как видно из рис. 3, с ростом концентрации исходного раствора смеси полимеров наблюдается закономерное увеличение скорости деструкции ПВХ. Обращает на себя внимание факт, что при одном и том же содержании нитрильного каучука в смеси скорость дегидрохлорирования ПВХ в пленках, полученных из 1% и 5% растворов, различается в 2 раза. Аналогичным образом ведут себя и смеси ПВХ с СКН-26 и СКН-40, полученные в виде пленок. Изотермический отжиг пленок из смесей полимеров при температуре, превышающей ПВХ, приводит к значительному уменьшению значений скоростей дегидрохлорирования ПВХ в смеси, однако даже после длительного отжига сохраняется различие в значениях [c.251]


    Широкое внедрение полимерных материалов в различных областях народного хозяйства поставило перед исследователями принципиально новую задачу — изучить состояние, структуру и диффузионные свойства воды в полимерной матрице. Действительно, изделия на основе полимеров при эксплуатации и хранении часто находятся в контакте с газообразными и жидкими водными средами, в результате чего изменяются их физико-химические, электрические и механические свойства. Вода, диффундирующая в полимер, изменяет его физическое состояние (пластификация), а при наличии связей, подвергающихся гидролизу, вызывает деструкцию полимерной цепи, что ухудшает свойства материала, определяемые его высокой молекулярной массой. Вода может вступать в реакцию с полимером и без разрыва полимерной цепи, однако свойства нового полимера, полученного при полимераналогичных превращениях, отличаются от свойств исходного. Для всех биополимеров (белки, нуклеиновые кислоты, полисахариды) вода является непременным компонентом и часто абсолютно необходима для проявления их биологических свойств. [c.5]

    В некоторых случаях химические превращения в подвергаемом пиролизу полимере следуют непосредственно за физическими превращениями-плавлением или переходом из стеклообразного в высокоэластическое состояние. Поскольку в полимерах эти переходы происходят в довольно широком интервале температур, при динамических исследованиях химические процессы налагаются на физические и часто их бывает невозможно разделить по кривой ДТА. Применение ДТА для количественных исследований в этом случае невозможно, так как общий тепловой эффект является суммой тепловых эффектов физического и химического превращений. Выход из положения заключается в использовании очень больших скоростей нагревания, примерно 80-100 °С/мин. Дело в том, что температура фазовых переходов незначительно зависит от скорости нагревания. При больших скоростях нагревания удается значительно сдвинуть химическое превращение в сторону более высоких температур и разделить полностью или частично оба процесса. В качестве примера рассмотрим изменение формы кривой ДТА при разложении полиакрилонитрила (ПАН) (рис. Ш.З). [c.47]

    ИХ состав светостабилизаторов и антиоксидантов. Механизм действия светостабилизаторов может быть основан на физических или химических процессах. Физический механизм связан со способностью светостабилизаторов поглощать УФ-свет. При этом максимальной эффективностью характеризуются светостабилизаторы, которые поглощают свет в той же области, что и полимер, и всю поглощенную энергию превращают в тепловую. Последнее достигается подбором светостабилизаторов, способных к очень быстрому химическому превращению в электронно-возбужденном состоянии или благоприятствующих внутренней конверсии, т.е. превращению энергии электронного возбуждения в энергию колебаний или вращений отдельных групп атомов молекулы светостабилизатора. [c.58]

    Под термомеханическими свойствами полимеров понимают обычно характеристику их механического поведения в различных термических условиях. Чаще всего при этом имеют в виду способность полимера противостоять действию направленного внешнего усилия, которое создает в нем напряжение о, способное вызвать деформацию, т. е. изменение геометрии образца. Измеряя деформацию е при последовательно изменяющихся температурах Г, можно построить термомеханическую кривую полимера е(7 ). При этом важно охватить по возможности всю температурную область существования полимера в этом случае кривая отразит все изменения физического состояния исследуемого объекта и все химические превращения, которым он подвержен. В принципе может быть использован любой метод деформирования полимера — растяжение, сжатие, кручение и т. д. [c.5]

    В учебнике рассмотрены современные представления о строении, свойствах, синтезе и химических превращениях полимеров, приведены сведения о важнейших природных и синтетических полимерах. Книга содержит все основные разделы физики и химии полимеров включая сведения о последних достижениях в этих областях. Широкий охват материала, наряду с фундаментальностью, доступностью и иллюстративностью изложения, позволит читателю и, прежде всего, студенту, сформировать полную и ясную картину о физической природе и особенностях полимерного состояния вещества, не прибегая к разрозненным сведениям из отдельных учебных пособий. [c.2]

    Температура или время Показанный на рис. 1.1 характер изменения модуля упругости полимеров при растяжении и сдвиге по мере перехода из одного состояния в другое не зависит от переменного параметра температуры, времени или частоты. Наклон кривой температурной зависимости модуля упругости полимеров в высокоэластическом состоянии слегка положителен. Положения точек перехода из одного физического состояния в другое как по температурной, так и по временной шкале зависят от типа полимера. Снижение модуля при переходе полимера из твердого состояния определяется его температурой плавления или стеклования это явление наблюдается также при наличии растворителя или пластификатора. Длина участка кривой, соответствующая высокоэластическому состоянию, зависит от молекулярной массы полимера. Низкомолекулярные линейные полимеры, у которых длина цепи недостаточна для образования механических зацеплений, не имеют области высокоэластичности. Чем больше молекулярная масса, тем шире интервал времени и температуры, в котором полимер находится в высокоэластическом состоянии. Исключение составляют, естественно, сетчатые полимеры, так как они никогда не проявляют реологических свойств, характерных для расплавленного состояния, если не произошло разрыва поперечных связей. На рис. 1.1 переходная зона между состояниями показана широкой. В действительности полимер, находящийся в расплавленном состоянии, в той или иной степени должен проявлять высокоэластические свойства (т. е. упругость), что и является причиной химических превращений под действием механических сил. [c.14]

    Независимо от цели работы полимеры подвергают облучению и затем наблюдают за происходящими при этом физическими и химическими изменениями. Фотохимические реакции полимеров иногда изучают в растворах, где процессы менее сложны, чем в твердом состоянии. Однако при этом снижается ценность полученных данных, поскольку они не могут отразить полностью специфику превращений в матрице. Поэтому основное внимание уделяется изучению фотопроцессов полимеров в твердой фазе, а жидкофазные имеют вспомогательный, модельный характер. [c.139]

    В книге основное внимание уделено влиянию химического строения и особенностей синтеза теплостойких полимеров на весь комплекс механических, термических, оптических и других физических свойств. Подробно рассмотрены свойства растворимых полимеров, поскольку хорошая растворимость большинства теплостойких полимеров позволяет перерабатывать их в изделия (пленки, волокна) без нагревания до высоких температур. Описана кинетика образования теплостойких полимеров в твердом состоянии и происходящие при этом структурные превращения. [c.5]

    Пластические массы на основе термопластичных полимеров широко применяются в качестве конструкционных материалов. Это объясняется высокими механическими показателями большинства термопластов, отвечающих самым разнообразным требованиям. Однако представляет интерес не только определенный комплекс механических свойств в исходном состоянии, но и то как эти свойства сохраняются при хранении или эксплуатации. Изменение эксплуатационных свойств материала и связанная с этим потеря изделием работоспособности могут наступить в результате химических и физических превращений полимеров, происходящих под влиянием длительного действия различных внешних факторов [1-6]. [c.64]

    Самым очевидным параметром механохимических процессов является время. Как уже отмечалось в разделе 2.4.1, скорость изменения молекулярной массы обычно довольно велика в начале процесса, а затем постепенно снижается до достижения условного предела (Мцт). Скорость и степень изменения молекулярной массы, а также Мц зависят от химической природы и физического состояния полимера и условий реакции (температуры, напряжения, природы окружающей среды, типа аппаратуры и т. д.). Ряд параметров (температура, молекулярная масса и концентрация) существенно влияет на механохимический процесс, изменяя вязкость и релаксационные свойства полимера. При этом, как правило, чем выше вязкость, тем более глубоко проходят механохимические процессы. Единственным исключением из этого правила являются данные Меррилла с сотр. [493], согласно которым механохимические превращения оказались обратно пропорциональными вязкости. Правда, в выбранной авторами необычной системе с увеличением вязкости напряжение падает. Деструкция в этом случае была вызвана разбрызгиванием раствора полимера, причем интенсивность подвода энергии, возможно, является более существенным фактором, чем равновесное накопление энергии сдвига. [c.72]

    Тот факт, что скорость химических превращений полимеров, полнота реакции и однородность получаемых продуктов в значительной степени зависят от физического состояния этих веществ, дает основание полагать, что диффузия играет важную роль при химической переработке высокомолекулярных соединений. В пользу этого говорят, кроме того, наличие обратной пропорциональности между скоростью ионообмена и величиной зерен катионита и сравнительно небольшое ускорение реакции при нагревании. В то время как константа скорости химических процессов возрастает примерно на 10 % при повышении температуры на 1°С, коэффициент диффузии увеличивается всего на 1—3 %. [c.600]

    Термомеханические кривые, представленные на рис. 6.9—6.12 выражают зависимость деформации от температуры только линейных полимеров, не претерпевающиз при нагревании никаких химических превращений. Для структурирующихся полимеров термомеханические кривые имеют иной вид, причем характер кривой зависит от того, в какой области температур реакции сшивания протекают с заметными скоростями. Если сшивание интенсивно происходит при температуре выше температуры текучести, то полимер переходит в вязкотекучее состояние, но по мере образования поперечных химических связей деформация течения уменьшается (кривая 1, рис. 6.13,а). При достаточном числе этих связей течение становится невозможным полимер из вязкотекучего состояния переходит в высокоэластическое и, наконец, в стеклообразное. Если в полимере поперечные связи образуются при температурах ниже температуры текучести, т. е. тогда, когда полимер находится в высокоэластическом состоянии, то перейти в вязкотекучее состояние он вообще не может. При дальнейшем нагревании вследствие увеличения частоты сетки высокоэластическая деформация уменьшается, и полимер переходит в стеклообразное состояние (кривая 2, рис. 6.13, а). Таким образом, ститый полимер может находиться только в двух физических состояниях — высокоэластическом и стеклообразном. [c.176]

