Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция углеводородов при низких температурах

    В работе [70] описаны результаты исследования адсорбции углеводородов из воздуха при низких температурах. При постоянных условиях на входе (рис. 24) углеводороды проходят через адсорбент с различной скоростью. Независимо от вида углеводорода концентрационный фронт при низких концентрациях движется с большей скоростью, чем при высоких концентрациях, причем эта скорость относительно постоянна. Наиболее медленно по слою адсорбента движется ацетилен и пропилен. В указанной работе отмечается, что теоретически концентрация углеводорода за адсорбером никогда не бывает нулевой, в связи с чем для удаления оставшихся углеводородов необходима дополнительная очистка жидкого кислорода. [c.118]


    Было предложено выделять ацетилен охлаждением смеси газов до низкой температуры с последующей ректификацией или адсорбцией твердыми поглотителями, такими, как активированный уголь или силикагель. Применению первого способа препятствуют следующие свойства ацетилена твердый ацетилен сублимируется при —83,6° (760 мм рт. ст.), а плавится при —81,8°. Второй способ применим для очистки ацетилена от примесей таких ненасыщенных углеводородов, как диацетилен, метилацетилен и дивинил [12]. Оба описанных способа выделения ацетилена (ректификация и адсорбция) связаны с риском его взрыва. [c.280]

    Как было показано Кемболом [145, 146], изучение энтропий адсорбции дает много сведений о подвижности адсорбированных атомов и молекул на поверхности. Проведенное в этом направлении систематическое изучение энтропий газов, адсорбированных на угле, показало [39, 147], что молекулы многих газов, в том числе окиси углерода, кислорода, азота и многих углеводородов, ведут себя как молекулы двумерных газов, свободно вращаясь и передвигаясь по поверхности. При низких температурах и высоких степенях покрытия поверхности наступает некоторое ограничение в свободе движения. Снижение температуры в первую очередь ограничивает свободу поступательного движения и почти не отражается на свободе вращения. [c.89]

    Наличие твердых углеводородов обусловливает высокую температуру застывания нефтепродуктов и малую подвижность их при низких температурах. Это приводит к затруднениям при использовании нефтепродуктов, особенно смазочных масел, в механизмах, работающих при пониженных температурах. Выделяющиеся при этих условиях твердые углеводороды создают в жидкости кристаллическую сетку она и вызывает потерю подвижности нефтепродукта. Этому же способствуют адсорбция жидкой фазы кристаллами и создание вокруг кристалликов сольватных оболочек. [c.366]

    Так, по мнению авторов [14], при разделении на полимерных сорбентах имеют место и адсорбция на поверхности, и диффузия внутрь пор, и растворение веществ в полимере, причем для алифатических углеводородов (н-гексан, н-гек-сен) преобладает процесс адсорбции, а для хороших растворителей полистирола (метиленхлорид, хлороформ) — процесс растворения. Авторы [15] указывают, что полимерные сорбенты на основе стирола и дивинилбензола при низких температурах ведут себя как адсорбенты, а при температурах, близких к границе термостойкости, наряду с адсорбцией может происходить растворение некоторых веществ в объеме частицы полимера. [c.27]


    При этом процессе, разработанном фирмой Лурги (ФРГ), удаление двуокиси углерода, сероводорода, органических сернистых соединений, цианистого водорода, бензола и смолообразующих углеводородов из синтез-газов осуществляется методом физической адсорбции метанолом при сравнительно низкой температуре. Процесс основывается на том, что перечисленные примеси, особенно двуокись углерода и сероводород, весьма хорошо [c.367]

