Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод, структура связей

    Образование ароматических углеводородов при высокотемпературных процессах, например, при крекинге нефти в интервале температур 400—600° С, коксовании угля при 800—1100° С и пиролизе метана при температурах до 1200° С, свидетельствует об их большой термической стабильности. Эта стабильность объясняется необычайно прочными уг-лерод-углеродными связями в ароматическом ядре и упоминалась еще в правиле Габера (1896), которое гласит, что связь С—С в ряду ароматических углеводородов является более стабильной, чем углерод-водо-родная связь С — Н, тогда как для алифатических углеводородов имеет место обратная зависимость [21]. Причину большей стабильности связей С — С в ароматических углеводородах можно объяснить тем, что их структура напоминает стабильную структуру кристаллического графита, тогда как углерод-углеродные связи алифатических углеводородов аналогичны углеродным связям в термически менее стабильных кристаллах алмаза. [c.93]


    Обе резонансные структуры показывают, что кольцо должно быть образовано чередующимися простыми и двойными связями. Однако структурные исследования обнаруживают, что все углерод-углеродные связи имеют одинаковую длину, как и следует ожидать для резонансного гибрида двух структур. Полную симметрию молекулы бензола можно изобразить при помощи одной структуры со специальным пунктирным обозначением  [c.478]

    Обе углерод-кислородные связи в ионизированной карбоксильной группе имеют одинаковую длину. Отрицательный заряд распределен по всем трем атомам этой группы. (Среднюю структуру в приведенном выше уравнении можно рассматривать лишь как одну из двух резонансных структур, дающих вклад в истинную структуру карбоксильного иона. Как, по-вашему, выглядит другая резонансная структура ) С гидроксидами металлов и карбонатами карбоновые кислоты реагируют подобно [c.296]

    Две группы СНз соединены углерод-углеродной связью. При рассмотрении электронной, структуры молекулы в методе ЛМО общее электронное облако молекулы разлагается на семь о-связей одну С—С и шесть С—Н. Углы между связями при каждом углеродном атоме тетраэдрические (109 28 ). Средние энергии связей Е (С—С) = = 345,6 кДж/моль и Е (С—Н) =413,0 кДж/моль. [c.105]

    Если принять структуру бензола как чередование ординарных и двойных связей, то ординарные связи должны соответствовать расстоянию между углеродными атомами 1,54 А, а двойные 1,32 А. В действительности же все шесть углерод — углеродных связей имеют одинаковую длину, равную 1,40 А, что соответствует полуторной связи и сообщает бензолу симметричную структуру и высокую термическую стабильность. Некоторые исследователи [240] сходятся на том, что двойная связь в бензоле непрерывно перемещается, что и обусловливает большую прочность молекулы при термической деструкции. [c.42]

    Переход органического вещества торфов, бурых углей в раствор в виде гуматов при обработке щелочами резко возрастает при pH > 13 за счет не только ионизации кислых групп, но и окислительно-гидролитического расщепления углерод-углеродных связей, разрыва внутримолекулярных водородных связей, перевода поливалентных катионов в гидроксокомплексы. В сильно щелочной среде по данным электронной микроскопии изменяется структура гуминовых кислот из глобулярной она переходит в фибриллярную. [c.25]


    Образование шестичленной циклической структуры в результате конденсации 1,3-диенового фрагмента с кратной углерод-углеродной связью (диенофил). [c.232]

    Углеводороды можно подразделить на четыре ряда соединений алканы (парафины), алкены (олефины), алкины (ацетилены) и ароматические углеводороды. Мы уже встречались в этом курсе по крайней мере с одним представителем каждого из этих рядов. На рис. 24.1 указаны название, молекулярная формула и геометрическая структура простейшего представителя каждого ряда углеводородов, содержащего углерод-углеродные связи. [c.408]

    В ряду алкинов, или ацетиленов, каждое соединение содержит по крайней мере одну тройную углерод-углеродную связь простейшим представителем этого ряда является ацетилен, который уже обсуждался в разд. 8.4, ч. 1. У ароматических углеводородов атомы углерода связаны между собой в плоскую циклическую (кольцевую) структуру а- и л-связями. Наиболее известным представителем ароматических углеводородов является бензол. Другие примеры ароматических углеводородов изображены на рис. 8.15, ч. 1. Неароматические углеводороды, т. е. алканы, алкены и алкины, называют алифатическими соединениями, чтобы отличить их от ароматических соединений. [c.409]

