Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия адсорбции ионизации

    Из уравнений (53.11) и (53.12) следует, что скорость стадии разряда — ионизации должна возрастать при увеличении энергии адсорбции реагирующего вещества и продукта реакции, например для разряда ионов НзО" " при увеличении энергии связи Ме—Н. Однако этот вывод относится только к случаю малых заполнений электрода компонентами реакции. Так, по мере увеличения заполнения поверхности адсорбированным водородом с ростом скорость прямого процесса, пропорциональная 1—9н, начнет уменьшаться. Таким образом, кри- [c.275]


    Итак, если реагирующие вещества и продукты реакции не адсорбируются специфически на электроде, то влияние природы металла проявляется только через изменение строения двойного электрического слоя. Влияние природы металла на скорость стадии разряда — ионизации обусловлено как изменением строения двойного слоя, так и различием в энергиях адсорбции реагирующих веществ и продуктов реакции на разных металлах. Что же касается работы выхода электрона, то она не входит непосредственно в уравнения электрохимической кинетики. [c.275]

    Из уравнений (53.1) и (53.2) следует, что скорость стадии разряда — ионизации должна возрастать при увеличении энергии адсорбции реагируюш,его веш,ества и продукта реакции, например, для разряда ионов НзО при увеличении энергии связи Ме—Н. Однако этот вывод относится только к случаю малых заполнений электрода компонентами реакции. Так, по мере увеличения заполнения поверхности адсорбированным водородом с ростом gн скорость прямого процесса, пропорциональная 1 — бн, начнет уменьшаться. Таким образом, кривая зависимости lg I или lg 0 от н должна проходить через максимум. Экспериментальные данные находятся в качественном согласии с этим выводом. Так, при переходе от Hg, РЬ к Ag, Ре и далее к Р1 рост энергии связи Ме—Н сопровождается увеличением тока обмена (см. табл. 6). Однако на таких металлах, как Мо, Ш и Та, у которых энергия связи Ме—Н еще больше, чем у платины, ток обмена снова снижается до значений, близких к о для металлов группы железа. При количественной интерпретации наблюдаемой закономерности следует [c.289]

    При интерпретации наблюдаемого ускорения процесса в ряду вода — метанол — этанол необходимо учитывать следующее 1) изменение строения двойного электрического слоя (изменение т. н. з. и емкости двойного слоя) 2) изменение энергии адсорбции атомарного водорода в результате конкуренции с различными молекулами растворителя, обладающими неодинаковой энергией связи с поверхностью электрода 3) изменение константы скорости реакции в результате влияния растворителя на высоту стандартного барьера стадии разряда — ионизации (при Си = oi ii, см. рис. 125). [c.290]

    Реакция электровосстановления анионов на отрицательно заряженной поверхности электрода удобна для выяснения закономерностей влияния природы металла на скорость стадии разряда — ионизации. Согласно уравнениям теории замедленного разряда зависимость скорости этой стадии от природы металла определяется двумя факторами а) зависимостью энергии адсорбции реагирующих частиц и продуктов реакции ( о и я) и б) зависимостью строения двойного электрического [c.201]


    Пленочной теории пассивности противоречит обнаруженное резкое торможение скорости растворения платины в соляной кислоте, обусловленное адсорбцией таких количеств кислорода, которых явно недостаточно для образования одного монослоя. Действие адсорбированного кислорода в этом случае аналогично действию малейших следов яда, отравляющего поверхность катализатора. Согласно электрохимической теории пассивности, замедление скорости анодного процесса на пассивном металле объясняется не тем, что его поверхность изолируется от раствора окисной пленкой. Наступление пассивного состояния в рамках этой теории связывается с изменением энергетического состояния поверхностных атомов металла. При обсуждении механизма анодного растворения металлов в активном состоянии было показано, что этот процесс протекает преимущественно на наименее прочно связанных атомах дислоцированных в дефектных местах кристаллической решетки. Именно такие атомы в первую очередь вступают в адсорбционное взаимодействие с кислородом воды, в определенной степени теряя свойственный им избыток энергии. Такой атом, связанный с кислородом, переходит иа более глубокий уровень энергии, что влечет за собой повышение энергии активации ионизации и, в конечном счете, торможение скорости ионизации металла. [c.203]

    Метод потенциальных кривых дает возможность рассмотреть влияние материала электрода на энергию активации процессов разряда и ионизации. Влияние материала электрода прежде всего отражается на величине энергии или теплоты адсорбции. В водных растворах положение кривой аа не меняется, а кривая ЬЬ пройдет тем ниже, чем больше теплота адсорбции. При этом точка пересечения кривых смещается вниз (рис. 84,а). Следовательно, увеличение энергии адсорбции атомов водорода приводит к снижению энергии активации реакции разряда, т. е. облегчает этот процесс. [c.342]

