Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород электролитический, использовани

    При этом водород необходимо отделить от диоксида углерода и других продуктов конверсии. Эту проблему еще нельзя считать разрещенной. Одним из основных методов получения водорода в недалеком будущем рассматривается электролиз на атомных электростанциях. Кроме водорода выделяется и кислород, который также может быть использован в промыщленности и быту. Кроме электролитического рассматриваются термохимические и фотохимические методы получения водорода. Термохимический метод получения может быть особенно перспективен при разработке термоядерных энергоустановок. Однако для применения этого метода необходимо рещить задачу разделения водорода и кислорода. Большой интерес вызывает фотохимический способ разложения воды с использованием биологических катализаторов. [c.392]


    Окисление — восстановление — один из важнейших процессов природы. Дыхание, усвоение углекислого газа растениями с выделением кислорода, обмен веществ и ряд биологических процессов в основе своей являются окислительно-восстановительными реакциями. Сжигание топлива в топках паровых котлов и двигателях внутреннего сгорания, электролитическое осаждение металлов, процессы, происходящие в гальванических элементах и аккумуляторах, включают реакции окисления — восстановления. Получение простых веществ, например железа, хрома, марганца, никеля, кобальта, вольфрама, меди, серебра, цинка, серы, хлора, иода и т. д., и ценных химических продуктов, например аммиака, щелочей, сернистого газа, азотной, серной и других кислот, основано на окислительно-восстановительных реакциях. Производство строительных материалов, пластических масс, удобрений, медикаментов и т. д. было бы невозможно без использования окислительно-восстановительных процессов. На процессах окисления — восстановления в аналитической химии основаны методы объемного анализа пер-манганатометрия, иодометрия, броматометрия и др., играющие важную роль при контролировании производственных процессов и выполнении научных исследований. [c.51]

    При использовании кислорода, получаемого в электролитическом производстве водорода, следует руководствоваться также Правилами техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металлов или Указаниями по проектированию производств кислорода и других продуктов разделения воздуха. [c.275]

    При электролитическом получении водорода отходом являлся кислород. Под руководством С. А. Фокина велись опыты по получению из кислорода озона и по использованию последнего при выработке олифы из льняного масла и для отбеливания жирных кислот салолина. Исследовательская работа оживилась с 1914 г., когда был приглашен консультантом проф. А. Е. Арбузов. Кислородом и озоном стали окислять парафиновые углеводороды, стремясь получить жирные кислоты для мыловарения. В интересах этого же производства изучали возможность дезодорировать нафтеновые кислоты. В библиотеку лаборатории поступала вся необходимая зарубежная литература по широко- [c.434]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]


    Для последней цели представляют интерес два прибора, недавно описанные и уже применяющиеся в производстве. Один из них, использованием записи обычных полярографических кривых, предложен для автоматической регистрации небольших концентраций урана (10 —10 М) в радиоактивных производственных растворах [320 а другая система, в которой регистрируются производные (дифференциальные) кривые— для анализа растворов с большой концентрацией урана (100—200 г/л) [365, 698]. Первая система автоматизации [320] для контроля радиоактивных растворов построена с таким расчетом, чтобы содержащаяся в производственных растворах азотная кислота в концентрации около 2 М служила электролитом. В этих растворах концентрация урана обычно менее 0,01 г/л, но при нарушении нормальных условий технологии она может достигать Юг/л. Растворы содержат так же железо, нитриты и трибутилфосфат. Автоматическая линия включает схему обычного полярографа, ансамбль, состоящий из электролитической ячейки с резервуаром для ртути, трубопроводов для подачи производственных и стандартных растворов, ловушку для ртути, трубопровод для возвращения проанализированного раствора в процесс, линию подачи гелия для вытеснения кислорода, а также самозаписывающую систему с соответствующим электронным усилением токов. Запись кривых производится через каждые мин. [c.204]

    Выделяющийся на катоде водород всегда загрязнен кислородом. При использовании платиновых анодов выход перхлората цо току выше и содержание кислорода в электролитическом газе ниже, чем на электродах из двуокиси свинца. [c.443]

    Когда химическая система выполняет работу над своим окружением в ходе обратимого процесса, уменьшение свободной энергии системы в точности совпадает с той частью работы, которая не является работой типа PV. Например, работа, вьшолняемая гальваническим элементом, является мерой уменьшения свободной энергии этого элемента. И наоборот, если к электродам электролитического элемента, подобного описанному в разд. 1-7, приложено напряжение, то электрическая работа, выполняемая над электролитическим элементом (и измеряемая методами, которые будут рассматриваться в гл. 19), равна приросту свободной энергии химических вешеств внутри него. Когда при пропускании электрического тока через воду происходит ее электролитическая диссоциация, использованная для этого электрическая работа расходуется на увеличение свободной энергии газообразных водорода и кислорода по сравнению со свободной энергией жидкой воды  [c.71]

