Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен звеньев

    Реакции полимеризации и поликонденсации. Общие понятия химии высокомолекулярных соединений (ВМС) мономер, полимер, элементарное звено, степень полимеризации (поликонденсации). Примеры различных типов ВМС полиэтилен, полипропилен, полистирол, поливинилхлорид, политетрафторэтилен, каучуки, фенол-формальдегидные смолы, полипептиды, искусственные и синтетические волокна. [c.505]


    Применение катализаторов Циглера — Натта позволяет синтезировать практически 100%-ный стереорегулярный (пространственно упорядоченный) полибутадиен с полимеризацией мономеров только в 1,4-положениях и созданием u -конфигурации в каждом элементарном звене (1,4-г ис-полибутадиен). По некоторым показателям этот полимер мало отличается от натурального каучука, а по стойкости к процессам старения даже превосходит его. Этим же методом можно получать изотактический полипропилен, а также полиизопрен (1,4-г с-полиизопрен), который служит синтетическим заменителем натурального каучука. [c.398]

    Следующей структурной характеристикой, определяемой химическими методами, является расположение мономерных звеньев, которое может носить линейно-регулярный и пространственно-регулярный характер. Пример структуры первого типа, в которой мономерные звенья упорядоченно расположены в полимерной цепи, приведен на рис. 2.1, а. При этом различают варианты присоединения голова к хвосту (рис. 2.1, а слева) и голова к голове (рис. 2.1, а справа). Полимерные молекулы, которым присуща пространственная упорядоченность, называют стереорегулярными. Эта особенность строения имеет большое значение в случае полимеров (а-олефинов), таких, как полипропилен. Так, изотактический полипропилен — это жесткий полукристаллический полимер с температурой плавления 165 °С, в то время как атактический полипропилен аморфен, мягок и липок уже при комнатной температуре. [c.37]

    Сополимеры в большинстве случаев существенно отличаются по своим физическим свойствам от соответствующих гомополимеров. Например, при включении небольшого количества винилацетата в поливинилхлорид достигается внутренняя пластификация (см. раздел 1.4). Окрашиваемость синтетических волокон может быть улучшена включением малого количества специально подбираемого сомономера. Кроме того, в общем случае существует большое различие в растворимости сополимеров и соответствующих им гомополимеров (см. опыт 3-42). Свойства сополимеров, содержащих эквимольные количества звеньев обоих типов, распределенных статистически, часто значительно отличаются от свойств соответствующих им гомополимеров. Так, полиэтилен и изотактический полипропилен представляют собой кристаллические полимеры, имею- [c.173]

    Благодаря специфичности свойств стереорегулярных полимеров они нашли свои особые области применения. Так, из них получают волокна высокой прочности. В частности, хорошим сочетанием механических и других свойств обладает изотактический полипропилен. Стереорегулярные полимеры, построенные из закономерно чередующихся звеньев нескольких мономеров, играют большую роль также и в биологических процессах. Так. в некоторых белках цепи [c.565]


    В линейных полимерах составляющие их цепи состоят из нескольких сотен и даже тысяч звеньев и часто имеют те или другие ответвления, как, например, в приведенных выще полипропилене, полистироле и др. Эти ответвления более или менее закономерно [c.566]

    Линейные макромолекулы могут иметь регулярную и нерегулярную структуру. В полимерах регулярной структуры отдельные звенья цепи повторяются в определенной последовательности и располагаются в пространстве в определенном порядке. Полимеры регулярной структуры получили название стереорегуляр-ных. Полимеры, у которых отдельные звенья расположены в пространстве бессистемно, имеют нерегулярную структуру. В качестве примера приведем полипропилен нерегулярной (а) и регулярной (б) структуры  [c.358]

    До сих пор мы не упоминали о молекулярной массе М, которая не является взаимозаменяемой характеристикой степени полимеризации п. Именно с этим и связаны неопределенности корреляций / и 5. Действительно, в зависимости от молекулярной массы одного звена молекулярная масса макромолекулы в целом при одном и том же значении п может варьировать в широких пределах. Дос га-точно сравнить полипропилен со звеном —СНа—СН(СНз)— и один из полиимидов, изображенных на стр. 22. [c.41]