    Экспериментальные данные, которые, как полагает автор, подтверждают его соображения, можно разбить на две группы. К первой относятся данные по адсорбции паров воды на германии. О сильном влиянии адсорбции такого рода молекул (с неподеленной электронной парой) на электрофизические свойства поверхности германия (в том числе и на заряжение) известно давно, и в настоящее время этот факт ни у кого не вызывает сомнения, так как адсорбцию такого характера считают разновидностью хемосорбции, протекающей с образованием ион-радикалов. Новых экспериментальных данных, которые дали бы основание сомневаться в установившейся точке зрения, сообщение В. Ф. Киселева не содержит. Более того, идея заряжения поверхности под влиянием дипольного момента адсорбированной воды противоречит работам [3, 4], где установлено соответствие между изменением работы выхода и величиной изгиба энергетических зон именно для системы Ge -(- HjO. Поэтому пока нет оснований говорить о механизме заряжения, индуцированного динольным моментом. Нам удалось показать (стр. 111) возможность ионизации адсорбированных на германии молекул с высоким ионизационным потенциалом. Сильное возмущение энергетических характеристик соседних центров на поверхности в этом случае легче объяснить более мощным полем иона, чем диполя. Возмущение особенно велико, когда два иона и А" находятся на смежных центрах. Такая модель объясняет и высокие энергии адсорбции молекул с неподеленной парой. [c.102]

    Энергия гидратации W и энергия ионизации / зависят только от природы иона. Величина же А, представляющая для случая осаждения радиоактивного элемента из бесконечно разбавленных растворов энергию адсорбции, должна зависеть как от природы разряжаемого атома, так и от природы электрода.  [c.146]

    Н. И. Кобозев и Н. И. Некрасов (1930) на примере реакции катодного выделения водорода впервые показали, какую роль в активационной поляризации играет энергетическое состояние частиц, в котором они находятся непосредственно после акта разряда. В случае выделения водорода таким состоянием будет состояние атомов водорода, адсорбированных на поверхности электрода. Энергия адсорбции атомов водорода должна учитываться при рассмотрении кинетики их электрохимического образования. Конечная скорость актов разряда и ионизации также для реакции катодного выделения водорода экспериментально доказана П. И. Долиным, Б. В. Эршлером и А. Н. Фрумкиным (1940). [c.316]

    С уменьшением потенциала ионизации донорной молекулы наряду с радикалами могут образоваться и молекулярные ионы. Выход радикалов на различных адсорбентах определяется не столько шириной запрещенной зоны, сколько глубиной ловушек электронов и дырок, Образование радикалов может быть полностью ингибировано, если глубина ловушек значительно изменится при небольшом изменении ширины запрещенной зоны. Зависимость процесса от температуры определяется температурной зависимостью энергии адсорбции и стабильностью парамагнитных центров адсорбента. [c.430]


    НОВОМ электроде с кольцом открывает путь к исследованию их кинетики, т. е. к нахождению замедленной элементарной стадии. Выяснению этого вопроса посвящен ряд работ [89, 91, 96, 102], в результате которых были получены сведения о кинетических закономерностях протекания двух и четырехэлектронных процессов ионизации кислорода. Было установлено, что величина наклона поляризационной кривой для обеих реакций в зависимости от экспериментальных условий изменяется от Л Г/Е до 2ИТ/Р. Анализ имеющихся литературных данных показывает, что наклон 2ЕТ/Р наблюдается в случаях малого или близкого к монослойному заполнений поверхности хемосорбированным кислородом (поверхностными окислами). Напротив, в случае средних заполнений величина наклона близка к КТ/Р. Для двухэлектронной реакции ионизации кислорода, описываемой уравнениями (1.136) и (1.137) с замедленной стадией перехода первого электрона, это различие в наклонах можно объяснить, учитывая изменение свободной энергии адсорбции с заполнением. В этом случае уравнение (1.135) приобретает вид [c.48]