    Одним из свойств простой углерод-углеродной связи является возможность относительно свободного вращения вокруг этой связи. Нетрудно представить себе, что, например, верхняя левая метильная группа в молекуле пропана, схематически изображенной на рис. 24.4, вращается относительно остальной структуры. Движения такого типа осуществляются в алканах при комнатной температуре с очень большой скоростью. В результате алканы с длинными цепочками постоянно совершают внутренние движения, приводящие к изменению их формы нечто подобное происходит с металлической цепочкой при встряхивании. [c.413]

    Свободные радикалы имеют тригональную структуру, связи атома углерода лежат в одной плоскости под углом 120 друг к другу. [c.35]

    Типичным примером вещества с ярко выраженной анизотропией является графит. Кристаллическая структура графита представлена параллельными слоями атомов углерода. Все углы между связями равны 120 °С (хр -гибридизация орбиталей атомов углерода). Энергия связи между атомами в слое за 168 Дж/моль слои связаны силами Ван-дер-Ваальса с энергией связи в десять раз более слабой ( 17 Дж/моль). Это и является причиной особых механических свойств графита — легкости скольжения слоев относительно друг друга и смазочных (мажущих) его качеств. [c.160]

    Во всех этих соединениях четырехвалентные атомы бора и азота имитируют структуру атома углерода четвертая связь В — N возникает за счет использования 5р -гибридной несвязывающей электронной пары азота и свободной 5р -гибридной орбитали атома бора. [c.450]

    Чтобы достигнуть энергетического состояния, необходимого для разрыва углерод-углеродной связи, нужно создать в каждом из двух указанных случаев ряд определенных условий. Обсунсдение деталей предложенного механизма будет приведено ниже, однако, можно предварительно констатировать, что важной промежуточной фазой реакции при каталитическом крекинге является образование структуры, в которо водорода на один атом меньше, чем в исходной молекуле парафинов и нафтенов, и на один атом водорода больше, чем в исходной молекуле олефинов и замещенных ароматических углеводородов. Эта структура соответствует обычному определению карбониевого иона, отвечающего эмпирической формуле С Н +1 для алифатических углеводородов, СпН 1 для моноциклических нафтенов и СпН2п 5 для моноциклических ароматических углеводородов. [c.114]

    Как было указано выше, для образования ионов карбония требуется либо отщепление атома водорода посредством разрыва углерод-водородной связи, либо присоединение атома водорода с образованием новой углерод-водородной связи. В связи с этим для теории таких механизмов приобретают большое значение накопленные экспериментальные данные, показывающие большую реакционную способность третичных углерод-водородных связей сравнительно со вторичными связями С —Н и последних сравнительно с первичными при диссоциациях ионного типа (крекинге) и реакциях присоединения. Относительная реакционная способность третичных, вторичных и первичных углерод-водородных связей в термических реакциях через свободные радикалы соответственно меньше. Далее будет показано, что в силу вышесказанного третичные и вторичные структуры играют доминирующую роль в механизме ионных реакций. Приведенное отношение между реакционными способностями связей С —Н основано на данных, полученных нри масс-снектрометрическом измерении потенциалов образования различных алкил-ионов. Потенциалы образования алкил-ионов вместе с соответствующими термодинамическими данными и данными по энергиям диссоциации связи для углеводородов дают величину энергии, необходимую для получения алкил-ионов из родственных им углеводородов эта величина энергии может быть качественно коррелирована с относительной реакционной способностью первичных, вторичных и третичных углеводородных структур как в случае низкотемпературных реакций присоединения, так и при высокотемпературной диссоциации (ионных процессах). Аналогично определяемая энергия сво-бодноради1 альной диссоциации связи С — Н [37, 39] отражает гораздо меньшее различие в реакционной способности разных типов С — Н связей в случае термических свободиораднкальных реакций таким образом, существует явный нараллелизм между экспериментальными данными каталитического и термического крекинга и энергетикой предложенных механизмов. [c.115]