    При этом водород необходимо отделить от диоксида углерода и других продуктов конверсии. Эту проблему еще нельзя считать разрешенной. Одним из основных методов получения водорода в недалеком будущем рассматривается электролиз на атомных электростанциях. Кроме водорода выделяется и кислород, который также может быть использован в промышленности и быту. Кроме электролитического рассматриваются термохимические и фотохимические методы получения водорода. Термохимический метод получения может быть особенно перспективен при разработке термоядерных энергоустановок. Однако для [c.356]

    Электролиз хлоридных растворов может оказаться перспективным не только для цинка, но и для других процессов электролиза цветных металлов [27]. В этом случае на аноде вместо бесполезного кислорода будет выделяться хлор, который можно использовать для хлорирования продуктов, содержащих цинк, и перевода их в водорастворимую форму. Электролиз цинка из хлоридных растворов наиболее рационально сочетать с электролитическим производством хлора, расходуемого на хлорирование органических соединений. Получаемая при этом хлорировании соляная кислота может быть использована для выщелачивания цинкового концентрата, а выделяющийся при электролизе цинка хлор направлен на хлорирование органических соединений. Помимо сказанного, электролиз хлорида цинка имеет то важное преимущество, что позволяет использовать более дешевые и не загрязняющие электролит графитированные электроды, сопровождается более низким напряжением на ванне ввиду меньшей величины анодного потенциала и большей электропроводности электролита, не требует использования двуокиси марганца для окисления железа и т. д. Недостатками процесса являются усложнение конструкции и обслуживания ванн, худшее качество осадков цинка, ограниченная плотность тока. [c.71]

    В условиях промышленного производства тяжелой воды применяют непрерывные методы, в которых энергозатраты существенно ниже, чем в периодическом процессе. Все методы организации непрерывного процесса получения тяжелой воды основаны на использовании ступенчатого каскада электролизеров. Первая ступень каскада включает фильтр-прессные электролизеры, в которых в качестве электролита используют 26%-й раствор гидроксида калия. В процессе электролиза из электролизеров выделяются кислород и водород, а также испаряется вода, обогащенная ОгО. Эту воду конденсируют и направляют в электролизеры второй ступени каскада. Вторая ступень каскада включает меньшее число электролизеров, чем первая, так как для их питания используется только вода, унесенная с электролитическими газами из первой ступени каскада. Водород, полученный в электролизерах первой и второй ступеней каскада, передают потребителю. [c.38]


    Себестоимость водорода определяется стоимостью электроэнергии, а также возможностью использования кислорода, получаемого в качестве побочного продукта. Как правило, производство водорода электролитическим методом применяется для небольших установок, требующих водород высокой чистоты, либо в районах с дешевой электроэнергией. Удельный вес электролитического метода в общем производстве водорода в капиталистических странах по данным за 1953 г. составлял 14% [25]. [c.124]

    Специально утвержденных норм качества электролитического кислорода нет. Обычно при его использовании руководствуются требованиями ГОСТ 5580—-58 на технический газообразный кислород  [c.199]

    Очевидный способ понижения энергии активации в обменной реакции с участием ионного фторида состоит в использовании расплавленного фторида. Однако температуры плавления чистых фторидов довольно высоки (см. табл. 8). Значительно ниже 400° практически не существует приемлемых легкоплавких эвтектических смесей фторидов. Некоторые из легкоплавких эвтектических смесей приведены в табл. 9. Трехкомпонентные расплавы на основе фтористого водорода обладают удобными с практической точки зрения температурами существования жидкого состояния. Температуры плавления кислых фторидов калия приведены в табл. 10. Их применяют для электролитического получения фтора, в обиженных реакциях с участием галогенов и в реакциях замещения кислорода. Смесь фторид аммония—фтористый водород также [c.322]

    Процессы деструкции фенолов протекают более энергично при использовании электрохимического окисления, так как окислители в этих условиях обладают повышенной химической активностью. Показано [15—17], что под действием электрического тока происходит электролитическое разложение содержащегося в сточной воде хлористого натрия с образованием хлорноватистой кислоты, которая, выделяя атомарный кислород, окисляет фенол до углекислого газа, воды и малеиновой кислоты. [c.360]