    Приведены экспериментальные данные по модифицированию коллоидными частицами металла надмолекулярной структуры изотактического полипропилена. Показано, что в присутствии коллоидных частиц свинца происходит не только дополнительное упорядочение звеньев цепей макромолекул в кристаллическом полимере, но и более глубокое упорядочение внутри сферолитов. Введение коллоидных частиц свинца в полипропилен дает возможность регулировать образование структурных элементов по их размерам и форме. [c.221]

    Ш, Укажите стереохимический тип полимера, к которому относится полипропилен (в зависимости от числа асимметрических С -атомов в структурном звене). [c.14]

    Линейные макромолекулы со звеньями, соединенными наиболее упорядоченно ( голова к хвосту ), могут быть пространственно регулярными (с т е р е о р е г у л я р н ы м и) и пространственно нерегулярными. Возьмем для примера линейный полимер полипропилен  [c.11]

    С помощью регуляторов можно контролировать длину полимерной цепи. Процесс полимеризации становится управляемым. Управление производится и с целью получения стереорегулярных полимеров. Стереорегулярными называются полимеры, в цепи которых звенья в определенном порядке (регулярно) повторяются в пространстве. Ниже изображены стереорегулярный (а) и нерегулярный (б) полипропилен  [c.380]

    Потенциальный барьер внутреннего вращения зависит от энер ГИИ внутри- и межмолекулярного взаимодействия и определяется химической природой атомов, входящих в цепь, а также ее строением. Очень небольшие внутримолекулярные взаимодействия и энергии конформационных переходов (4,2—25,1 кДж/моль) позволяют отнести неполярные полиэтилен, полипропилен, полиизобу-тилен к гибкоцепным полимерам, статистический сегмент которых составляет 10—40 элементарных звеньев. Введение в макромолекулы полярных заместителей приводит к увеличению внутри-и межмолекулярного взаимодействия, поэтому поливинилхлорид, н поливиниловый спирт являются жесткоцепными полимерами. [c.21]

    Благодаря специфичности свойств стереорегулярных полимеров они нашли свои особые области применения. Так, из них получают волокна высокой прочности. В частности, хорошим сочетанием механических и других свойств обладает изотактический полипропилен. Стереорегулярные полимеры, построенные из закономерно чередующихся звеньев нескольких мономеров, играют большую роль также и в биологических процессах. Так, в некоторых белках цепи построены из молекул различных аминокислот, которые связываются между собой в результате взаимодействия между карбоксильными и аминогруппами с образованием поли-пентидной связи  [c.558]

    Термомеханическая кривая кристаллического полипропилена (рис. 2, 1) показывает, что в широком интервале температур в отличие от атактического полипропилена образец остается практически недеформируемым и лишь при температуре плавления переходит в вязкотекучее состояние. Однако если полипропилен аморфизовать (нагреванием выше температуры плавления и последующим быстрым охлаждением), то на термомеханической кривой появится область, соответствующая высокоэластическому состоянию (рис. 2,2). Как и у атактического полипропилена, область высокоэластических деформаций начинается с —10°, но нри дальнейшем повышении температуры деформируемость падает, что связано с переходом полимера из аморфного состояния в кристаллическое. Это свойство объясняется регулярным строением цепей полипропилена, благодаря которому аморфизованный полипропилен способен повторно кристаллизоваться. В расплаве меняется конфигурация цепей, но сохраняется правильная последовательность асимметрических углеродных атомов в молекулах. Быстрое охлаждение расплава препятствует процессу упорядочивания цепей, и в стеклообразном состоянии они сохраняют ту форму, которую приобрели в расплаве. Кристаллизация происходит только выше температуры стеклования, когда подвижность звеньев достаточно велика. Исследование термомеханических свойств амор-физованного образца является, таким образом, одним из методов определения температуры стеклования кристаллизующегося полимера. [c.133]


    В линейных полимерах составляющие их цепи состоят из нескольких сотен и даже тысяч звеньев и часто имеют те или другие ответвления, как, например, в приведенных выше полипропилене, полистироле и др. Эти ответвления более или менее закономерно распределяются вдоль цепи. Кроме того, и сами цепи в [c.559]

    Степень перемещения И в процессе полимеризации определялась природой растворителя в гептане был получен обычный полипропилен, в бензоле (особенно при повышенных давлениях и температуре) — сополимер этилена с пропиленом, а в дихлорэтане при нормальном давлении — кристаллический полиэтилен. ИК-спектры полученного в бензоле полимера показывают малую абсорбцию при 1156 сл , указывающую на небольшое содержание метильных групп в полимере. Полимер представляет собой аморфный сополимер этилена и пропилена с содержанием этиленовых звеньев [c.184]

    Для интерпретации колебательных спектров полимеров необходимо знать спектральное повторяющееся звено цепи, т. е. такую единицу, из которой определенными операциями симметрии может быть построена вся макромолекула. Иногда такая единица совпадает с мономерным звеном цепи (изотактический полипропилен), в некоторых случаях она содержит два мономерных звена (синдиотактический полипропилен, полиакрилонитрил) либо включает лишь половину мономерного звена (полиэтилен). При анализе спектра следует учитывать, что число характеристических колебаний для данной химической группы будет различно в зависимости от того, принадлежит ли эта группа полимерной или неполимерной молекуле. Например, рассмотрим характеристические колебания группы —СНг—. В неполимерной молекуле СНгСЬ для группы СНг характерны три характеристических колебания два валентных в интервале 2940—2915 см и 2885— 2860 см и одно деформационное колебание в интервале 1480— 1460 см . В полимерной молекуле, содержащей группы СНа, следует ол<идать шесть характеристических колебаний удвоенное число указанных выше трех характеристических колебаний, поляризованных, однако, различным образом — параллельно и перпендикулярно оси цепи. [c.187]

    Другие полиуглеводороды, например, полипропилен, полибу-тилены, полистирол, имеющие беспорядочно расположенные боковые группы (СНз, С2Н5, СеНз), не кристаллизуются, они амЬрфны. Кристалличность пропадает, если в цепь полиэтилена внедрить боковые группы путем сополимеризации этилена с другими олефинами, например с пропиленом. Из-за наличия беспорядочно расположенных метильных групп в полимере или сополимере цепи раздвигаются, межмолекулярное притяжение ослабляется и звенья цепей приобретают способность перемещаться, принимать различные формы, что характерно для высокоэластического состояния. Такие полимеры, как полипропилен, полиизобутилен, сополимер этилена и пропилена и полиизопрен, находятся в высокоэластическом состоянии при очень низких и довольно высоких температурах. По-другому себя ведет полистирол, макромолекулы которого, благодаря наличию ароматических колец, значительно притягиваются друг к другу. Из-за [c.23]

    РАЗВЕТВЛЕННЫЕ ПОЛИМЕРЫ, содержат в макромолекуле статистически или регулярно располож. ответвления иного или того же, что и осн. цепь, хим. строения. Выделение Р. п. в отд. группу в значит, мере условтю. Так, полиэтилен, содержащий небольшое число СНз-групп, считается разветвленным полимером, а полипропилен с СНз-группами в каждом мономерном звене — линейным. К Р. п. относятся привитые сополимеры, полимеры со звездообразными и гребнеобразными (длина осн. цепи значительно превышает длину боковых цепей, располож. в каждом мономерном звене) макромолекулами. [c.491]

    Запатентованы процессы пероксидации полн-а-олефинов молекулярным кислородом при относительно низких температурах (до 80°С) и давлениях выше I кгс/см в растворе органических растворителей (кумола с небольшой добавкой метанола) [44]. Например, при окислении в этих условиях атактического полипропилена образуется полимер с молекулярным весом 11 000, содержащий одну перекисную группу на 47 мономерных звеньев. После восстановления гидроперекисных групп до гидроксильных полипропилен можно сшивать днизоцианатами [45]. [c.130]

    Названия карбо- и гетероцепных полимеров образуются на основе химических классов и названий мономеров, из которых образованы эти полимеры, с добавлением приставки поли . Например, полимеры, получаемые из непредельных углеводородов — олефинов (этилена, пропилена, бутена-1 и т. д.), в общем называют полиолефины, конкретно — полиэтилен, полипропилен, полибу-тен-1 и т. д.) полимеры на основе эфиров непредельной метакри-ловой кислоты (метилметакрилата, этилметакрилата и т. д.) известны как полиметакрилаты, конкретно — полиметилметакрилат полиэтилметакрилат и т. д. Названия гетероцепных полимеров после приставки поли включают название повторяющегося звена например, полиэфир этиленгликоля и терефталевой кислоты называют полиэтилентерефталатом, полиамид, получаемый из гексаметилендиамина и адипиновой кислоты,— полигексаметилен-адипамидом и т. д. [c.10]

    В 1985 г. В. Каминский (США) опубликовал данные о том, что гомогенный катализатор, получаемый из хирального, содержащего этиленовое звено, рацемата бис(инденил)цирконийхлорида в сочетании с циклическим олигомером метилалюмоксаном [А1(СНз)0] в качестве сокатализатора позволяет получить полипропилен с высокой степенью изотактичности  [c.860]

    Стереорегулярная полимеризация открывает широкие возможности для синтеза из одного и того же мономера полимеров с самыми различными свойствами, зависящими от характера чередования звеньев и их конфигурации в макромолекуле, от формы последней и от способности полимера кристаллизоваться или оставаться аморфным. Например, изотактический полипропилен представляет собой жесткий пластик с т. пл. 176 С, а атактический полимер — каучукоподобный материал. Подобные же различия наблюдаются в свойствах оптически деятельных полимеров и их ра-цематТэв. [c.198]

    Кристаллический полипропилен наиболее легкий из всех известных жестких полимеров (пл. 0,9) он отличается высокой прочностью на разрыв, жесткостью и твердостью. Благодаря кристаллической структуре стереорегулярный полипропилен сохраняет форму и хорошие механические свойства вплоть до температуры размягчения и может поэтому подвергаться обычной стерилизации. По прочности на разрыв он превосходит полиэтилен, уступая ему по морозостойкости (Т р от —5 до —15°С) однако можно снизить хрупкость при низких температурах введением в макромолекулу изотактического полипропилена небольшого количества эгиленовых звеньев. [c.285]

    Эти же параметры фигурируют в уравнении для скорости выделения летучих из вершины усталостной трещины в процессе механодеструкции. Для некоторых полимеров (полистирол, полиметилметакрилат, полипропилен), термодеструкция которых определяется распадом скелетных связей, замечена идентичность масс-спектров продуктов, выделяемых при ме-хано- и термодеструкции. Поэтому структурная поврежденность, вызываемая этими процессами, одинакова [162]. Регель с сотр. установил двух-стадийность термодеструкции. Первоначально деструкти-руются слабые связи (разветвления, нарушения регулярности строения цепи, кислородсодержащие группировки, гетероатомы и т. д.), причем энергия активации этого процесса совпадает с энергией активации механодеструкции [162]. Следовательно, прочность полимеров определяется слабыми связями. Кстати, подобный вывод согласуется со статистической теорией слабого звена [256]. [c.138]

    Сопоставление механических свойств полимеров с их структурой показало, что большое влияние на прочность оказывают регулярность структуры и характер надмолекулярных образований. При получении полимеров из диенов на прочность влияет, например, соотношение и регулярность расположения в цепных молекулах звеньев, присоединенных в положениях 1,2 и 1,4. Для таких полимеров, как полипропилен, большое значение имеет расположение заместителей в основной цепи. Соотношение изотактической, синдиотактической и атактической фракций в полимере иногда оказывает даже более сильное влияние на прочность материала, чем изменение химического состава. Так, из изотактического полипропилена можно получать волокна, ха-рактеризующиеся разрушающим напряжением свыше 7UU МПа, в то время как атактический полипропилен вовсе не обладает волокнообразующими свойствами. [c.187]

    Изменение химического строения полиолефина заменой одного из атомов водорода повторяющегося звена группой СН3 (полипропилен) приводит к возрастанию и Гр и Г (рис. 46). Также отметим, что, например, у гетероцепного термопласта полиамида размягчение под нагрузкой происходит при 65-70 °С, а полное расплавление — при 230 °С, т. е. значение ДГдостигает 165 К. Есть все основания считать, что на величину АГ оказывают также влияние ММ и ММР. [c.128]