    Льюисовы структуры для молекул, подобных СН или N0, в которых содержится нечетное число валентных электронов, не позволяют приписать каждому атому замкнутую электронную оболочку. По крайней мере один атом, например углерод в СН, остается с незамкнутой оболочкой. В результате наличия в молекуле СН незамкнутой электронной оболочки две молекулы СН способны объединяться с образованием димера (СН)2, называемого дицшно.м. Причиной протекания такой реакции является образование новой углерод-углеродной связи без сколько-нибудь значительного ослабления тройной связи между углеродом и азотом  [c.470]

    А. Кекуле выдвинул предположение, что эти дополнительные связи образуются между соседними атомами углерода в кольце (рис. 13-24). Если бы дело обстояло таким образом, длины углерод-углеродных связей вдоль бензольного кольца имели бы чередующиеся значения 1,54 А (характерное для простой связи С—С) и 1,35 А (как для двойной связи С=С в этилене). Однако рентгеноструктурный анализ показывает, что все шесть углерод-углеродных связей в молекуле бензола совершенно одинаковы. М. Дьюар предложил в связи с этим еще три структуры бензола с различными ком-, бинациями трех ковалентных связей, образуемых негибридизованными р-орбиталями атомов углерода (см. рис. 13-24). Каждая из этих структур сама по себе еще менее удовлетворительна, чем структура Кекуле. Невозможно изобразить одну структуру бензола, позволяющую правильно объяснить химическую связь в этой молекуле. Эта неудача теории проистекает из использовавшегося нами до сих пор представления, что всякая связь образуется непременно между двумя атомами молекулы без участия остальных атомов. [c.573]

    Система, описанная в работе [6], является дальнейшим развитием предыдущей в том плане, что учитывается пространственное строение молекул. Как и ранее, синтез ведется от конца к началу (от продуктов реакции к исходным веществам) по заранее определенному набору химических реакций. Аналогичный подход использован в системе [10]. Более обоснованными и перспективными являются методы, основанные на математическом описании структуры молекул и химических реакций и классифицируемые как логические методы [8, И]. В работе [8] для представления молекулы в качестве параметров используются тип атома и топо-тогическая структура связей между атомами в молекуле. При том акцент сделан на типы атомов углерода в молекуле в соответствии с природой связи углерода с другими элементами. В работе И] для характеристики молекулы используются три параметра естоположение атома в молекуле, ковалентные связи между томами и свободные электроны в каждом атоме молекулы. Послед- [c.443]

    Исследованиями зарубежных и отечественных ученых усгановлено, что эксплуатационные свойства углеродных материалов находятся в прямой зависимости от структуры и, в частности, кристаллической структуры нефтяных коксов. При высокотемпературной обработке нефтяных коксов при прокаливании и графитации происходит целый ряд физико-химических превращений, в результате которых несоверщенный по своей структуре кокс перестраивается в кристаллический материал с трехмерно упорядоченной структурой. Особый интерес представляет перестройка тонкой кристаллической структуры, так как многообразие переходных форм углерода, многообразие свойств углеграфитовых материалов определяется сочетанием углерода в различных гибридных состояниях с разным типом углерод-углеродных связей, а также надмолекулярной структурой, определяемой ориентацией графитовых слоев и степенью их совершенства. [c.117]

    Многочисленными исследованиями установлено,что свойства углеродной продукции находятся в прямой зависимости от структуры и физико-химических свойств нефтяных коксов. ОсоОый интерес представляет тонкая структура, так как многооОразив переходных форм углерода объясняется сочетанием углерода в различных гибридных состояниях, разным типом углерод-углеродных связей, а также надмолекулярной структурой, определяемой ориентацией графитовых слоев, степенью их совершенства. [c.96]

    Важным свойством нефтяных остатков и отходов нефтехимического происхождения, как и любого органического соединения, является способность к карбонизации с образованием различных форм углерода. Состав, структура, дисперсность и свойства углерода зависят как от природы исходного органического материала, так и от пути перехода от этого материала к углероду. В связи с этим необходимо исследование закономерностей карбонизации всего спектра нефтяных остатков и побочных продуктов нефтепереработки и нефтехимии в аспекте улучшения качества традиционно выпускаемых промышленностью и создания новых углеродных материалов на базе нефти, усгановления влияния условий карбонизации на механизм и кинетику формирования, состав, структуру, дисперсность и свойства промежуточных КМ и конечного углеродного продукта. [c.163]

