Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Релаксация механическая время релаксации

    Изучение диэлектрической релаксации блоксополимеров показывает, что если блоки достаточно протяженны (превышают по длине кинетический сегмент), то такие системы ведут себя как механические смеси соответствующих гомополимеров. Каждая из составляющих проявляет свои диэлектрические свойства независимо друг от друга, что говорит о большей роли близкодействия по сравнению с дальнодействием в развитии релаксационных процессов. Роль близкодействия демонстрируют данные по исследованию температурных зависимостей фактора потерь растворов статистического и блоксополимера метилметакрилата со стиролом в толуоле [119]. В случае статистических сополимеров изменение соотношения компонентов в цепи сдвигает область температурного положения т, е. изменяет времена релаксации дипольной [c.43]


    Явление механического стеклования обычно рассматривается при малых напряжениях и деформациях, когда структура полимера не изменяется. При больших напряжениях у полимеров возникают качественно новые явления — вынужденноэластическая деформация и разрушение. Большие напряжения влияют существенно и на время релаксации, а возникающие при этом деформации изменяют структуру полимера (ориентация и др.). Высокоэластическая деформация может наблюдаться и у твердых полимеров (аморфных и кристаллических), но при нагрузках, превышающих некоторый предел, — так называемый предел вынужденной эластичности о . Ниже этого предела твердый полимер деформируется подобно обычному низкомолекулярному твердому телу, выше — развивается высокоэластическая деформация, называемая в этом случае вынужденноэластической. Вынужденная эластичность (холодное течение) появляется у кристаллических полимеров ниже температуры плавления, у аморфных ниже температуры стеклования и характеризуется обратимостью вынужденных больших деформаций. Обратимость деформации наблюдается при нагревании до температур, близких к температурам стеклования или плавления. Явление вынужденной эластичности существенно для понимания фрикционных свойств твердых полимеров, так как оно объясняет формирование фактической площади контакта твердого полимера под нагрузкой. [c.25]

    Релаксационный характер механических свойств и физических состояний полимеров. Специфика полимеров заключается не только в проявляющейся при определенных условиях способности к большим обратимым деформациям, но также в том, что их механические свойства носят резко выраженный релаксационный характер, т. е. сильно зависят от временной, а в случае периодических деформаций, от частотной шкалы. Эта. зависимость, как и высокоэластичность, является следствием длинноцепочечного строения полимеров и обусловлена необходимостью длительных промежутков времени (времен релаксации) для конформационной перестройки большого числа связанных ме.жду собой структурных элементов цепи при переходе ее из одного равновесного состояния в другое. Время релаксации является функцией температуры и за- [c.40]

    Релаксационный характер деформации полимеров оказывает влияние на многие механические, диэлектрические и другие свойства их. Так, при периодически действующей внешней силе деформация полимера в условиях, когда время релаксации значительно, будет в той или другой степени запаздывать по сравнению с действием силы. В результате этого при короткопериодических (высокочастотных) воздействиях полимер проявляет более высокий модуль упругости (точнее — модуль эластичности), а следовательно, и меньшую эластичность, чем при постоянно действующей силе. [c.581]


    Чисто эластическое деформирование механически полностью обратимо и не связано с разрывом цепи или ползучестью. Однако в реальном каучуке, как и в любом вязкоупругом твердом теле, энергетическое и энтропийное упругое деформирование представляет собой вязкое течение. Отсюда следуют релаксация напряжения при постоянной деформации, ползучесть при постоянной нагрузке и диссипация энергии при динамическом воздействии. Поэтому при моделировании макроскопических механических свойств вязкоупругих твердых тел даже в области деформации, где отсутствует сильная переориентация цепей, следует использовать упругие элементы с демпфированием, содержащие пружины (модуль G) и элементы, учитывающие потери в зависимости от скорости деформирования (демпфер, характеризующийся вязкостью ti). Простейшими моделями служат модель Максвелла с пружиной (G) и демпфером (ti), соединенными последовательно, и Фохта—Кельвина с пружиной (С) и демпфером, соединенными параллельно. В модели Максвелла время релаксации равно t = t]/G, а в модели Фохта—Кельвина то же самое время релаксации более точно называется временем запаздывания. В феноменологической теории вязкоупругости [55] механические свойства твердого тела описываются распределением основных вязко-упругих элементов, характеризуемых в основном временами релаксации т,-. Если известны спектры молекулярных времен релаксации Н(1пт), то с их помощью в принципе можно получить модули вязкоупругости [14Ь, 14d, 55]. Зависимый от времени релаксационный модуль сдвига G t) выражается [c.39]