    Отдельные классы сложных молекул, в частности, углеводороды, состоят только из немногих фрагментов, которые удобно принять за силовые центры межмолекулярного взаимодействия. Молекулы одного класса различаются числом этих силовых центров, их химическим (валентным) состоянием и их пространственным расположением. Используя экспериментальные адсорбционные данные для сравнительно немногих молекул, в принципе, можно определять потенциалы Ф межмолекулярного взаимодействия для всех интересующих нас пар силовых центров. Полученные так потенциалы ф далее могут быть использованы для определения потенциальных функций Ф взаимодействия любых других молекул, состоящих из тех же силовых центров. Поэтому таким путем можно произвести расчет адсорбционных свойств для таких систем, для которых нет экспериментальных данных, или таких характеристик адсорбции, измерения которых представляют большие трудности (сюда относятся, например, теплоемкость адсорбированных молекул при нулевом и низких заполнениях поверхности, величины адсорбции и равновесного давления при слишком высоких или слишком низких температурах для непосредственного измерения, а также медленно выделяющиеся теплоты адсорбции). [c.244]

    А. Г. Безус. Изучение адсорбции низших углеводородов при низких температурах. 1958. Руководители проф. А. ] . Киселев и доц. В. П. Древинг. [c.225]

    Каталитическое восстановление окиси углерода с получением в остатке после синтеза бензола газа, богатого углекислотой выход углекислоты 97% газы, остающиеся, после отделения конденсируемых компонентов, для адсорбции углеводородов с низкой критической температурой подвергают двухкратной обработке, например таким адсорбентом, как активированный уголь регенерацию адсорбента проводят, например, с помощью водяного пара выделяющийся газ отделяют от воды [c.142]

    Методика идентификации компонентов по времени их выхода, отмечаемому регистрирующим прибором, была использована ранее для определения углеводородов при газовой съемке [80, 138]. В этом случае применяли адсорбцию микроколичеств углеводородной смеси Сг — Св (с примесью других газов) на поверхности стекла при низких температурах, а затем при размораживании строили кривую зависимости давления (по высокочувствительному микроманометру) от времени. На горизонтальной оси откладывали время с момента удаления сосуда Дьюара с жидким азотом, а на вертикальной — показания микроманометра. [c.257]

    Пики углеводородов С4 и С5 на выходной кривой имеют правильную симметричную форму, соответствующую линейной изотерме адсорбции. Для углеводородов Се, в основном олефинов, эта линейность нарушается. Десорбция этих компонентов сопровождается размыванием полосы, в результате чего на выходной кривой образуются несимметричные пики, имеющие растянутый передний или задний фронт. Размывание полосы в этом случае, очевидно, можно объяснить особым сродством к адсорбенту, присущим соединениям с двойной связью и, кроме того, низкой температурой термостатирования колонки при проведении опыта. Однако повышение температуры до 60° С приводит к наложению пиков отдельных компонентов С4 и С5. [c.165]

    По нашим данным, гидрирование непредельных углеводородов протекает практически полностью при температуре 70° С, причем применение более низкой температуры в микрореакторе лимитируется не понижением скорости гидрирования, а повышением адсорбции на катализаторе. [c.323]

    Из-за сильной адсорбции углеводородов, кипящих выше 100° С, на катализаторе при 70° С. их необходимо гидрировать при более высокой температуре. Относительно низкая температура гидрирования позволяет применить в качестве микрореактора первую часть хроматографической колонки. [c.324]

    Необходимо также отметить, что адсорбция широко используется для осушки газов и жидкостей, например газов, содержащих углеводороды и направляемых на разделение при низких температурах веществ, реагирующих в присутствии металлорганических соединений и т. п. [c.424]

    Известен целый ряд конструкций микрогазоанализаторов, основанных на тех же принципах, что и приборы общего макро-газового анализа. Однако не все они позволяют сделать полный анализ всех составных частей таких сложных газовых систем, как природные газы, где приходится определять двуокись углерода и другие кислые газы, кислород, водород, азот, углеводороды и сумму редких газов, иногда и с подразделением их на легкие и тяжелые. Один из описанных ниже приборов [47] дает ответ на поставленный вопрос. В основу работы положено разделение газовой смеси на отдельные компоненты путем конденсации, абсорбции и адсорбции их. Конденсацию и адсорбцию ведут при низких температурах, абсорбцию в отдельных случаях при повышенных. Замер объема газа производят путем наблюдения давления газа при различных объемах его. Анализ проводят при давлениях ниже атмосферного. Методом контроля служит исследование спектра газового разряда. [c.191]