Рис. 17.4. Потенциальная диаграмма рроцесса (17.116). Пунктирная кривая показывает влияние энергии адсорбции атомов водорода металлом на кинетику разряда—ионизации водорода Рис. 17.4. <a href="/info/78415">Потенциальная диаграмма</a> рроцесса (17.116). Пунктирная кривая показывает <a href="/info/7664">влияние энергии</a> адсорбции <a href="/info/1117693">атомов водорода</a> металлом на <a href="/info/15183">кинетику разряда</a>—ионизации водорода
    Для развития теории влияния ПАОВ на стадию разряда — ионизации электрохимических реакций большое значение имеют данные, полученные при различных температурах, поскольку из них можно рассчитать соответствующие изменения теплоты, свободной энергии и энтропии активации, вызванные адсорбцией ПАОВ. Для корректной трактовки кинетических данных необходимы параллельные исследования по влиянию температуры на адсорбцию ПАОВ. Наиболее полные данные по влиянию температуры на адсорбцию ПАОВ и ингибирование ими реакций восстановления катионов С<12+, РЬ +, 2п +, Еи + на ртутном и амальгамных электродах были получены Ф. И. Даниловым и С. А. Па-насенко. Ими показано, что энтальпия адсорбции АЯа не зависит от степени заполнения поверхности ПАОВ, тогда как свободная энергия адсорбции АОд линейно изменяется с ростом 0. Следовательно, рост абсолютной величины АСа происходит за счет увеличения энтропии адсорбции Д5а- [c.170]

    По современным воззрениям, активирующие свойства галоидных ионов основаны на очень высокой энергии адсорбции их металшичбской поверхностью и на вытеснении кислорода, необ-ходимото для пассивации. При этом в концентрированных растворах серной кислоты галоидные ионы, адсорбируясь на по-верхшсти некоторых сталей, сами могут приводить к пассивации, Такой эффект может быть объяснен следующим. При адсорбции галоидов точка нулевого заряда железа смещается в сторону положительных потенциалов одновременно с этим потенциал саморастворения железа в серной кислоте становится более электроотрицательным. В таком случае из-за изменения фр потенцнала процесс ионизации железа затрудняется. [c.407]

    Скорость стадии (2.18) возрастает, а стадий (2.19а) и (2.196)уменьшается сувеличе-нием энергии адсорбции водорода на катализаторе, поэтому существуют оптимальные значения энергии адсорбции, при которых скорость ионизации водорода максимальна. Высокая скорость- ионизации водорода неблюдается на металлах платиновой группы, никеле, золоте. [c.66]

    На основании сведений о структуре углеродных адсорбентов можно нрийти к выводу о том, что их поверхность образована сочетанием плоскостей микрокристаллитов, параллельных гексагональным слоям аролштических углеродных колец, и плоскостей, образованных гранями этих слоев, связанных вандерва-альсовскими силами. Именно на этих участках, сформированных из краевых углеродных атомов ароматических колец, возможно существование различных функциональных групп. Разумеется, в тех случаях, когда такие функциональные группы взаимодействуют с адсорбированными молекулами, суммарная энергия адсорбции должна существенно превышать энергию дисперсионного взаимодействия, характерную для молекулярной (физической) адсорбции [82]. Но, вероятно, далеко на все функциональные группы и, в частности, группы кислотного или основного характера могут сколько-нибудь существенно влиять на энергию адсорбции неэлектролитов или слабых электролитов в условиях подавления ионизации их молекул. Кроме того, наличие функциональных групп, способных повлиять на распределение электронной плотности в адсорбированных молекулах вследствие образования более или менее устойчивых молекулярных комплексов, может быть причиной изменения энергии адсорбции, а следовательно, и равновесного распределения при адсорбции веществ, совершенно не проявляющих кислотно-основных свойств. [c.47]

    Сольватирующее влияние среды распространяется и на адсорбированные атомы и молекулы, увеличивая вероятность их ионизации и изменяя теплоты и свободные энергии адсорбции. Величины Affs-x и AFs-x изменяются при переходе от газа Ii жидкости вследствие сольватации адсорбированных атомов и [c.506]

    Расстояние между точками > и Л дает полную реальную энергию гидратации иона водорода. Уровень Е соответствует потенциальной энергии системы Н М, состоящей из свободных газообразных атомов водорода и твердого металла. Расстояние между точками Р я С дает энергию адсорбции атомарного водорода электродным металлом. Из рис. 69 следует, что энергия активации разряда меньше, чем полная энергия дегидратации. Точно так же энергия активации ионизации меньше энергии десорбции атома водорода а поверхности металла. Так, например, энергия активации разряда водородных ионов на ртути при нулевом перенапряжении составляет примерно 20 ккал г-ион, в то время как энергия гидратации водородных ионов близка к 250 ктл1г-ион. Тем не менее энергия [c.361]