    Мы видели (см. разд. 7.2), что в высокоизотактичсском полипропилене, полученном с Ti U — А1(С2Н5)2С1 в качестве катализатора, редкие г-звенья, включенные в цепь случайным образом, входят в mrm-тетрады и что отношение ттг)-. тгт) равно 1 1 не наблюдается сигналов гг-триад. Таким образом, в соответствии с указанной выше классификацией эта каталитическая система вносит стерические ошибки прн росте цепи. Еще предстоит сделать детальные выводы из этих данных, но основной их смысл заключается в том, что с помощью ЯМР может быть получена подробная информация о механизме роста цепи. [c.183]

    В разд. 7.2 был описан [49] спектр полипропилена, который считался примерно на 98% изотактическим (хотя, как мы увидим, это утверждение носит спорный характер). Константы вицинального спин-спинового взаимодействия (см. табл. 7.1) ив этом случае, как для изотактического полистирола и изотактического полиизопропилакрилата, согласуются с константами для полимера с преимущественной спиральной (3]) конформацией. Для этого полимера найдено [49] характеристическое отношение 4,7 (в ди-фениловом эфире при 140°С, т. е. в 0-точке), тогда как согласно расчетам Флори и др. [7] оно должно было быть значительно выше. Теоретически рассчитанное значение характеристического отношения сильно зависит от выбора параметра со [7, 50—52]. Этот параметр определяет статистический вес конформаций, энергетически невыгодных из-за стерических взаимодействий второго порядка (в цепи изотактического винильного полимера стерические препятствия возникают главным образом в последовательностях ТООТ (см. разд. 9.3.1). При со—>-0 характеристическое отношение быстро растет до величины, намного превышающей 5—10, которую обычно получают для полимеров, считающихся высоко изотактическими. Если принять оценку 2% для содержания г-звеньев в изотактическом полипропилене (см. разд. 7.2), то из этого следует [49], что со для изотактического полипропилена составляет 0,05—0,2 в зависимости от степени отклонения О- и Т-конформаций от заторможенной конформации. Этому значению ю соответствует энергия взаимодействия 1,2—2,4 ккал/моль, скажем, в среднем - 2,0 ккал/моль, что близко к значению, рассчитанному Борисовой и Бирштейном по межатомным потенциальным функциям [53]. Флори, однако, утверждал [54], что слабый триплет при 8,8т в спектре на рис. 7.7 долл ен быть приписан не тгт-, а, возможно, ггг-тетрадам (см. ниже обсуждение для атактического полипропилена), и высказал, кроме того, предположение, что г-звенья, содержание которых существенно больше 2%, неразличимы из-за уширения пиков вследствие статистического многообразия соседних стереохимических последовательностей. Возможно, измерения с помощью протонного резонанса не смогут разрешить это разногласие, но тщательные измерения методом ЯМР (см. разд. 7.2), лучше на обогащенных образцах, по-видимому, могут привести к решению вопроса. [c.213]

    Можно заметить, что предположение о значительном числе г-звеньев в изотактическом полипропилене и вообще в изотактических винильных полимерах, не обнаруживаемых методом ЯМР (Флори и др. [7] Флори и Бальдешвилер [55] и Флори яр. [56]), вьгавало решительное возражение Натта и Коррадини [57], которые указывают на несовместимость данных рентгеновской дифракции и расчетов энергии с такой точкой зрения. [c.213]

    Стереоспецифичность хромокисных катализаторов при полимеризации а-олефинов проявляется в ограниченной степени. При полимеризации пропилена на обычном хромокисном катализаторе образуется смесь продуктов — от маслообразных до твердых, содержащих наряду с атактическим полипропиленом некоторое количество изотактической фракции с молекулярным весом до 5 10. В то же время при полимеризации диеновых углеводородов аналогичный катализатор (окись хрома на алюмосили-катном носителе) приводит к образованию высокоупорядоченных полимеров. По данным Долгонлоска и сотрудников, полибутадиен и полиизопрен, полученные под влиянием этого катализатора, построены целиком из звеньев 1,4-транс [63]. Стереоспецифичность катализатора иногда удается резко повысить с помощью промоторов. Так, высокая степень изотактичности полипропилена достигается при промотировании обычного хромокисного катализатора дибутилцинком. [c.435]

    Полиэтилен относится к кристаллическим полимерам строголинейного строения. Полипропилен относится к стереорегуляр-ным полимерам, характеризующимся определенным регулярным расположением замещающих групп во всех звеньях макромолекул относительно плоскости основной цепи. Стереорегулярностью называется регулярность положения в пространстве. Стереорегулярные полимеры получают методом стереоспецифи-ческой полимеризации. Катализаторы, обладающие способностью ориентировать мономерное звено относительно ранее присоединенных групп, называются стереоспецифическими. [c.87]

    В результате иревращениг , протекающих с частичным замещением, нарушается, как и в случае рассмотренных выше реакций присоединения, химич. однородность и регулярность расположения звеньев, а, следовательно, характер и тии надмолекулярных структур. Так, введение 10—15% связанного хлора в полиэтилен и полипропилен ириводит к получению трудно кристаллизуемых эластичных материалов, для к-рых характерно наличие дефектных сферолитов и ленточных образований, а при большом содержании хлора — фибриллярных структур. [c.135]

    Известны уже кристаллич. структуры ок. 200 полимеров, включая полиэтилен, полипропилен, нек-рые полиамиды и др. Кристаллографич. данные о структуре полимера, приводимые в литературе, включают в себя символ пространственной группы, характеризующей совокупность элементов симметрии, размеры элементарной ячейки, куда входят в общем случае длины трех осей и углы между ними, число мономерных единиц в элементарной ячейке, плотность кристаллитов и общая характеристика конформации макромолекулы (зиг-загооб])азная цепь или спираль с данным количеством звеньев на один оборот). [c.169]

    Термин С. п. преимущественно применяется к обозначению пространственного изомера винильных полимеров, однако возможно использование его и для полимеров, имеющих один атом в элементарном звене основной цени, напр, для полиалкилиденов [— HR—] , или три атома, напр, для полипропиленоксида [—СН — —СН (СНз)О —] . Для обозначения С.и. предложена приставка st, напр. si-[— Hg—СН (СН4)—] — синдиотактич, полипропилен. См. также Стереохимия. [c.205]

    В полимерах встречаются структуры, в к-рых сохраняется только двумерный или только одномерный порядок в распоможе5шп цепей и звеньев. Наиболее характерен случай, когда оси параллельны одна другой, но повороты отдельных макромолекул вокруг осей хаотичны. При этом центры цепей в плоскости, перпендикулярной осям макромолекул, образуют двумерную гексагональную решетку. Структурой такого тппа обладает атактический полиакрилонитрил и полипропилен после быстрой закалки. Такова же структура политетрафторэтилена и капрона прп высоких темп-рах. [c.595]

    В случае когда путем стереоспецифического синтеза необходимо получить регулярную структуру, корреляции подобного рода не могут быть представлены в такой простой форме. Ограничивая поворот вокруг связей в цепи, подвешенные боковые группы могут затруднять переориентацию молекул и замедлять процесс кристаллизации, даже если полимер состоит из коротких повторяющихся химических звеньев. Например, при сравнимых степенях переохлаждения изотактический полипропилен [105 кристаллизуется с заметно меньшей скоростью, чем полиэтилен [112] боковые метильные группы не только ограничивают гибкость молекул, но также заставляют их кристаллизоваться с образованием таких спиральных конформаций, когда эффективное повторяющееся звено или период идентичности в кристалле содержит три мономера. Кроме того, у таких полимеров обычно имеются в небольших концентрациях атактические и стереоблочные молекулы, и есть основание считать, что это является причиной дальнейшего уменьшения скорости кристаллизации. Сообщалось, например [65], что скорости кристаллизации двух образцов изотактического полистирола различались приблизительно в четыре раза. Образец, который кристаллизовался медленнее, обладал более низкой кристалличностью и считался менее стереорегулярным эта интерпретация кажется обоснованной с той точки зрения, что средний молекулярный вес исследовавшегося образца был ниже по сравнению с другим. Во многих случаях уменьшение среднего молекулярного веса стереорегулярного полимера приводит к небольшому увеличению скорости кристаллизации при любой температуре [134]. [c.413]


Смотреть страницы где упоминается термин Полипропилен звеньев: [c.105]    [c.113]    [c.76]    [c.366]    [c.7]    [c.21]    [c.554]    [c.25]    [c.302]    [c.534]    [c.257]   
Равнозвенность полимеров (1977) -- [ c.269 ]




ПОИСК





Смотрите так же термины и статьи:

Звенья

Полипропилен



© 2025 chem21.info Реклама на сайте