    По нашим данным, гидрирование непредельных углеводородов протекает практически полностью при температуре 70°С, причем применение более низкой температуры в микрореакторе лимитируется не понижением скорости гидрирования, а повышением адсорбции на катализаторе. На рис. 2 показаны хроматограммы фракции 50—55°С генераторного газового бензина до гидрирования и после гидрирования при температурах 150 и 70° С. Последние две хроматограммы совсем идентичны. [c.136]

    Очистка воздуха от ацетилена в газовой фазе при низких температурах нашла в последующем промышленное применение в тех установках, в которых очистка воздуха от двуокиси углерода производится адсорбцией ее при низкой температуре под давлением. В этом случае воздух одновременно очищается не только от СО2, но и от ацетилена и других углеводородов. [c.709]

    При низких температурах в основном наблюдается физическая адсорбция, при которой молекулы веществ переходят из газовой фазы на поверхность твердого тела практически в неизменном виде и удерживаются на ней слабыми ван-дер-вааль-совыми силами. С повышением температуры характер адсорбции изменяется в этом процессе все большую роль начинают играть силы химического взаимодействия между адсорбируемой молекулой и поверхностными атомами (ионами) твердого тела или находящимся на его поверхности адсорбированным кислородом (активированная адсорбция, или хемосорбция). Такое взаимодействие может вызвать различного рода изменения в адсорбируемой молекуле перераспределение зарядов между атомами в молекуле, разрыв кратных связей, деструкцию молекулы, образование кислородсодержащих адсорбированных соединений или углеводород-кислородных комплексов. [c.84]

    Д. Дауден рассматривает случаи, ведущие к образованию различных форм адсорбционной связи. Прочная химическая адсорбция может быть обусловлена наличием остаточных валентностей вследствие неполного заполнения связывающих 5р-орбит у поверхности металла и атомных -орбит [187]. Поэтому увеличение числа -вакансий в металле должно вести к повышению прочности адсорбционной связи. Образование более прочных хр-связей при адсорбции требует значительной энергии возбуждения электронов, что может достигаться при достаточно высоких-температурах. Поэтому у металлов, не имеющих -вакансий ( р-металлов), адсорбционные связи, за некоторыми исключениями, оказываются слабыми [194]. Быстрая химическая адсорбция при низких температурах обусловлена наличием -вакансий в металле [186, 194]. Отмечается [186] различие адсорбционных свойств -металлов (обладающих -вакансиями) и 5р-металлов кислород химически адсорбируется всеми металлами, но водород, азот и насыщенные углеводороды—только- -металлами (с небольшими исключениями) окись углерода и ненасыщенные углеводороды прочно адсорбируются всеми -металлами. [c.58]

    Адсорбция индивидуальных углеводородов (н-бутана, изобутана, к-гептана и н-октана) на кислотных участках алюмосиликатного катализатора была изучена Эмметтом с сотрудниками [292, 293]. При низких температурах наблюдалась значительная адсорбция, но нри температурах начала крекинга адсорбировались очень малые количества парафинов. По-видимому, не требуется, чтобы количество углеводородов, адсорбируемое катализатором в течение времени, которое необходимо для крекинга, было очень большим. Определяющей скорость стадией является, вероятно, образование карбоний-иона. [c.340]