    Если бы в точке В не происходило присоединения электрона при разряде (или его потери при ионизации), то левая и правая кривые были бы доведены соответственно до уровней D я F. Уровень характеризует величину потенциальной энергии системы Н+Ч-НгО, состоящей из свободного газообразного протона и жидкой воды. Расстояние между уровнями D и Л отвечает энергии адсорбции атомарного водорода электродным металлом —AGh-i-.. Из рис. 79 следует, что энергия активации разряда меньше, чем полная энергия дегидратации. Точно так же энергия активации ионизации меньше энергии десорбции атома водорода с поверхности металла. Так, например, энергия активации разряда водородных ионов на ртути Влияние энергии (теплоты) сольвата- [c.435]

    Допустим, что адсорбционная связь является чисто ионной. Это возможно при взаимодействии тугоплавкого металла, например вольфрама, с нарами щелочного или щелочноземельного металла [23]. Энергию адсорбции такого типа легко можно вычислить [24] исходя из известной величины энергии ионизации атома щелочного металла, равной е/ (где е — заряд электрона), сродства к электрону тугоплавкого металла в целом (или, что одно и то же, работы выхода еф такого металлического адсорбента) и, наконец, энергии изображения е /4Л, которую можно рассматривать как электростатическую энергию притяжения ионизированного атома адсорбирующегося металла его зарядом-изобрая ением в металлическом адсорбенте. При этом величина 2Н представляет собой расстояние между ионом и его изображением. Следовательно, энергия адсорбции Е выражается следующим уравнением  [c.27]

    Электродные процессы всегда протекают на границе фаз. Особенностью этих реакций является то, что они зависят еще от одной интенсивной переменной — потенциала или поля,— влияющей нз свободную энергию а) адсорбции реагентов, б) адсорбции промежуточных частиц и в) активации реакции. Что касается последнего, то роль потенциала аналогична роли давления, например в изменении скоростей реакций в конденсированных фазах. На протекание электродных реакций оказывают влияние также специфические поверхностные свойства металлов, такие, как работа выхода электрона, поверхностная концентрация дефектов, энергия адсорбции промежуточных и исходных частиц, и именно в этом отношении можно говорить о предмете электрокатализа. Аналогично тому как скорость реакции обмена Нз — Вг меняется в весьма широких пределах при катализе на различных металлах и окислах, кинетическая степень электрохимической обратимости, например в случае реакции выделения водорода при обратимом потенциале, изменяется более чем на одиннадцать порядков при переходе от активной платины к гладкому свинцу. Позднее электрокатализом стали называть реакции электрохимического окисления органических соединений, протекающие через стадию диссоциативной хемосорбции на электроде, в которых специфические эффекты каталитической диссоциации тесно связаны с электрохимическими процессами переноса заряда. Однако подобное толкование термина электрокатализ не является новым по существу, аналогичные стадии каталитической диссоциации и электрохимической ионизации имеют место в реакции водородного электрода, исследовавшейся с подобной точки зрения Фрумкиным и его сотрудниками начиная с 1935 г. Таким образом, большое значение в электрокатализе имеет электрохимическое поведение промежуточных частиц, возникающих либо в стадиях перехода заряда, либо в результате диссоциативной хемосорбции, предшествующей или сопутствующей стадии перехода заряда. Большое количество рассматриваемых работ было посвящено исследованию реакций выделения и растворения водорода и кислорода, а в последнее время — реакций окисления органических соединений. [c.392]

    Концентрация промежуточных частиц X в пограничном слое будет зависеть а) от свойств электрода, таких, как работа выхода электрона, химическая реакционноспособиость, теплота сублимации, теплота ионизации в газовой фазе б) от свойств жидкой фазы, т. е. от природы растворенного вещества и растворителя и активностей всех частиц в фазе раствора, и в) от потенциала Дф на границе раздела фаз. Совокупность свойств обеих фаз определяет зависимость концентрации промежуточных частиц на границе раздела фаз от внешних условий (давление, температура, Дф), которые в свою очередь определяют тип адсорбционной изотермы, характерной для системы, и стандартную свободную энергию адсорбции. Полезно, следовательно, рассмотреть сначала несколько известных типов адсорбционной изотермы, физические модели, на которых каждая из них основана, и выводы относительно поведения промежуточных частиц, которые можно сделать, исходя из этих моделей. [c.417]


Смотреть страницы где упоминается термин Энергия адсорбции ионизации: [c.225]    [c.460]    [c.185]    [c.185]    [c.185]    [c.228]    [c.360]    [c.225]    [c.240]    [c.415]    [c.429]    [c.264]    [c.144]    [c.167]    [c.228]    [c.41]    [c.274]    [c.15]   
Краткая химическая энциклопедия Том 1 (1961) -- [ c.311 , c.317 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция энергия

Энергия ионизации



© 2025 chem21.info Реклама на сайте