Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изопропилбензол применение

    Некоторые процессы окисления ароматических углеводородов применяют давно, другие нашли промышленное применение лишь в последние годы. Среди них — получение бензойного альдегида окислением толуола, фталевого ангидрида и фталевой кислоты окислением ортоксилола или нафталина, изо- и терефталевых кислот окислением мета- и параксилолов, фенола и ацетона окислением изопропилбензола (с гидролизом продукта окисления) и антрахино-на окислением антрацена. Сырье для этих процессов (кроме антрацена) получают из нефти. [c.169]


    Применение такой фракции для алкилирования вызывает большие потери бензола (выход по бензолу не превышает 85%) и излишний расход хлористого алюминия (фактический расход— от 15,3 до 20,4 кг/т этилбензола), кроме того, необходимо выделять изопропилбензол. [c.229]

    В СССР освоено изготовление нового типа катализатора — железного , марки Р-1, вместо катализатора К-12. Этот катализатор успешно применяется для дегидрирования изопропилбензола в а-метилстирол. Применение его для дегидрирования этилбензола в стирол в лабораторных условиях дало неплохие результаты. [c.231]

    Производство этих материалов может быть осуществлено двумя путями полимеризацией с применением в качестве инициатора гидроперекиси изопропилбензола (гипериз) или термической полимеризацией. [c.373]

    Изопропилбензол — исходное сырье для производства таких ценных продуктов как фенол и а-метилстирол. На основе фенола получают гербициды и пестициды, нашедшие широкое практическое применение, эпоксидные смолы, фенолоформаль-дегидные полимеры, полиамидные волокна и многие другие продукты. и I- - - [c.228]

    ВИЙ образуются перекись, гидроперекись или другие продукты [184]. Во многих патентах для окисления изопропилбензола рекомендуется в качестве инициатора гидроперекись кумола, одна [185, 186], или со щелочными добавками [128, 187—191], или с солями меди и серебра [171]. Применение в качестве инициаторов окисления гидроперекисей сокращает или вовсе снимает индукционный период, а следовательно, и ускоряет автоокисление и не способствует образованию побочных продуктов. [c.262]

    Наибольшее применение в качестве инициаторов находят пе-рекисные и гидроперекисные соединения (перекись бензоила, перекись водорода, гидроперекись третичного бутила, гидроперекись изопропилбензола) и различные азо- и диазосоединения (диазоаминобензол, динитрил азодиизомасляной кислоты). В некоторых случаях инициаторами реакции полимеризации являются продукты окисления мономера кислородом воздуха (перекиси и гидроперекиси). [c.100]

    Ранее процессы полимеризации применялись в промышленном масштабе только для получения высокооктановых топлив из крекинг-газов. В настоящее время неуклонно растет значение этих процессов для получения таких нефтехимических продуктов, как гептен, димер, тример, тетрамер и пентамер пропилена, а также алкилиро ванных ароматических углеводородов —этилбеизола, изопропилбензол а, цимола и бутилбензола. Можно ожидать, что по мере открытия новых областей применения высших олефинов этот описок будет непрерывно увеличиваться. [c.254]


    Эффект применения первого положения хорошо известен, и он подтвержден практикой промышленного производства. Степень конверсии исходных реагентов в производстве оксида этилена из этилена поддерживают в пределах 40—60%, в производстве гидроперекисей этил- и изопропилбензола — в пределах 10—15%, применяя рециркуляцию. Все процессы крекинга проводят с рециркуляцией и при далеко не полном превращении сырья. [c.270]

    На лабораторных установках очистки модельных паровоздушных смесей от примеси паров органических веществ исследованы технологические особенности окисления изопропилбензола, метилметакрилата и паров бензина Б-70 на промыщленных оксидных катализаторах железохромовом СТК-1-7, меднохромовом НЕФТЕХИМ-104, никелевом НКМ-4А, цинкхромовом НТК-4 и на отработанном в процессе риформинга алюмоплатиновом катализаторе АП-56, каждый из катализаторов имел специфические свойства, делавшие его привлекательным для промышленного применения в процессах очистки отходящих газов. Кроме того, на катализаторе СТК-1-7 было изучено окисление паров н-пентана, н-октана, н-додекана, н-гексадекана, изооктана, муравьиной кислоты и продуктов окисления дурола. [c.33]

    Этот метод представляет большой практический интерес, так как открывает возможность одновременного получения дешевой перекиси водорода. До сих пор высокая стоимость перекиси водорода, получаемой электрохимическим методом, ограничивала ее применение в промышленных органических синтезах. В крупных промышленных масштабах ацетон получают совместно с фенолом разложением гидроперекиси изопропилбензола (стр. 252), а совместно с -крезолом—разложением гидроперекиси метилизо-пропилбензола (п-цимола)  [c.215]

    II изопропилбензол (кумол), которые получаются в процессе каталитического алкилирования бензола соответственно этиленом и пропиленом. С развитием химической промышленности этилбензол нашел широкое применение в качестве сырья для получения синтетического (стирольного) каучука изопропилбензол служит исходным сырьем для получения фенола и ацетона путем его окисления. [c.240]

    Применение сопряженных методов. Наиболее ярким примером такого производства является кумольный метод получения фенола и ацетона. По данному методу из изопропилбензола одновременно получают два ценных продукта фенол и ацетон. В этом случае себестоимость фенола значительно ниже, чем себестоимость фенола, получаемого другими методами (из каменноугольной смолы - в 1,8-3,0, из сланцев - в 4,5, из торфа - в 1,1, из продуктов лесохимии - в 1,05 раза). Отметим, что качество фенолов, полученных из природного сырья, значительно ниже, чем синтетических. [c.238]

    Достижение высоких конверсий за один проход при окислении изопропилбензола невозможно из-за взрывоопасности высококонцентрированных растворов гидропероксидов при повышенных температурах, а также увеличения выхода продуктов ее разложения диметилфенилкарбинола, ацетофенона, муравьиной кислоты. Высокие степени конверсии изопропилбензола в целом достигаются в технологии за счет применения рециркуляционного потока по жидкой фазе реактора окисления (аппараты 2—3—4—5— 1—в-Ъ—2 рис. 9.5), направленного со стадии концентрирования гидропероксида на стадию окисления. Одновременно с повышением суммарной конверсии рециркуляционный поток по паровой фазе реактора окисления обеспечивает дополнительный отвод тепла реакции (аппараты 2—3—8—5—7—6—3—2 рис. 9.5). Рециркуляция ацетона на стадии разложения гидропероксида (аппараты 10-11-10 рис. 9.5) позволяет эффективно отводить тепло химической реакции и обеспечивает оптимальные условия ее протекания. Относительно невысокие температуры потоков, охлаждающих агентов реакторов, не дают возможности использовать их непосредственно как теплоносители на стадии разделения. В то же время применение для охлаждения реакторов водного конденсата позволя- [c.348]

    Многие алкилбензолы являются ценными компонентами авиационного бензина. Они стабильны, обладают высоким октановым числом, хорошей приемистостью к ТЭС, высокой теплотворной способностью и с этой точки зрения расцениваются выше, чем изопарафины. В последние годы особенно быстрыми темпами развивается производство некоторых моноалкилбензолов. Многими тысячами тонн производится этилбензол и изопропилбензол как исходное сырье для получения стирола и метил-стирола, применяемых в производстве синтетических каучуков и смол. Большое внимание привлекают додецилбензол и алкилнафталины, соли сульфокислот, которые нашли применение в качестве моющих средств и эмульгаторов при эмульсионной полимеризации. Таким образом, значение алкил замещенных ароматических углеводородов весьма велико. [c.121]


    Техническая рационализация в большинстве цехов сопровождалась изменениями планировки. В цехе изопропилбензола применен принцип раскрытия оборудования из закрытых помещений на этажерку вынесено все оборудование по алкилирова-нию наружу вынесена и часть насосов. [c.57]

    Расширение производства уксусного а. .ьдегида и ацетона на основе этилового и изопропилового спиртов сомнительно, так как су-щестуют процессы с применением других видов сырья. Так, уксусный альдегид получают гидратацией ацетилена, а ацетон (вместе с фенолом) — окислением изопропилбензола (и другими методами). Заслуживает внимания и тот факт, что неполное окисление низших парафиновых углеводородов под давлением позволяет получать спирты, альдегиды, кетоны и низшие кислоты одновременно. [c.209]

    Оксидат из нижней части колонны 1 содержит до 30% гидропероксида. Он отдает свое тепло изопропилбензолу в теплообменнике 4, дросселируется до остаточного давления х4 кПа и поступает на вакуум-ректификацию для концентрирования гидропероксида. Отгонку изопропилбеизола ведут в насадочной ректификаци-синой колонне 6 непрерывного действия, снабженной конденсатором-дефлегматором. Применение вакуума обусловлено термической нестабильностью гидропероксида. Часть конденсированного изо-пронилбензола возвращают из конденсатора-дефлегматора на оро-пение колонны 6, а остальное количество выводят в сепаратор 3, громывают щелочью и снова направляют на окисление. Кубовая хидкость из колонны 6 содержит 70—75% гидропероксида, а так- се побочные продукты окисления и остатки изопропилбеизола. Путем дополнительной вакуум-ректификации (на схеме не изобра-ясена) при остаточном давлении 665 Па повышают концентрацию гидропероксида до 88—92%- Следующую стадию (кислотное разложение гидропероксида) осуществляют в узле 7 одним из двух списанных выше методов. [c.378]

    Промышленное производство этилбензола было организовано в 1936 г. В период Второй мировой войны в ряде стран широкое применение в качестве высокооктановой добавки для карбюраторных авиационных двигателей нашел кумол (изопропилбензол). С переходом авиации на реактивное топливо интерес к производству алкилбензолов продолжал возрастать. Это объясняется тем, что резко возросла потребность в ряде сырьевых источников, получение которых связано с алкилированием бензола и его гомологов. Например, из этилбензола получают стирол, который нашел широкое практическое применение, из кумо-ла—фенол, ацетон, а-метилстирол. Из диалкилбензолов синтезируют терефталевую кислоту и фталевый ангидрид. Сульфированием нонил- и додецилбензола производят сульфонаты — высокоэффективные поверхностно-активные вещества. Моно- и полиалкилнафталины —великолепные теплоносители, а их сульфонаты — эмульгаторы в производстве синтетического каучука. В широком масштабе проводится алкилирование бензола и нафталина тримерами и тетрамерами пропилена, димерами и три-мерами бутенов и пентенов, а также высшими олефинами. Алкилирование является перспективным процессом в связи с необходимостью разработки новых видов сырья для производства полимеров, синтетического каучука, новых компонентов топлив, присадок и масел. [c.6]

    Изопропилбензол является исходным сырьем для производства а-метилстирола — мономера для производства синтетиче- ского каучука. Небольшое количество изопропилбензола (в виде его гидропероксида) употребляется в качестве ингибитора свободнорадикальной полимеризации предлагается применение его для термической обработки нефтяных остатков. Диизопропилбензолы рекомендуют использовать для производства. гидрохинона и резорцина. [c.246]

    Неблагоприятное влияние примесей сернистых соединений было не очень заметным при алкилировании с твердым хлоридом алюминия, когда для алкилирования использовали технические фракции [13]. Переход к катализаторному комплексу или к гомогенному алкилированию хлоридом алюминия, а также применение очищенных олефинов резко сократило расход катализатора [14] и повысило требования к качеству ароматических углёводородов. Суждения по этому вопросу противоречивы. По данным [15], при содержании тиофена в бензоле до 0,1% нет заметного ухудшения процесса алкилирования и качества получаемого изопропилбензола. По другим сведениям [16]1, уже при содержании тиофена в бензоле 0,06% получаемый из него изопропилбензол содержит серы более 0,0003%, что считается недопустимым для производства фенола высшего качества. Окисление изопропилбеизола ингибируется даже небольшими количествами диоксида серы [17, с. 187]. [c.118]

    Большая часть смеси ароматических углеводородов С9, образующихся в процессе каталитического риформинга, используют в качестве компонента автомобильного бензина. Из изомеров ароматических углеводородов С 9 в промышленных масштабах выделяют псевдокумол. который идет для производства тримеллитового ангидрида [111 в дальнейшем, по-видимому, найдут применение мези-тилен и эти.лтолуолы. Изопропилбензол (кумол) производят в больших количествах путем алкилирования бензола пропиленом его используют главным образом для получения фенола. [c.8]

    Ароматические углеводороды С9, полученные при диспропор-ционировании на алюмосиликатном катализаторе, отличаются по составу от других продуктов более высоким содержанием псевдокумола и мезитилена. В ароматических углеводородах С 9, выделенных из продуктов риформинга, наблюдается повышенная концентрация зтилтолуолов, а в выделенных из бензина пиролиза — к-пропил-бензола п индана. Разделение смесей ароматических углеводородов С 9 на индивидуальные изомеры до настоящего времени в промышленных масштабах не освоено. Из смесей ароматических углеводородов С 9, получающихся в различных процессах нефтепереработки, выделяют псевдокумол и в небольших количествах мезитилен. Получение зтилтолуолов и гемимеллитола ограничивается потребностью в реактивах применения в химической промышленности они пока не находят. Изопропилбензол (кумол) также не выделяют пз смесей ароматических углеводородов С9, а вырабатывают алкилированием бензола пропиленом. [c.210]

    Применение изопропилбензола свыше 3 молей на 1 моль бутена-2 дает п-изопропилвтор.бутилбензол с выходом ниже оптимального и даже тогда, когда катализатора берегся 0,4 моля на 1 моль бутена-2. Заметное влияние на выход ге-изоиропил-втор.бутшлбензола и относительное содержание его в алкилате оказывает температура. Влияние последней изучено для молярных отношений изопропилбензола, бутена-2 и катализатора, равных 2 1 0,2. Найдено, что при комнатной температуре алкилирование проходит очень медленно. Повышение температуры от 20 до 60° С ускоряет процесс алкилирования, повышает выход ге-изопропил-втор.бутилбензола и понижает относительное содержание его в алкилате за счет накопления полиалкилбензолов. Так, например, при 20, 30—35 и 50—60° С тг-изопропилвтор.бутилбензол получается с выходом соответственно 18, 47 и 55 /о от теоретического [c.103]

    Бутилбензольная фракция — композиция, в состав которой входит бутилбензол (основной компонент) около 85 %, изопропил-бензол — 10%, полиалкилбензолы. Представляет собой прозрачную жидкость желтого цвета, побочный продукт производства изопропилбензола. Плотность 861—875 кг/м . Вязкость при 20 С 1,1 + 1,2 МПа с. Легко растворяется в углеводородных жидкостях (нефть, керосин). Коррозионно неактивна. Предназначается для растворения асфальто-смоло-парафиновых отложений, особенно наиболее труднор1астворимого компонента — асфальтенов. При использовании предъявляет высокие требования к чистоте и исправности резервуаров и емкостей. Безопасна в применении. [c.264]

    Влияние различных факторов на интенсивность гидрирования фракций изодецилбензола, изодецилтолуола, а также (для сравнения) бензола, толуола и изопропилбензола в случае применения сернистого алюмоникельфольфрамового катализатора показано на рис. 2, 3 и 4 и в табл. 4 и 5. [c.185]

    Сополимеризацию ненасыщенных полиэфиров с ненасыщенными соединениями (стиролом, метилметакрилатом, триэтиленгликольдимета-крилатом и др.) осуществляют в присутствии окислительно-восстанови-тельных систем, применение которых значительно снижает энергию активации распада инициаторов и реакции сополимеризации, что. позволяет проводить ее при сравнительно низких температурах в пределах 20— 60° С. Наиболее распространенными системами являются смеси перекиси бензоила с третичными аминами, например диметиланилином, смеси гидроперекисей (изопропилбензола) с (нафтенатами Со, Мп, Сз и др. [c.212]

    Для инициирования сополимеризации НПЭФ с мономерами (отверждения) обычно используют перекиси и гидроперекиси перекиси бензоила, метилэтилкетона и циклогексила, а также i гидроперекись изопропилбензола. Для снижения температуры разложения перекисей вводят ускорители, которые подбирают в зависимости от инициатора. Так, при использовании перекиси бензоила применяют диметиланилин, а совместно с гидроперекисями— нафтенат кобальта (ускоритель НК). Применение ускорителей позволяет вести отверждение НПЭФ при комнатной температуре. Отверждение сопровождается увеличением плотности НПЭФ и их усадкой. Инициатор и ускоритель отверждения вводят в НПЭФ непосредственно перед их переработкой. Для предупреждения преждевременного гелеобразования (желатиниза-ции) применяют ингибитор — гидрохинон, который добавляют в начале процесса поликонденсации. [c.208]

    Эти реакций протекают тем в большей степени, чем выше температура. Поэтому необходимо применение катализатора с низким температурным оптимумом. Такими катализаторами являются стирол-контакт , содержащий ZnO (79,5%), MgO (5%), Al Oa (5,5%), aO (5%), K2SO4 и К СгО (по 2,5%), а также железо-хромовый катализатор (PejOg 87%, СгаОз 5%, KjO 8%). Последний чаще используют для дегидрирования изопропилбензола. [c.264]

    Применение реакции Фриделя-Крафтса для получения алкилбензолов ограничивается тем, что галоидные алкилы, способные к изомеризации, обычно претерпевают это изменение в процессе реакции. Так, например, при применении п-пропиль-ных галоидных производных получаются изопропилбензолы, -бутильные произ1Водные образуют вторичные бутилбензолы, а из изобутильных соединений получаются углеводороды, содержащие третичную бутильную группу. Явления изомеризации могут быть сильно снижены проведением конденсации при 0° но даже и при этих условиях способ этот не пригоден для получения высших нормальных алкилбензолов. Такие углеводороды гораздо легче могут быть. получены по реакции Ф и т т и г а или же восстановлением соответствующих кетонов по способу К л е м. м е н с е н а. [c.74]

    I55. Мамедалиев Ю. Г., Султанов . A. Применение ханларской глины при синтезе изопропилбензола и применение гидроперекиси изопропилбензола для моторных топлив.— Азерб. нефт. хоз., 1958, № 6, с. 33—34. [c.216]

    Значительный интерес представляет сополимеризация ФМ с ненасыщенными полиэфирными олигомерами для получения композиционных материалов с пониженной горючестью [33]. В этом случае композиции отверждают с применением органических пероксидов, распад которых активируют введением различных ускорителей. Универсальной инициирующей системой, обеспечивающей получение прочных изделий без внутренних напряжений, в том числе, при температуре окружающей среды, является гидропероксид изопропилбензола - пафтенат кобальта. В качестве активаторов используют различные соли кобальта, марганца, хелаты металлов. С применением для инициирования наряду с гидропероксидом изопропилбензола и нафтенатом кобальта марганцевоорганического катализатора, образующего донорно-акцепторный комплекс с фосфорсодержащим акрилатом, удается в мягких условиях повысить глубину отверждения и получить полимерные материалы с улучшенными свойствами [32]. Установлено, что ряд исследованных катализаторов синтеза ФМ оказывает ускоряющее влияние на процесс сополимеризации фосфорсодержащих диметакрилатов с ненасыщенными полиэфирными олигомерами. Выявлена взаимосвязь между количеством катализатора и ингибитора в полимеризуемой системе и временем желатинизации композиций. [c.98]

    При изучении влияния строения ФМ на свойства модифицированных ими олигоэфирмалеинатфталатных связующих, отвержденных инициирующей системой гидропероксид изопропилбензола - нафтенат кобальта - ацетилацетонат марганца [9], установлено, что наиболеё эффективно применение для сополимеризации фосфорсодержащих диметакрилатов, выступающих в роли активных сшивающих реагентов. При их использовании получены свя- [c.101]

    Рассматриваемая технология относится к малостадийным и включает два химических процесса, протекающих с высокой селективностью, - окисление изопропилбензола с выходом гидропероксида 91—95 % и разложение гидропероксида с выходом целевых продуктов 99 %. Высокая эффективность обеспечивается не только выбором оптимальных параметров протекания химических реакций (температура, давление, кислотность среды), но и использованием катализаторов и инициаторов процесса. В производстве используется доступное и относительно дещевое сырье — изопропилбензол, вырабатываемое процессами алкилирования. Данная технология является ярчайшим примером применения сопряженных технологических процессов, позволяя одновременно получать фенол и ацетон как два целевых продукта. Кроме того, использование при разработке принципа полноты выделения продуктов из реакционной смеси дает возможность получать в качестве товарного продукта а-метилстирол, который как мономер по некоторым показателям превосходит широко используемый стирол. [c.348]

    Однако в литературе имеется очень мало данных о применении окислов марганца и рения в реакциях дегидрирования низших углеводородов Са— j. Сообщается, что в присутствии МПаОд осуществляется дегидрирование пропана в пропилен (600—650° С) [77], а над катализатором, содержащим перренат и MgO, происходит дегидрирование парафинов в соответствующие олефины (500° С, 1 бар) [99]. При дегидрировании изопропилбензола в присутствии катализатора Re (29,6%)— уголь образуется а-метилстирол [151]. Между тем, известно, что окислы рения используются в реакциях дегидрирования спиртов [20], а металлический рений, нанесенный на уголь, является активным катализатором дегидрирования циклогексана и его гомологов (см., например, [150]), дегидроциклизации гексана (см., например, [151]). [c.167]

    Первые исследования по применению фтористого бора в качестве катализатора алкилирования ароматических углеводородов олефинами были выполнены в 1935 г. За прошедшее время широко изучено алкилирование бензола многими олефинами в присутствии ВРд и его молекулярных соединений. Особое внимание привлекла реакция бензола с этиленом и пропиленом, в результате которой получаются практически важные этилбензол и изопропилбензол. Обычно па 1 моль олефина берут от 2 до 10 молей бензола, чтобы избежать образования больших количеств нолиалкил-бензолов. [c.121]


Смотреть страницы где упоминается термин Изопропилбензол применение: [c.209]    [c.139]    [c.135]    [c.260]    [c.176]    [c.193]    [c.288]    [c.740]    [c.139]    [c.62]    [c.139]    [c.186]    [c.229]    [c.293]   
Совместное производство фенола и ацетона (1963) -- [ c.7 , c.20 , c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Изопропилбензол



© 2025 chem21.info Реклама на сайте