    Локальные молекулярные напряжения частично можно устранить за счет проскальзывания цепей или распутывания молекулярных клубков. В термопластах времена релаксации, соответствующие вязкоупругим деформациям при комнатной температуре, имеют порядок от миллисекунд до минут, т. е. меньше длительности механического воздействия или сравнимы с ней. Тогда при быстром нагружении можно достичь высоких [c.197]

    Также широко исследовалось влияние температуры окружающей среды на скорость деградации материала [221—227]. С учетом сложной природы процесса деградации не следует ожидать простых кинетических уравнений. Из выражений (5.41) и (7.3) становится ясно, что размягчение матрицы (уменьшение о) и более низкая прочность эффективной связи и Т) частично компенсируют друг друга. Согласно данным, приведенным в обширном обзоре Казале [226], по-видимому, можно утверждать, что влияние температуры на твердость матрицы будет определяющим. Более низкие времена релаксации при более низких температурах вызывают увеличение механической деградации с уменьшением температуры (отрицательный температурный коэффициент общей механохимической реакции). [c.417]

    В реальных системах энтропия характеризует неустойчивые степени свободы, и именно к ним применимо понятие энтропии. В этом случае говорят о термодинамическом равновесии по неустойчивым степеням свободы. Однако по строго детерминистическим (механическим) степеням свободы система не находится в состоянии термодинамического равновесия. Более того, само понятие энтропии можно применять лишь к тем степеням свободы, по которым за время наблюдения за системой развивается неустойчивость. Устойчивые степени свободы не вносят вклад в статистический вес системы и не учитываются в ее общей энтропии. С их позиций твердые стенки сосуда с газом — гигантская термодинамическая флуктуация, время релаксации которой соответствует времени существования сосуда, т.е. времени, намного большему времени наблюдения за системой. [c.397]

    Процесс наблюдается только в присутствии в полимере активного наполнителя. Для полимеров, указанных в табл. I. 1, время релаксации -процесса при 20 °С равно величине порядка 1 с. Отчетливо наблюдается соответствующий максимум механических потерь. Считается, что этот максимум связан с изменением сегментальной подвижности в адсорбционном (граничном) слое полимера, поэтому энергия активации данного процесса выше, чем процесса стеклования. -Процесс происходит без перестройки в целом сажевой структурной пространственной сетки, так как частицы сажи проявляют подвижность при более высоких температурах и больших временах наблюдения. [c.63]

    Молекулы или структурные элементы любой материальной системы способны к перемещению друг относительно друга в результате теплового движения. Поэтому напряжение, которое создается в теле благодаря его деформации, может уменьшаться, рассасываться в результате ослабления внутренних сил. Такой процесс называется релаксацией, и способность тела к релаксации является важной структурно-механической характеристикой. Мерой ее является период релаксации г — время, в течение которого начальное напряжение уменьшается в е раз. Период релаксации жидкостей очень мал (для воды, например, 3 10" с) и возрастает с увеличением вязкости. Для твердых тел период релаксации велик. Для идеальных кристаллов процесс релаксации протекает бесконечно медленно. Одна и та же система молсет вести себя как жидкость (если длительность воздействия нагрузки i т) и как твердое тело (если t т). Например, лед при быстрых воздействиях ведет себя как хрупкое тело (т для кристаллов льда 13 ООО с), а при длительных — способен течь движение ледников подчиняется закономерностям, характерным для вязких жидкостей. Таким образом, между истинным твердым телом и жидкостью существует непрерывный ряд переходов, обусловленный различными внешними условиями. [c.428]


    В процессе утомления в каждом цикле деформации выделяется некоторое количество теплоты и, если теплоотвод затруднен, а подвод тепла за счет механической энергии велик, то разогрев может быть велик. Так, температура в автопокрышке летом при быстром движении автомобиля может превышать 100°С. Тепловыделение особенно велико, когда время релаксации полимера близко к продолжительности цикла, т. е. крите )пй 0= 11 близок к еди- [c.211]

    Таким образом, основные параметры, определяющие структурно-механические свойства полимерных материалов (модуль эластичности, пластическая вязкость, время релаксации и др.)  [c.328]

    Время релаксации — важнейшая характеристика механических свойств полимера. Оно может изменяться в очень широких пределах, например для каучукообразных полимеров от 10" сек до многих месяцев. Время релаксации увеличивается с повышением молекулярного веса полимера и уменьшается с ростом температуры и давления. Руководствуясь этими соображениями, можно выбрать оптимальный режим формования изделий из пластмасс. [c.400]