    В соответствии с теорией Бабаляна Г. А., нефть в пленочной форме обладает резко повышенным сопротивлением течению. Прежде всего, это обусловлено малой толщиной пленки. Кроме того, нефть представляет собой структурированную (особенно при достаточно низких температурах) коллоидно-дисперсную систему, содержащую и истинно растворенные высокомолекулярные соединения (продукты окислительной полимеризации углеводородов), которые также могут образовать пространственные сетки. Все это вызывает резко повышенную вязкость, особенно при малых градиентах скорости в области не разрушенных структур, когда проявляется и упругость (прочность) на сдвиг. Образование пленочной нефти связано с адсорбцией на твердой поверхности ПАВ, растворенных в нефти. Однако толщина самого адсорбированного слоя во много раз меньше толщины пленочной нефти. Растворенные ПАВ в нефтях могут находиться как в истинном, так и в коллоидном состоянии. Вытеснение с твердой поверхности пленочной нефти, если не происходит разрыва ее водой, представляет трудную задачу. В этом случае вытеснение осуществляется только за счет некоторого уменьшения толщины пленки под действием тангенциальных сил при движении потока воды по поверхности пленки и за счет отрыва от этой поверхности частиц нефти. Опыт показывает, что в большинстве случаев пленочная нефть разрывается водой, т.е. вытесняется с самой твердой поверхности (в случае ее гидрофильности) механизмом [c.36]

    Цеолит NaA адсорбирует большинство компонентов промышленных газов, критический размер молекул которых не превышает 0,4 нм сероводород, сероуглерод, диоксид углерода, аммиак, низшие диеновые и ацетиленовые углеводороды, этан, этилен, пропилен, органические соединения с одной метильной группой в молекуле, а также метан, неон, аргон, криптон, ксенон, кислород, азот, оксид углерода. Последняя группа веществ в значителышх количествах поглощается только при низких температурах. Пропан и органические соединения с числом атомов углерода в молекуле более 3 не адсорбируются цеолитом и таким образом при осушке и очистке не подавляют адсорбцию указанных выше примсссй. [c.367]

    Помимо важной роли в развитии теории адсорбции (см. разд. 1 гл. I) графитированные термические сажи представляют также интерес как эталонные углеродные непористые адсорбенты с однородной поверхностью при изучении свойств термически необработанных саж, графитов, коксов и активных углей. В частности, сопоставление с графитированной термической сажей важно при изучении адсорбционных свойств новых важных адсорбентов — неокисленных молекулярно-ситовых углей [1—7]. В последнее время графитированная термическая сажа приобрела важное значение в газовой хроматографии [8—16], в особенности как адсорбент для разделения структурных и пространственных изомеров [9, 10, 12, 17, 18] и других соединений, отличающихся геометрией молекул [10, 18], а также дейтери-рованпых [И, 19—22], фторированных [23, 24], хлорированных, бромированных и иодированных углеводородов и их производных [25] и ряда элементорганических соединений [26, 27]. Кроме того, графитированные сажи применяются как носители слоев труднолетучих и высокомолекулярных веществ [28—31]. Графитированная сажа с успехом применяется также как носитель однородных адсорбционных слоев более высококипящего адсорбата (например, ксенона или этилена) при изучении адсорбции на поверхности таких слоев при низкой температуре более низкокипящего адсорбата (аргона) [32—37]. [c.40]

    Термодинамические характеристики адсорбции на графитированной термической саже обычных и дейтерированных углеводородов и их производных несколько различаются (см., например, работы [37—39], а также рис. Х1,1—Х1,3). Это позволяет при подходящих условиях разделять смеси таких изотопных молекул. На графитированной саже при не слишком низких температурах (подробнее см. гл. XI) дейтерозамещенные углеводороды удерживаются слабее обычных углеводородов. Различие адсорбции О-и Н-углеводородов [37] и их производных [38] в этом случае в основном определяется отношением поляризуемости атомов В и Н в этих соединениях поляризуемость О-соединений несколько меньше поляризуемости Н-соединений. Газохроматографическое разделение СВ4, СН4 и С2В4, С2Н4 произведено на колонне с графитированной термической сажей [39], помещенной для увеличения Кх в криостат [11]. Термодинамические характеристики адсорбцип для этих веществ приведены в табл. У,3 [39]. [c.200]

    Нами были изучены теплоты и изотермы адсорбции углеводородов при комнатной температуре на полидивинилбензоле (ДВБ), который используется в газовой хроматографии. На рис. 1 приведены опытные дан ные, характеризуюш,ие зависимость дифференциальной теплоты адсорб ции Q нормальных углеводородов от количества адсорбированного газа Если представить те же данные в координатах [(( /Г), к] (рис. 2), то видно что в области низких значений к линейная зависимость не соблюдается Это, как сказано выше, свидетельствует о неоднородности поверхности [c.144]

    Известно, что селективность адсорбции углеводородов фуллеровой землей последовательно растет от парафинов к ароматике и ненасыщенным. Для ненасыщенных углеводородов за адсорбцией следует конденсация или полимеризация, которые могут происходить даже при низких температурах. Например, скипидар легко полимеризуется в присутствии флоридина при комнатной температуре, процесс сопровождается значительным выделением тепла. При повышенных температурах, применяемых при промышленной очистке крекинг-бензинов (до 246° С и выше), адсорбция углеводородов глиной имеет второстепенное значение, но реакции полимеризации диолефинов и аналогичных нестойких ненасыщенных углеводородов легко протекают, превращая углеводороды в смолы. [c.370]

    Если носитель был силанизирован, почти никакой раство-зитель (даже углеводород) не может смочить его поверхность 72]. Его поверхностная энергия слишком мала по сравнению с поверхностным натяжением используемых неподвижных жидкостей. Даже сквалан не смачивает силанизированный носитель. Неподвижная фаза собирается в капельки на поверхности носителя, образуя сеть очень маленьких жидких сфер. Пленка растворителя на поверхности не образуется. При повышении температуры график зависимости lgУлr от Х/Т является линейным, с отрицательным наклоном до тех пор, пока не достигается температура плавления. Тогда наблюдается резкий скачок, основная масса жидкой фазы становится доступной для растворения сорбатов, которые при более низких температурах удерживаются только за счет адсорбции. Поверхность раздела газ — жидкость, по-видимому, имеет чрезвычайно малую площадь поверхности — менее м /г. Так как площадь поверхности границы раздела газ — жидкость настолько мала, то степень селективной адсорбции на этой поверхности раздела очень незначительна и мы не можем наблюдать никакого изменения удерживаемых объемов полярных сорбатов с увеличение.м степени пропитки, когда используем неполярную неподвижную фазу, нанесенную на силанизированный носитель, [72]. Это очень отличается от того, что происходит на несиланизирован-ном носителе (см. выше разд. А.Х). К сожалению, не всегда можно использовать несиланизированный носитель для анализа полярных сорбатов на жидких фазах слабой полярности. [c.96]

    Согласно представлениям электронной теории катализа на поверхности катализатора при адсорбции молекул возникают также реакционноснособные радикалы. Адсорбированные радикалы способны мигрировать по поверхности, встречаться друг с другом и вступать в соединения, образуя насыщенную молекулу, которая затем десорбируется в объем. Одна молекула может диссоциировать на поверхности катализатора, но возможны случаи, когда вторая молекула, участница реакции, диссоциирует не на свободной валентности поверхности, а на свободной валентности уже образовавшегося из первой молекулы радикала. Выше указывалось на способность поверхности катализатора генерировать свободные радикалы, десорбирующиеся в объем и ведущие там реакцию (гетерогенно-гомо-генный механизм). Такие эстафетные цепи [198] не характерны для ряда окислительных гетерогенных процессов, протекающих при сравнительно низкой температуре. Прн окислении углеводородов под влиянием кислорода на поверхности катализатора происходит деструкция эта реакция цепная. [c.92]

    Интерпретация теплот адсорбции в отношении связи метал—адсорбат определяется знанием стехиометрии хемосорбцин, которая в свою очередь зависит от условий процесса. При адсорбции на переходных металлах таких молекул, как водород, кислород, азот и насыщенные углеводороды, если температура достаточно высока, преобладает диссоциативная хемосорбция. Однако известно, что при низкой температуре и большом покрытии часть водорода и азота адсорбируется в слабосвязанной молекулярной форме. Кроме того, недиссоциативная хемосорбция важна в случае олефинов или ароматических углеводородов из-за взаимодействия их я-электронов с поверхностными атомами металла. [c.24]