    Оценка физических состояний и температур основных релаксационных переходов (термомеханические исследования). Проведение экспериментов этой группы необходимо прежде всего для установления температур стеклования (Тс) и текучести (Тт) полимера, определения принципа переработки. Используемые для этих целей методики основаны на термомехапическнх исследованиях — изучении физико-химических превращений полимеров, основанном на определении его деформируемости в широком интервале температур при заданном режиме нагружения и нагрева [98—100, 135—137]. На графиках соответствующей температурной зависимости деформации — термомеханических кривых — довольно четко обнаруживаются точки характерных перегибов, отвечающих Тс и Тт. [c.207]

    Ценность ТМА как одного из методов исследования полимеров заключается в возможности через условные механические показатели, пусть не имеющие значения физических констант, судить о физико-химическом состоянии полимера в широком температурном интервале и изучать процессы, происходящие при его нагревании 127—29]. Оставаясь в основном качественной методикой, ТМА дает тем не менее возможность проведения некоторых количественных оценок. К ним относятся определение значений температур стеклования—размягчения и текучести, нахождение величины механического сегмента и оценка молекулярной массы, сопоставление уровней условной деформации ряда образцов, вычисление обратимой доли в этой деформации, определение температур плавления и полиморфных превращений кристаллических фаз и даже построение фазовой диаграммы Т—(Т, ориентировочная оценка степени кристалличности, нахождение энергии активации некоторых структурных переходов в ориентированных по. 1имерах и др. [c.14]

    Используя принцип объединения технологических процессов в группу Мак-Келви и расширяя схему Ван-Кревелена, можно более детально классифицировать все существующие методы с учетом исходного состояния полимерных материалов, их состава, а также разновидностей физико-химических процессов, протекающих при формообразовании изделий (рис. 4.1). В первую группу объединены такие методы, как экструзия, каландрование, литье под давлением, получение пустотелых изделий, поскольку в процессе формообразования изделия протекают одинаковые физические превращения. Формообразование изделий в данном случае осуществляется за счет деформации полимера, находящегося в вязкотекучем состоянии, с последующим охлаждением расплава. Все эти процессы описываются закономерностями течения неньютоновских вязкоупругих жидкостей, а также кристаллизацией или стеклованием полимеров. В качестве исходного сырья используются гранулированные композиции на основе термопластичных полимеров, однако для экструзии и каландрования допускается применение порошкообразных композиций после сухого смешения или расплавов после вальцевания. [c.86]

    Общие признаки всех дисковых пластикаторов наличие камеры, в которой помещен вращающийся диск перемещение полимера от загрузочной воронки до выхода из мундштука механическое смешение загруженных компонентов с одновременным повышением температуры за счет превращения механической энергии в тепловую удаление из перерабатываемого материала летучих компонентов (влаги, газов, продуктов разложения) пластикация и расплавление диспергирование и гомогенизация возможность переработки полимерных материалов, отличающихся по химическому строению, физическому и агрегатному состоянию, консистенции. В дисковые пластикаторы можно загружать при наличии определенных загрузоч- [c.83]

    Химическая релаксация. Когда процессы физической релаксации заверщаются и система возвращается в равновесное состояние, напряжение в соответствии с молекулярно-кинетической теорией эластичности определяется в основном сопротивлением деформации узлов пространственной сетки трехмерного полимера. Это дает возможность изучать структурные превращения полимера в процессе его деструкции в условиях химической релаксации, поскольку падение напряжения при релаксации будет пропорционально числу разрущенн-ых активных цепей. Доказательством перестройки пространственной сетки является необратимое течение пространственко-сшитых полимеров с увеличением доли остаточной деформации. Химическая релаксация значительно медленнее физической, так как энергия валентных связей на порядок выше энергии межмолекулярного взаимодействия. Энергия актива- [c.98]


Смотреть страницы где упоминается термин Физические состояния полимеро и химические превращения: [c.127]    [c.117]    [c.245]    [c.246]    [c.252]    [c.287]    [c.65]    [c.27]   
Основы химии высокомолекулярных соединений (1961) -- [ c.222 ]




ПОИСК





Смотрите так же термины и статьи:

Полимер три состояния

Полимеры физические

Полимеры химическая

Превращения физические

Превращения химические

Состояние физические

Физические и химические превращения

Физические состояния полимера



© 2025 chem21.info Реклама на сайте