    Принципиальные различия в механических свойствах твердых тел и жидкостей показаны Максвеллом почти сто лет назад. В основе этого представления лежит явление релаксации — постепенного рассеивания упругой энергии, запасенной в деформированном теле путем перехода ее в тепло. Процессы релаксации неразрывно связаны с хаотическим тепловым движением молекул тела. Как и тепловое движение, релаксация является универсальным самопроизвольным процессом, протекающим во всех реальных телах без внешнего воздействия. Период релаксации, или время, в течение которого упругое напряжение спадает на определенную величину, отличен у разных тел. Так, у твердых тел по сравнению с обычным временем наблюдения или опыта он очень велик, а у жидкостей, наоборот, мал. [c.8]

    Остановимся на вопросе о природе механического стеклования. Реальные жидкости являются упруговязкими максвелловскими телами, хотя часто при обычных условиях опыта низкомолекулярные жидкости по свойствам близки к ньютоновским, так как их упругость замаскирована большими вязкими деформациями. При быстрых воздействиях любая жидкость ведет себя как упругое тело, так как с уменьшением to — времени действия или периода колебаний силы — жидкость постепенно теряет способность течь и переходит в упругое состояние. Этот переход из одного деформационного состояния в другое происходит примерно при условии т, где т — по-прежнему время релаксации. [c.225]

    Рассматривая молекулярно-кинетические характеристики элементов структурной организации и их релаксационные механизмы, Г. М. Бартенев с сотр. развивает концепцию релаксационной спектроскопии [1, 15]. В релаксационном спектре полимера он выделяет тонкую структуру и связывает ее с физическими переходами в материале под воздействием механического импульса той или иной частоты или длительности. Интересно, что характерное время релаксации так называемого Я-процесса перестройки надмолекулярных структур и ф-процесса перегруппировки частиц коллоид- [c.75]

    Многочисленные измерения показали [1—8], что значения и Тз (механическое и диэлектрическое время релаксации) совпадают и, следовательно, связаны общей физической основой. Известны также два выражения, учитывающие температурную зависимость т и Тз Аррениуса  [c.75]

    Важнейшим параметром флуктуацнонной сетки зацеплений является среднее время жизни узла, или, что то же самое, время релаксации при механическом воздействии на элементы, образующие узел. Если это время неограниченно велико и сравнимо со временем существования химических связей, то напряжения в сетке не релак-сируют, если не считать механизма химической релаксации из-за разрыва химических связей. Тогда полимер способен неограниченно долго сохранять деформации или напряжения. Этот случай отвечает резинам или вообще полимерам с трехмерным структурным каркасом. Если время релаксации очень мало, во всяком случае существенно меньше, чем продолжительность наблюдения, то структурные элементы, с точки зрения наблюдателя, оказываются совершенно не связанными, они свободно проскальзывают в узлах, и система ведет себя как типичная жидкость. Во всех промежуточных случаях разыгрывается широкий комплекс релаксационных явлений, связанный с существованием набора (спектра) времен релаксации движений полимерной цепи. При этом весь спектр упрощенно можно разделить на две части — область медленных релаксационных процессов, завершающихся медленнее, чем распадаются узлы сетки флуктуационных связей, и область быстрых релаксационных процессов, которые осуществляются быстрее, чем происходит релаксация в структурных узлах сетки. По отношению к первой группе времен релаксации факт существования сетки является определяющим для поведения системы, по отношению ко второй группе он не сущестаён. [c.274]

    Действительно, в случае полимеров и их концентрированных растворов чрезвычайно трудно получить независимость вязкости от давления, т. е. пуазейлевское течение. Отсюда следует, что у каучукоподобных полимеров при обычных скоростях механических воздействий обязательно имеется время релаксации, большее времени воздействия или наблюдения. Поэтому практически всегда полимеры находятся в неравновесном состоянии. Именно это и обусловливает изменение свойств во врели отдыха, связанное с медленным приближением к соответствующему равновесному состоянию, т. е. с наличием релаксационных процессов, характеризуемых большими временами релаксации. Здесь следует заметить, что одно только наличие широкого набора времен релаксации не определяет еще полностью характер релаксационных процессов. Могут быть случаи, когда времена релаксации распределены по различным значениям не равномерно, а разделяются на группы. Простейшим случаем будет, например, существование двух групп времен релаксации — относительно малых и относительно больших времен релаксации. Такой случай может наблюдаться в случае полимеров со сравнительно жесткими цепными молекулами. В этом случае перемещающиеся участки молекул должны быть большими, т. е. соизмеримыми со всей цепью. Соответственно, связанная с этими перемещениями группа релаксационных процессов будет протекать весьма медленно. [c.28]