    При использовании в работе газообразного водорода необходимо избегать контакта его с кислородом воздуха. Поэтому аппаратуру или установку, в которой применяется водород, например для гидрирования или для создания восстановительных условий, предварительно очищают от следов кислорода, продувая установку инертным газом. Случается, что в водороде, находящемся в баллоне, имеется примесь более 1 % кислорода. В этом случае работать с таким водородом опасно и баллон подлежит возвращению на завод-наполнитель. Если водород в лаборатории получается непосредственно на электролитической установке, загрязнение водорода кислородом вдвойне опасно во-первых, в этом случае сама установка ненадежна, так как почти неизбежен ее взрыв, и, во-вторых, если взрыв все же не произошел, то он может произойти в процессе работы. [c.54]

    Возможна и простейшая комбинация процесса электролиза воды с газификацией твердого горючего для наиболее экономичного использования в комбинированном процессе отбросного кислорода электролиза (рис. 7.10). Вариантами совмещенного процесса газификации твердого горючего с процессом электролиза является электролитическое получение водорода, используя смесь угля, гашеной извести и воды [476, пат, США 204/201, № 4226683, 0.9.08.79]. [c.312]

    Сообщается [607], что в научно-исследовательском центре Общего рынка в Испре (Италия) непрерывно, начиная с 22 мая 1978 г., на модельной установке вырабатывают 100 дм ч водорода при использовании в качестве реагентов брома и диоксида серы. Эти реагенты вместе с водой приводят в контакт при 320 К, в результате образуются бромистоводородная и серная кислоты. После разделения кислоты подвергают разложению. Бромистоводородную кислоту разлагают электролитическим методом на бром и водород, а серную — термическим путем при 1070 К в присутствии катализатора на водяной пар, диоксид серы и кислород. Бром и диоксид серы возвращаются в цикл. На стадии разложения серной кислоты предполагается использовать тепловую энергию ядерного реактора [607]. [c.412]

    Технико-экономические расчеты [547] показали, что к 2000 г. установка, где электрическую энергию вырабатывают с использованием газовой турбины, работающей на водороде и кислороде, которые получены термохимическим методом от атомно-водородного комплекса, потребует капитальных вложений примерно в два раза меньше, чем такой же мощности установка, работающая на электролитическом водороде и кислороде. [c.589]

    Наши проверочные опыты, осуществленные на лабораторной установке, подтвердили приведенные выше американские данные. Следует отметить, что меркаптидные щелочи достаточно хорошо регенерируются путем окисления кислородом воздуха или гидролиза при продувке водяным паром. В последнем случае выделяются свободные меркаптаны, годные для использования в качестве одорантов. При окислении же меркаптидных щелочей как молекулярным, так и атомарным кислородом получаются дисульфиды, на которые пока еще нет спроса, тогда как одоранты, в качестве которых могут применяться меркаптаны, в нашей стране дефицитны. Иначе обстоит дело со щелочами, полученными при защелачивании дистиллатов с целью их очистки от сероводорода. Все наши попытки регенерировать эти щелочи пока что не дали хороших результатов, и едкий натр продолжает использоваться на нефтеперерабатывающих заводах в основном однократно. Поэтому представилось необходимым проверить возможности электролитического метода применительно к сероводородным щелочам. [c.365]

    В результате электрохимического вытеснения будут изменять характеристики разряда водорода. Иногда растворы электролитически прорабатываются перед их использованием для поляризационных измерений с целью удаления загрязняющих примесей. Удаление кислорода может производиться различными путями чаще всего перед употреблением раствора его очищают путем пропускания обескислороженных азота и водорода. [c.124]

    Перекись натрия получается окислением металлического натрия, в свою очередь получаемого электролизом хлористого натрия, растворенного во фторидах щелочных металлов и хлористом кальции. В 1954 г. в США перекись водорода, полученная электролитическим процессом, стоила по рыночным ценам примерно на 30% дороже перекиси натрия в расчете на моль активного кислорода. Если эти два продукта в какой-либо местности в достаточной мере различаются по отпускным ценам, то перекись водорода можно получать из перекиси натрия обычно это оправдывается только в местах непосредственного потребления перекиси водорода и притом лишь тогда, когда остающаяся в растворе натриевая соль не мешает применению продукта. В настоящее время перекись водорода получается этим путем только в том случае, когда конечный раствор должен немедленно быть использован в процессах щелочной отбелки, например в производстве древесной целлюлозы или других целлюлозных материалов. Вопрос о соотношении цен между перекисью водорода и перекисью натрия рассматривается также в гл. 11. [c.105]