    Получение шестичленных циклов (диеновый синтез). Реакции диенового синтеза (реакция Дильса — Альдера) и возможный механизм ее протекания уже были подробно рассмотрены ранее (см. разд. 1.3.2). Следует только отметить, что шестичленные карбоциклические структуры образуются лишь в тех случаях, когда в диене имеются две, а в дненофиле одна углерод-углеродные связи. [c.503]

    Если же в молекуле углеводорода содержится более трех атомов углерода, то связь между ними может быть различной. Например, углеводород с суммарной (молекулярной) формулой С4Н10 (бутан) МОЖНО изобразить в виде двух различающихся между собой структур  [c.44]

    Во всех этих соединениях четырехвалентные атомы бора и азота имитируют структуру атома углерода четвертая связь В—N возникает за счет использования sp -гибридной несвязывающей электронной пары азота и свободной sp -гибридной орбитали атома бора. Распределение электронной плотности отвечает эффективным зарядам В — и В8+—№-, [c.523]

    Углеводородами называются вещества, состоящие всего из двух элементов-углерода и водорода. Можно предположить, что при столь ограниченном составе химические свойства углеводородов не должны отличаться слищком большим разнообразием. Однако на деле все обстоит совсем не так. Важнейшей структурной особенностью углеводородов, а также большинства других органических соединений является наличие в них устойчивых углерод-углеродных связей. У глерод - единственный в своем роде химический элемент, способный образовывать устойчивые цепочки из атомов, связанных между собой простыми, двойными или тройными связями. Ни один другой элемент не способен к образованию подобных структур. [c.408]

    Как бь(ло указано в разд. 8.4, ч.1, при обсуждении способности атома углерода к образованию связей, двойная углерод-угперодная связь включает а- и я-составляю-щие. На рис. 24.7 показана геометрическая структура цис-алкеиа.. Расположение связей вокруг каждого атома углерода является плоским, т. е. ось углерод-углеродной связи и связи с двумя остальными группами (водородом или углеродом) находятся в общей плоскости. На рис. 24.7 наглядно показано, что вращение одной части молекулы алкена относительно другой ее части, происходящее вокруг двойной углерод-углеродной связи, должно быть затруднено. Такое вращение должно нарушать перекрывание между р-орбиталями, образующими л-связь, что приводит к ее разрыву. Затрудненное вра- [c.415]

    Для понимания механизма электрофильного присоединения важно знать структуру продуктов присоединения, включая структуру продуктов побочных реакций. На основании данных о строении продуктов взаимодействия галогеноводородов с этиленовыми углеводородами было сформулировано правило Марковникова, в соответствии с которым водород галогеноводородной кислоты присоединяется к наиболее гидрогенизированному атому углерода кратной связи. Данное на основе электронных представлений объяснение атого правила сводится к тому, что в несимметрично построенных непредельных углеводородах электронодонориые алкильные группы поляризуют кратную связь таким образом, что максимальная электронная плотность локализуется иа удаленном от заместителя атоме углерода. В ионных реакциях электрофильный протон атакует обогащенный электронами атом углерода  [c.115]

    По внутреннему строению карборунд представляет собой как бы алмаз, в котором половина атомов углерода ргшномерно заменена атомами кремния. Каждый атом углерода нгисодится в центре тетраэдра, в вершинах которого расположены атомы кремния в свою очередь каждый атом кремния окружен подобным же образом четырьмя атомами углерода. Ковалентные связи, соединяющие все атомы в этой структуре, как и в алмазе, очень прочны. Этим объясняется большая твердость карборунда. [c.416]

    Кремний во многих элементооргаиических соединениях обычно имеет ковалентность близкую к четырем и так же, как и углерод, — тетраэдрическую направленность ковалентных связей. Связь его с углеродом малополярна. Связи кремния Si-Si и Si-Н легко разрушаются в полярных средах, а соответствуюшие соединения энергично реагируют с кислородом. Устойчивых кремнийорганических соединений, по своей структуре и составу аналогичных органическим соединениям с двойной или тройной связью между атомами кремния, не существует. Это связано с общим свойством для элементов третьего периода неспособностью к образованию прочных -связей. Поэтому отсутствуют устойчивые кремниевые аналоги органических соединений ароматических углеводородов, альдегидов, кетонов, карбоновых кислот, сложных эфиров. [c.593]

    Две максимально различные но структуре и энергии конформации этана легко переходят одна в другую в результате вращения групп относи-тсльно углерод-углеродной связи. [c.236]

    Сравнение вычисленных значений Оадд с экспериментальными тотчас же указывает, что исследуемое вещество не может принадлежать к первым семи классам соединений, содержащих двойные и тройные углерод-углеродные. связи и имеющих Ко 47. По величине Но исследуемое соединение ближе всего к моноциклическим альдегидам или кетонам. Не исключается, однако, возможность и того, что оно является бициклическим спиртом или эфиром, содержащим трехчленное углеродное кольцо (инкремент 0,7). Выбор между этими структурами легко может быть сделан на основании химических свойств (реакций на альдегидную, кетонную или спиртовую группу). [c.200]

    Аддитивные слагаемые — хг) — атомные дисперсии — приводятся на-)яду с атомными рефракциями (см. 1Х1Х) и могут быть использованы для заключения о структуре органических соединений подобно тому, как это было описано выше для молекулярной рефракции. При этом использование дисперсии дает по сравнению с определением показателя преломления только для одной длины волны дополнительные возможности. Установление степени непредельности (числа кратных углерод-углеродных связей и ароматических колец) по дисперсии не требует точного знания брутто-форму-лы, и для этой цели можно ограничиться приближенным значением мо- [c.202]

    Стереорегулярные полимеры возникают благодаря наличию асимметрического атома углерода в макромолекуле полимера. Это — стереоизомеры. Их строение схематически показано на рис. 3, где зигзагообразная основная цепь для наглядности помещена в одной плоскости. Легко убедиться, что вращение вокруг простых связей в основной цепи с учетом валентного угла между связями —С—С— не приводит к разупорядочиванию относительного расположения заместителей. Специальные методы синтеза приводят к получению изотактических макромолекул, когда заместители расположены по одну сторону плоскости, синдиотактических, когда заместители находятся по разные стороны плоскости, и атактических, когда заместители ориентированы нерегулярно. Взаимное отталкивание заместителей, изображенных на рис. 3, приводит к тому, что они смещаются относительно друг друга в пространстве н поэтому плоскость симметрии оказывается на самом деле изогнутой в виде спирали. Структура спиралей характерна не только для макромолекул с углерод-углеродными связями в основной цепи, но и для других видов макромолекул, в том числе и для биологически активных (например, двойная спираль ДНК). Различные стереоизомеры имеют и разные механические свойства, особенно сильно отличающиеся от свойств атактических полимеров того же химического состава. [c.12]

    Итак, большая длина цепных макромолекул прчводит к появлению у них гибкости. Гибкость ограничена взаимо йствием атомов и атомных групп, связанных с основной цепью. )то взаимодействие ограничивает свободу вращения вокруг углерод-углеродных связей в макромолекуле. Чем больше взаимодействие, тем выше барьер вращения и тем меньше гибкость макромолекулы. Гибкость макромолекул проявляется в характерной для полимеров зависимости свойств от температуры и обусловливает существование трех физических состояний полимера и особенности его кристаллической структуры. Наличие двух основных элементов структуры — макромолекул и их сегментов — обусловливает особенности надмолекулярной структуры и, в частности, существование флуктуационной сетки. Все это вместе делает для полимера наиболее типичной не чисто упругую или чисто вязкую (необратимую) деформацию, а деформацию вязкоупругую. [c.105]


Смотреть страницы где упоминается термин Углерод, структура связей: [c.190]    [c.43]    [c.36]    [c.299]    [c.25]    [c.78]    [c.81]    [c.102]    [c.25]    [c.42]    [c.350]    [c.217]    [c.172]    [c.204]   
Гетероциклические соединения и полимеры на их основе (1970) -- [ c.39 ]




ПОИСК





Смотрите так же термины и статьи:

Разрыв связи углерод—кислород. Деградация полисахаридов Джонс и М. Б. Перри Исследование структуры природных полисахаридов

Углерод связи



© 2025 chem21.info Реклама на сайте