    Некоторые методы переработки полимеров"рассчитаны на то, что формование надмолекулярных структур (структурирование) будет происходить непосредственно в самом процессе переработки. Примерами таких технологических процессов являются формование волокна и экструзионно-выдувное формование с предварительной вытяжкой. В первом примере волокно после фильерного формования для получения нужной структуры должно быть подвергнуто холодной вытяжке (см. разд. 3.7). Во втором примере характер ое время релаксации полимера при температуре формования должно быть достаточно велико, для того чтобы в материале до начала ох. лаждения сохранилась большая часть созданной в процессе формования двухосной ориентации. Таким свойством обладают аморфные полимеры при температуре, несколько превышающей температуру стеклования. Можно назвать эту способность структурируемостью она зависит как от реологических характеристик расплава полимера, так и от его механических свойств при Тд < Т < Г (. [c.615]

    Температуры структурного стеклования Тс и механического стеклования Тм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость lg от температуры для полимера 11риведена на рис. П. 11. Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость Igf слабо выражена, как и у любого твердого тела вообще. Выше Гс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного (жатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль Еж в высокоэластическом состоянии. [c.96]

    Процессы релаксации оказывают существенное влияние на самые разные физические свойства полимеров. При этом различие надмолекулярной организации полимеров наиболее существенно сказывается на характере изменения их вязкоупругих механических свойств. Существование в полимерах надмолекулярных структур разного вида и степени соверщенства определяет сложный характер протекания релаксационных процессов, что связано с неоднородностью молекулярной упорядоченности. Процессы молекулярной подвижности в неупорядоченной (аморфной) части полимера характеризуются меньшими временами и более узким релаксационным спектром, тогда как для кристаллической части они затруднены (велико время релаксации и широк спектр). На границе аморфных и кристаллических областей и в местах дефектов структуры соответствующие релаксационные характеристики имеют промежуточное значение. [c.138]

    Сравнение условий сужения линии ЯМР с проявлением структурного стеклования при охлаждении полимера со стандартной скоростью 3 К/мин показывает, что 7 с нельзя отолсдествлять с т сун(, которая может быть сопоставлена с температурой стеклования полимеров в периодических силовых полях. При этом времени корреляции Тс может соответствовать время релаксации полимеров во внешнем поле. В ряде случаев обнаружено совпадение Тсут с температурой механического стеклования, измеренной ультразвуковым [c.223]

    Аналогия влияния температуры и частоты (или, что то же, времени) действия силы на механические свойства полимера может быть полезно использована для изучения свойств полимера. Так, из (9.37) видно, что температура сильно влияет на время релаксации, а следовательно, критерий О силько зависит от температуры. [c.137]

    Итак, находясь в эластическом состоянии, полимеры обладают выраженной зависимостью механических свойств от продолжительности силового воздействия. Чем дольше действует сила, тем больше деформация, тем меньше модуль, тем мягче полимер. Таким образом, механические свойства зависят как от химической природы полимера, так и от продолжительности действия силы, что определяется кр терием D = xlt. Чем больше критерий О, тем ближе полимер по свойствам к твердому телу. В связи с тем, что свойства полимера определяются критерием О, а величины, в него входящие, т и / можно менять изменением либо температуры, либо частоты действия силы, следует сделать вывод, что свойства полимера эффективно меи.чются с изменением температуры и частоты (времени) действия силы. Отсюда нртщип температурно-временной аналогии, Критерий В упрощенно характеризует полимер, поскольку последнему присуще не одно время релаксации, а набор времен или спектр времен релаксации. [c.141]

    Таким образом, основные параметры, опоеделяющие структурно-механические свойства полимерных материалов (модуль эластичности, пластическая вязкость, время релаксации и другие параметры), являются функциями строения полимеров. Изучив [c.310]

    Таким образом, основные параметры, определяющие структурно-механические свойства полимерных материалов (модуль эластичности, пластическая вязкость, время релаксации и другие параметры), являются функциями строения полимеров. Изучив природу этой связи, химик, подобно архитектору, может в настоящее время, скрепляя или раздвигая цепи, вводя полярные группы, заместители больщих размеров и т. д., создавать новые материалы с требуемыми свойствами, заранее заданными, сообразно с целью их практического применения. Это — основная задача фиэико-хи мической механики полимеров. [c.298]