    Степень адсорбции привитых сополимеров на поверхности полимерных частиц была определена в условиях полимеризации [7]. В этих опытах количество привитого стабилизатора, ассоциированного с частицами полимера, определяли по разнице между взятым количеством и количеством, не израсходованным после завершения дисперсионной полимеризации и измеренным по сухому остатку после испарения жидкости, отделенной высокоскоростным центрифугированием от дисперсии. Полимерные дисперсии получали в алифатических углеводородах при 80 °С. При этой температуре адсорбция привитого сополимера в присутствии свободного мономера, вероятно, является равновесным процессом. При более низких температурах, применяемых при центрифугировании и в условиях отсутствия мономера, адсорбция является в основном необратимой и поэтому возможны лишь небольшие ошибки, возршкающие за счет установления нового равновесия при разбавлении дисперсии перед центрифугированием. [c.65]

    Вследствие слабого удерживания воды углеродные сита рекомендуются для анализа микропримесей воды в органических растворителях (вода всегда элюирует раньше основного вещества). Хорошо разделяется на этом адсорбенте производственная смесь вода — формальдегид — метанол. Углеродные сита используют для определения углеводородов в морской воде. При низкой температуре углеводороды концентрируются на углеродном сите, при этом вода элюирует из колонки, при 250 °С углеводороды десорби-зуются и подаются в хроматографическую колонку для анализа. олонка должна быть изготовлена из стекла (лучше из кварца, который более инертен), но не из металла, так как на нем происходит сильная адсорбция паров воды. [c.121]

    Вследствие низкой точки кипения постоянных газов и легких углеводородов в качестве адсорбентов для их анализа можно использовать материалы с очень высокой адсорбционной активностью, например углеродные молекулярные сита, частично графитированную термическую сажу, цеолитовые молекулярные сита, а также пористые полимеры. В то же время при проведении анализа необходима очень низкая температура колонки для того, чтобы добиться достаточно большого коэффициента емкости, обеспечивающего четкое разделение. Примером может служить разделение Нг, Ог и HD на адсорбенте оксид алюминия — оксид железа при —196 °С, проведенное Шипманом [188]. Низкая температура необходима также для газового анализа жидких неподвижных фаз, так как теплота растворения газов значительно ниже, чем теплота адсорбции. [c.347]

    Нефть в пленочной форме обладает резко повышенным сопротивлением течению. Прежде всего это обусловлено малой толш,и-ной пленки. Кроме того, пефть представляет собой структурированную (особенно при достаточно низких температурах) коллоиднодисперсную систему, содержаш ую и истинно растворенные высокомолекулярные соединения (продукты окислительной полимеризации углеводородов), которые также могут образовать прост-ранствепные сетки. Все это вызывает резко повышенную вязкость, особенно при малых градиентах скорости в области неразрушенных структур, когда проявляется и упругость (прочность) на сдвиг. Образование пленочной нефти, несомненно, связано с адсорбцией растворенных в нефти ПАВ на твердых поверхностях. Однако толщина самого адсорбированного слоя во много раз меньше толщины пленочной нефти [6, 8]. Растворенные в нефтях ПАВ могут находиться как в истинном, так и в коллоидном растворах [9]. Вытеснение с твердой поверхности пленочной нефти, если не происходит разрыва ее водой, представляет трудную задачу. В этом случае вытеснение осуществляется только за счет некоторого уменьшения толщины пленки под действием тангенциальных сил при движении потока воды по поверхности пленки и за счет отрыва от этой поверхности частиц нефти. Опыт показывает, что в большинстве случаев пленочная нефть разрывается водой, т. е. вытесняется с самой твердой поверхности (в случае ее гидрофильности) механизмом избирательного смачивания [10]. Так, например, нами наблюдался разрыв водой пленок ряда нефтей Апшеронского полуострова на стеклянных и кварцевых пластинках. Большая часть этих нефтей содержала от 1,5 до 2,5% нафтеновых кислот, асфальтены же почти отсутствовали. Стеклянные и кварцевые пластинки, смоченные этими нефтями, погружали в воду. Пленки нефтей разрывались водой, на поверхности пластинок образовывались капли различных размеров, некоторые из них отрывались от поверхности, другие оставались прилипшими. Было установлено, что чем больше в нефти содержание активных компонентов, тем медленнее разрывается ее пленка и меньшее количество нефти отрывается от поверхности. В аналогичных опытах с нефтью угленосной свиты, содержащей большое количество асфальтосмолистых веществ, пленка на стеклянной пластинке не разрывается ни пресной водопроводной водой (жесткой), ни пластовой высокоминерализованной жесткой водой даже нри оставлении пластинки в этих [c.37]

    Способ впервые был разработан К. А. Лобашовым и Е. М. Спек-тор в 1938 г. применительно к установкам, работающим по циклу высокого давления. Адсорбция ацетилена и других углеводородов нз воздуха производилась под высоким давлением и при низкой температуре после выхода из теплообменника (перед воздушным дроссельным вентилем). На опытных установках избыточное давление воздуха в адсорбере емкостью 15 адсорбента (активного глинозема) составляло 52—70 кгс см , температура от —119 до —126 X, скорость во,здуха 0,19—0,25 дм 1см -мин. Удовлетворительно проводилась очистка при концентрации ацетилена в воздухе перед адсорбером до 0,17 см м при концентрации ацетилена 0,302 см м в очищенном воздухе обнаруживались следы ацетилена. Адсорбер работал 5 суток, и через него прошло 26 ООО воздуха до регенерации. Регенерация адсорбента производилась продувкой в течение 5 ч воздухом нормальной температуры. [c.709]

    Адсорбция углеводородов сильно зависит от их структуры 142]. Петрий и Марвет [100] подробно исследовали хемосорбцию метана, который отличается наиболее низкой адсорбируемостью на платине по сравнению с другими углеводородами. Кривые смещения потенциала после введения Р1/Р1-электрода в контакт с метаном в кислых растворах как по форме (рис. 2), так и по характеру их зависимости от pH, парциального давления СН4 и температуры аналогичны соответствующим кривым для метанола при низких концентрациях последнего [18, 19, 56]. На кривых заряжения после контакта электрода с метаном наблюдаются задержки, отвечающие окислению Наде и хемосорбированного вещества [c.285]

    Принято считать эту реакцию надежным критерием для решения вопроса о том, является ли адсорбция водлрода на данном твердом катализаторе химической или нет. В самом деле, на активных катализаторах гидрогенизации водородный обмен неизменно имеет место даже при значительно более низких температурах, чем те, при которых осушествляются соответствую-шие реакции гидрогенизации. Так, например, взаимодействие между водородом и дейтерием на однократно промотированном железном катализаторе идет с достаточно большой скоростью пр.и —195° [5]. В то же время, насколько это известно авторам [6], гидрогениз-ация органических вешеств при температурах ниже —100° не имеет места. Изучение изотопного обмена между газообразными углеводородами и дейтерированной серной кислотой [7] или дейтерированными крекирующими катализаторами [8—10], а также прямого изотопного обмена между углеводородами в газовой фазе в присутствии соответствующих катализаторов позволяет получить такие сведения о механизме катализа, какие нельзя надеяться приобрести каким-либо иным способом. Нет никакого сомнения в том, что дейтерий и его радиоактивный двойник — тритий долго еще будут служить наиболее удобными средствами для исследования деталей механизма, элементарных стадий и природы многих каталитических реакций. [c.724]


Смотреть страницы где упоминается термин Адсорбция углеводородов при низких температурах: [c.283]    [c.115]    [c.209]    [c.325]    [c.69]    [c.18]    [c.37]    [c.146]   
Разделение воздуха методом глубокого охлаждения Том 2 Издание 2 (1973) -- [ c.482 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция при низких температурах

Адсорбция углеводородов



© 2024 chem21.info Реклама на сайте