    В качестве исходного сырья может быть использован электролитический водород или азот-водородная смесь (АВС). При использовании в качестве сырьевого потока (АВС) необходимо удалять, кроме кислорода, азот, примеси оксида углерода, метана, аргона, диоксида углерода, а также пары воды и смазочного масла. Очистку от азота осуществляют его конденсацией при температуре 65-70 К и давлении 2,5-2,8 МПа с последующей очисткой водорода сорбционным методом (на активированном угле, при температуре 78-80 К). Удаление следов водорода проводят с помощью реакции водорода с кислородом на никель-хромовом катализаторе. Очищенный от примесей [c.272]

    Очень экономичный метод концентрирования дейтерия — низкотемпературная ректификация жидкого водорода [9, 10]. При использовании этого процесса серьёзные трудности возникают при очистке водорода от различных примесей (N2, СО и др.), которые при температуре ректификации переходят в твёрдое состояние и забивают насадку колонны. Если ректификации подвергается электролитический водород, его очистка упрощается и состоит в освобождении от кислорода выжиганием на катализаторах и в удалении паров воды. [c.287]

    Получение водорода. Долгое время в промышленности водород получали из дешевого природного сырья — воды (железо-паровой, конверсионный, электролитический методы). Новые методы его получения основаны на использовании природных газов, содержащих метан. Природный газ смешивают с водяным паром и кислородом, нагревают в присутствии катализатора до 800—900° С  [c.368]

    Современная промышленность предъявляет большой спрос на водород и кислород. Между тем всего 30—40 лет назад водород как промышленное сырье не имел почти никакого значения. Применение водорода ограничивалось потреблением весьма небольших количеств, главным образом, для воздухоплавания, пайки свинца, гидрогенизации жиров и освещения. Эта потребность в значительной мере удовлетворялась использованием водорода, получающегося в качестве побочного продукта при электролитическом производстве хлора и щелочи. В связи с этим разработке и совершенствованию различных методов производства водорода, в том числе и путем электролиза воды, не придавали большого значения. Промышленное значение водорода резко возросло с возникновением и развитием производства синтетического аммиака, предъявившего спрос на чистый водород в большом количестве. [c.184]

    Значение электролитического производства водорода определяется возросшим промышленным потреблением его. и преимуществами этого метода производства (простота работы, чистота газов и при наличии дешевой электрической энергии экономическая конкурентоспособность с другими методами, особенно в условиях использования кислорода). [c.184]

    Старые методы получения хлороформа состояли в электролизе разбавленного спиртового раствора хлоридов щелочных металлов, причем главным образом происходило окисление спирта, а хлороформ получался в небольшом количестве как побочный продукт 8]. Такой результат не является неожиданным, учитывая, что кислород в щелочной среде выделяется при значительно более низком потенциале, чем в кислой среде. Некоторое увеличение выхода было достигнуто в водном растворе хлористого кальция при плотности тока 0,08 а см и температуре 50—70° [9]. В этом случае щелочность среды регулируется в результате осаждер.ия гидроокиси кальция. Однако при этом возникает то затруднение, что образующаяся гидроокись кальция, осаждаясь на электроде, препятствует прохождению тока. Весьма тщательное изучение условий электролитического получения хлороформа было проведено Фейером [10]. Применяя платиновый анод, плотность тока примерно I а см и нейтрализующий катод по методу Роуша [11] в среде, содержащей 20% раствор хлористого калия, удалось получить хлороформ с выходом по току 65—75%. Этот метод оказался пригодным как для превращения этилового спирта, так и ацетона. Однако при использовании этилового спирта требуется температура около 30°, в то время как для ацетона желательна температура около 15°. Далее, Фейер установил, что можно полу- [c.155]

    К счастью, условия протекания электродных процессов в гальванических элементах не идеальны. На практике для электролитического выделения водорода и кислорода необходимо значительное перенапряжение (гл. HI, 5). Перенапряжение приводит к тому, что в зависимости от реальных условий (например, от материала электродов) можно увеличить напряжение разложения воды до 2,0— 2,2В (в свинцовом аккумуляторе). Это и есть примерная, верхняя граница э. д. с. гальванических элементов с водными растворами в качестве электролитов. Но и при использовании других растворов нельзя получить более высокую э. д. с. [c.204]

    Метод полярографического анализа может быть использован для измерения концентраций, растворенного кислорода в пределах между 5-10 и 2,4-10 моль-л (последняя концентрация при 25°С является насыщающей). Полярограф состоит, из электролитического сосуда с катодом в виде падающей ртутной капли поверхность такого ртутного электрода поддерживается чистой благодаря постоянному обновлению. Катод поляризуется при постепенном увеличении напряжения и притягивает положительные ионы (в данном случае ионы водорода), которые блокируют его и препятствуют сколько-нибудь заметному [c.99]

    Для обеспечения большей безопасности работы на стадии очистки водорода от кислорода электролитические газы можно разбавлять очиш,енным водородом, возвраш ая часть водорода после очистки от кислорода и охлаждения обратно в цикл для снижения содержания кислорода в смедд, поступающей в контактные печи. В тех случаях, когда водород не может быть рационально использован на предприятии, его выбрасывают в атмосферу. При этом электролитические газы разбавляют инертными газами — азотом или двуокисью углерода в зависимости от местных условий. Можно применять для этой цели воздух, однако требуется подача минимум 25— 30-кратного количества воздуха по отношению к продуцируемому в электролизерах водороду. При разбавлении газов воздухом возможен повышенный унос брызг электролита из электролизеров и усложняется санитарная очистка от хлора большого объема газов, выбрасываемых в атмосферу. [c.392]

    Электрохимический способ получения водорода и кислорода основан на электролитическом разложении воды. Впервые этот способ был использован в 1789 г. Труствиком и Диманном. Первый электролизер для электрохимического разложения воды был. разработан Д. А. Лачиновым в 1888 г., причем в его патентах [c.108]

    Шихту из Ti02 и порошкообразного алюминия с добавкой флюорита Сар2 для лучшего шлакообразования помещают в открытый гра-фито-шамотный тигель и поджигают с помощью запальной свечи (смесь порошка алюминия и окиси железа). После охлаждения сплав извлекают в виде слитка. Степень использования ТЮ2 65%. Алюмотер-мическое восстановление используется в промышленности для получения титан-алюминиевых лигатур. Титан-алюминиевый сплав может быть подвергнут электролитическому рафинированию рафинированный сплав практически не содержит кислорода. При условии создания промышленного электролизера этот метод может стать одним из основных способов получения титана и его сплавов [45, 54, 56]. [c.269]

    Большой интерес представляет использование анодов, образованных нанесением на титановую основу активного слоя, содер-жаш его смешанные окислы рутения и титана. Такие аноды имеют низкое значение потенциала при высоких плотностях тока и позволяют проводить электролиз с высоким выходом хлората по току. Расход тока иа выделение кислорода невелик и содержание кислорода в электролитических газах ниже, чем при использовании анодов из двуокиси свинца. Сообщается [77] о промышленном применении анодов такого типа. При плотности тока 3 кА/м и температуре около 67 °С процесс электролиэа протекает при анодном потенциале [c.382]

    Материалы электродов. Для осуществления процесса электролиза необходимо иметь аноды с высоким анодным потенциалом. Такому условию отвечают аноды из гладкой платины. Из-за дорр-, говизны платины начали применять аноды из диоксида свинца, полученные электролитическим осаждением его из азотнокислого свинца на графитовую или титановую основу. При использовании анодов из РЬОг хромовые добавки являются вредными, вместо них вводятся добавки фторидов, которые увеличивают перенапряжение выделения кислорода на этих анодах. [c.161]

    Один литр водного раствора сульфата меди (II) с концентрацией 1 моль/л, в котором растворено 10 г серной кислоты, использован в качестве электролитического раствора. Осадок гидроксида меди (частично содержащий оксид меди), имеющий влажность 90 % подают в анодное отделение со скоростью 120— 150 г/ч. Электоолиз проводят при силе тока 5,4 А при этом на поверхности катода со скоростью 0,3 г/ч осаждается чистая металлическая медь, которая прочно держится на катоде. Для создания достаточной концентрации ионов меди в катодном отделении необходимо, чтобы происходило быстрое растворение осадка гидроксида. Поскольку растворение происходит в результате реакции гидроксида с серной кислотой и ускоряется кислородом, образующимся в анодном отделении, то для растворения меди, содержащейся в осадке, требуется количество электричества значительно меньшее, чем теоретически рассчитанное. Согласно данному методу для выделения 1 кг меди требуется затратить всего 3 кВт. [c.117]

    Анбар и Таубе [320] изучали разделение изотопов кислорода на окисных электродах (РЬ02, МПО2 и Ag0). В этом случае кислород из анодного окисла выделяется электролитически как 0 , но при использовании окисла в качестве электрода происходит быстрый обмен между анодным окислом и водой. Следовательно, разделение изотопов кислорода определяется равновесным процессом [c.513]

    Особенно привлекательной кажется идея об использовании топливных элементов для утилизации солнечной энергии. Рассчитано, что, использовав лишь 0,2 % солнечной энергии, падающей на землю, человечество сможет удовлетворить все свои потребности в энергии. Уже созданы солнечные батареи около 10% солнечной энергии превращают они в электрический ток, а в ближайшие годы их кпд будет значительно увеличен. Но солнечные батареи работают только днем, значит надо запасать энергию, а затем использовать ее в ночное время. Решить эту задачу в крупных масштабах с помощью аккумуляторов невозможно слишком много придется затратить цветных металлов. Здесь опять могут помочь топливные элементы. Днем энергия солнечных батарей будет частично расходоваться на электролитическое получение водорода и кислорода, а ночью эти вещества будут служить топливом для элемента. Ножалуй, в настоящее время основная трудность в реализации этого плана — дороговизна солнечных батарей, работающих на полупроводниковых материалах сверхвысокой частоты. [c.105]

    Для построения калибровочных кривых микрохроматографа необходимо приготовлять растворы углеводородов по отдельности. Нужно чтобы интервал времени между приготовлением концентрированной смеси чистых углеводородов и их использованием для приготовления растворов подходящих концентраций в электролитическом кислороде не оказался слишком продолжительным. [c.330]

    Эти потенциалы относятся к активностям, равным единице (практически к 1 н. растворам), различных видов частиц при температуре 25°. В термодинамически обратимых условиях по мере повышения наложенного потенциала будет протекать сначала тот процесс, который имеет минимальный отрицательный (максимально положительный) потенциал. В таких равновесных условиях па аноде пе может возникать ни перекись водорода, ни пероксодисульфат, а может образовываться только кислород. Соответствующий теоретический потенциал ванны составляет 1,229 б в 1 п. кислоте или 0,82 в в нейтральном растворе. Однако при осуществляемых электролитических процессах можно добиться протекания реакции, требующей более высокого потенциала, преимущественно перед реакцией с более низким потенциалом, но протекающей с выделением газа, путем увеличения разности потенциалов па ванне до значений, превышающих больший потенциал, например путем примеиеиия высоких плотностей тока и использования такого материала для электродов, который требует высокого перенапряжения для выделения газа. Ничтожное образование перекиси водорода при эксплуатации электролизера с применением потенциала, достаточно высокого для возможости частичного протекания реакции (9), можно объяснить тем, что реакция (10) протекает с большей скоростью, чем реакция (9), или же тем, что уже образовавшаяся перекись водорода, как только возникает некоторая невысокая ее концентрация, исчезает за счет реак- ции (12). Исчезновение перекиси водорода возможно также за счет неэлектролитического разложения ее в среде с высоким pH, поскольку перекись водорода очень неустойчива в щелочной среде. Поверхности анодов также могут быть причиной значительного разложения.  [c.108]

    Получение. Алюминий получают электролизом раствора АЬОз в расплавленном криолите НазА1Рб (содержание последнего составляет 92—94%). Т. пл. чистого АЬОз 2072 °С, электролиз при такой температуре невозможен из-за отсутствия стойких материалов для изготовления электролитической ванны и электродов. Как видно из фрагмента диаграммы состояния системы АЬОз — — 1МазА1Рб (рис. 3.11), использование криолита позволяет проводить электролиз при сравнительно низкой температуре — менее 1000°С, Удобство использования криолита в качестве растворителя состоит в том, что он достаточно электропроводен. Благодаря сравнительно низкой плотности расплава жидкий алюминий опускается на дно электролизера, чем облегчается выделение газов на аноде. Катодом служит выложенный графитовыми плитами корпус электролизера. На нем выделяется алюминий, на угольном аноде — кислород. Выделяющийся кислород сразу же взаимодействует с материалом анода, при этом анод горит и по мере сгорания его опускают так, чтобы он был все время погружен в расплав. При получении 1 т алюминия расходуется 0,7 т анодов. [c.336]


Смотреть страницы где упоминается термин Кислород электролитический, использовани: [c.350]    [c.509]    [c.320]    [c.377]    [c.75]    [c.102]   
Технология азотной кислоты 1949 (1949) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород электролитический



© 2024 chem21.info Реклама на сайте