    Представляло интерес рассмотреть основные факторы, действующие на изоляцию трубопроводов и создающие в ней сложное напряженное состояние с точки зрения возн-икновения в изоляции нормальных и касательных напряжений (рис. 32, 33). Для более плотного прилегания изоляции к поверхности трубопровода изоляционные ленты и обертки наносят машинами с определенным натяжением. Для лент ПИЛ и ПВХ-СЛ при температуре от 17 до 25 °С оптимальным является напряжение растяжения около 4 МПа. Вследствие явления релаксации это напряжение постепенно уменьшается. Представляло интерес оценить кинетику протекания данного процесса во времени. Временная зависимость параметров механических свойств полимера выражается широким набором ( спектром ) времен релаксации. В простейшем случае для характеристики скорости релаксационного процесса можно использовать среднее время релаксации. Этот процесс протекает при практически постоянной деформации [c.95]

    Однако влияние этих факторов на скорость релаксационных процессов зависит от продолжительности действия силы. Как уже упоминалось, вероятность проявления гибкости макромолекулой зависит от соотношения времени действия силы и времени, необходимого лля изменения конформации. Последнее есть не что иное, как время релаксации т, поэтому можно считать что реакция полимера на механическое воздействие определяется соотношением между временем релаксации и временем деформации x ft (рис. 4.14). Сели т //<С1, то система очень быстро рслакснрует и приходит в равновесное состояние Это устовиь может быть реализовано илн при Очень малых значениях -г, или прн очень высоких значениях / Для поли.меров этот случаи имеет место при высоких температурах (т снижается) ити очень низких скоростях воздействия. При т / 3>1 репаксация протекает очень медленно, что может быть следствием или высоких значении х (система малоподвижна [c.264]

    Здесь есть далеко идущая аналогия между диэлектрическими н механическими потерями. Время релаксации дипольной ориентации, а также дипольный момент макромолекулы можно определить методом электрического двойного лу-Чепреаомления, основанным иа ориентации асимметрических полярных молекул под влиянием переменного электрического тока. [c.565]

    Как показывает опыт, механическое растягивание полимеров вызывает смещений максимума диполь-но-эластических потерь, не влияя на дипольно-ра-дикальные. Ориентация, имеющая место при этом, приводит к механическому стеклованию (с. 465), цепи из-за усиления межмолекулярного действия становятся более жесткими, и затрудняется движение сегментов. Возросшее в результате этих процессов время релаксации находит свое отражение в указанном смещении максимума дипольно-эластических потерь. Так как ди-польно-радикальные потери не связаны с сегментальным движением, ориентация не влияет на них (рис. 183). [c.567]

    В деформировании реального полимера существенную роль наряду со смещением структурных элементов играют повороты этих элементов относительно, друг друга это обстоятельство должно быть учтено при рассмютрении механической модели полимерного тела. Так как учет поворотов структурных элементов, особенно при больших деформациях, приводит к нелинейным явлениям, то ясно, что даже рассматривая модель в виде двух простых элементов, соединенных под определенным углом друг к другу, мы получаем систему нелинейных дифференциальных уравнений, решение которой приведет к спектру времен релаксации. При этом в спектре будут присутствовать как времена релаксации, присущие элементам модели, так и времена, которые появляются из-за нелинейности уравнений и которые будут зависеть либо от деформации (если рассматривается релаксация напряжения), либо от напряжения (если рассматривается ползучесть). [c.153]

    Все механические и электрические процессы в полимера.х определяются соответствующими временами релаксации. Температурная зависимость механических и электрических свойств полимеров является следствием существенного влияния температуры на времена релаксации. Виллиаме показал, что температурная зависимость механических и электрических свойств [c.80]


Смотреть страницы где упоминается термин Релаксация механическая время релаксации: [c.397]    [c.32]    [c.397]    [c.584]    [c.76]    [c.488]    [c.19]    [c.310]    [c.60]    [c.273]    [c.262]    [c.292]    [c.303]    [c.338]    [c.125]    [c.227]    [c.228]   
Проблемы физики и химии твердого состояния органических соединений (1968) -- [ c.332 ]




ПОИСК





Смотрите так же термины и статьи:

Релаксация время

Релаксация механическая

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте