Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Время релаксации и электрические свойства

    Дипольная (ориентационная) поляризация имеет место в веществах с молекулами, обладающими постоянным ди-нольным моментом даже в отсутствие электрического поля полярные. молекулы) (рис. 2.2). Наложение электрического поля вызывает частичное ориентирование диполей, что является причиной поляризации. Поворот диполей в направление поля требует преодоления некоторого сопротивления, поэтому дипольная поляризация связана с потерями энергии на выделение тепла. Процесс установления поляризации этого вида имеет апериодический характер по времени, и, по аналогии с подобными свойствами напряжений и деформаций в механике, его называют релаксацией. Время релаксации определяется как постоянная апериодического процесса, т.е. продолжительность изменения поляризации в е раз после внезапного увеличения [c.415]


    Ядра, обладающие магнитным моментом большим, чем /г — 1, /2 И Т. д., имеют, кроме магнитного, электрический квадрупольный момент. Время релаксации таких ядер слишком мало для того, чтобы можно было получить узкие сигналы. Правда, для них возможно применение другого варианта радиоспектроскопии — ядерного квадрупольного резонанса (ЯКР). Для этого вещество переводят в кристаллическое состояние (если надо, охлаждая жидким азотом) и для полученных сигналов определяют только их резонансную частоту. Это дает информацию и о химическом окружении квадрупольного атома, и о свойствах кристаллической решетки. [c.219]

    Прекращение течения жидкости после сжатия (т. е. во время релаксации) обусловлено ее электромеханическими свойствами [22]. При сжатии ткани возникает разность электрических потенциалов между поверхностью и более глубокими зонами. Эта разность потенциалов приписывается потоку жидкости и тому, что он увлекает противоионы в сторону в целом отрицательно заряженной матрицы [22]. Таким образом, возникающий потенциал является по существу потенциалом потока. Показано, что падение этого потенциала после сжатия происходит по кривой, точно параллельной кривой рассасывания нагрузки во времени [22]. [c.409]

    Большой экспериментальный материал по молекулярной гидродинамике и оптике растворов полимеров позволяет разделять полимеры на гибкоцепные и жесткоцепные в зависимости от проявляемых ими гидродинамических и электрооптических свойств в разбавленных растворах [6, 7]. При этом основным критерием для такого разделения является величина равновесной жесткости, молекулярных цепей, которая характеризует среднюю конформацию макромолекулы — ее размеры и геометрическую форму, принимаемые в растворе в равновесном состоянии. Количественной мерой равновесной жесткости (гибкости) макромолекул может служить длина статистического сегмента Куна А [8] или числс мономерных звеньев в сегменте 5=Л/Я (где К — длина мономерного звена в направлении основной цепи), а также персистентная длина а=/4/2 червеобразной цепи [9], моделирующей макромолекулу. Для подавляющего большинства гибкоцепных полимеров-длина сегмента Куна лежит в интервале 15—30 А [10, 11]. Напротив, у жесткоцепных полимеров А может составлять сотни и тысячи ангстрем [12]. Многие важнейшие свойства полимерных материалов (такие, как возможность кристаллизации, температура стеклования, релаксация механических и электрических свойств и ряд других) существенно зависят не только от равновесной, но также и от кинетической жесткости полимерных молекул. Понятие кинетической гибкости не столь универсально, как равновесной. Кинетическая гибкость, характеризуя кинетику деформации и ориентацию макромолекулы под действием внешнего поля, определяется характером и продолжительностью действия приложенного поля и, следовательно, рассматриваемым физическим процессом. Сведения о кинетической гибкости получают путем исследования скорости протекания процессов, в которых макромолекула переходит из одной конформации в другую. Поэтому мерой кинетической жесткости макромолекулы может служить время, необходимое для изменения конформации цепи под дей ствием внешнего воздействия. Вопрос о соотношении равновесной и кинетической гибкости полимерной цепи является фундаментальной проблемой молекулярной физики полимеров. Количественные сведения о равновесной и кинетической (проявляющейся под действием электрического поля) гибкости цепных молекул могут быть получены при исследовании их электрооптических свойств в разбавленных растворах. [c.35]


    Релаксация и время релаксации. Предположим, что какая-либо макроскопическая система находится в термодинамически неравновесном состоянии. Если такую систему предоставить самой себе, т. е. не менять внешние условия ее существования — температуру, давление, напряженность внешнего электрического поля и т. п., то следуя второму закону термодинамики, система будет самопроизвольно стремиться вернуться в состояние термодинамического равновесия, которое соответствует заданным внешним условиям. Процесс самопроизвольного перехода неравновесной макроскопической системы в состояние термодинамического равновесия называют релаксацией. Пусть х — какое-либо макроскопическое свойство системы, изменяющееся в ходе релаксации, и лгр — величина х в состоянии термодинамического равновесия. В ходе релаксации величина х стремится принять значение, равное [c.33]

    Особенности строения макромолекул и многообразие форм молекулярной подвижности в полимерах приводит к набору релаксационных процессов, каждый из которых связан с тепловым движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков макромолекулы, например сегментов, а тем более с подвижностью элементов надмолекулярной структуры, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макромолекул обеспечивают более быстрые релаксационные процессы. В связи с широкой шкалой времен релаксации большая часть физических свойств полимеров имеет релаксационную природу. Так, релаксационный характер носят все механические свойства, а также электрические (диэлектрическая проницаемость, электропроводность), магнитные (магнитная восприимчивость и проницаемость). [c.4]

    Известно, что все механические, электрические и другие релаксационные процессы в полимерах определяются соответствующими временами релаксации. Температурная зависимость механических и электрических свойств полимеров является следствием существенного влияния температуры на времена релаксации. При понижении температуры происходит столь значительное увеличение времени релаксации, что время воздействия становится малым по сравнению с ним. Это означает, что релаксационные процессы с понижением температуры настолько замедляются, что практически их уже нельзя наблюдать. Напротив, при высоких температурах релаксация происходит столь быстро, что рассматриваемая физическая величина [c.18]

    Если динамические измерения проводят при высоких частотах, электрических или механических, может значительно смещаться причем чем больше частота, тем выше температура перехода [36]. Широко распространено представ- чение о том, что изменения в свойствах полимера, когда температура проходит через Т,, определяются появлением определенного движения молекул, обусловленного некоторыми вращательными степенями свободы сегментов полимерной цепи [2, 35]. Хотя нет непосредственных данных по этому вопросу, однако весьма вероятно, что такая молекулярная интерпретация вполне правильна. При обычных временах измерения (например, удельного объема) времена релаксации в полимере соизмеримы со временем экспериментальных наблюдений но при больших частотах необходимы значительно более высокие температуры для увеличения скорости движения молекул и сокращения времени релаксации. [c.298]

    Таким образом, теоретическое рассмотрение физической картины электроразрядных явлений позволяет сформулировать требования для электрического разряда, наиболее эффективного для изменения свойств дисперсных систем. Прежде всего он должен обладать малой мощностью при длительности импульса, превышающей время релаксации ионной сферы дисперсных частиц. Такие импульсы могут быть обеспечены полуволнами Т (в м-с), генерируемыми синхронными машинами [c.42]

    Если в полимерном образце создать электрическое поле, то дипольные моменты отдельных кинетических элементов или атомных групп будут стремиться ориентироваться в этом поле. Такой процесс ориентации и представляет собой поляризацию полимерного диэлектрика. Если убрать внешнее электрическое поле, то вследствие теплового движения отдельных кинетических элементов через некоторое время поляризация полимерного образца уменьшится до нуля и система вернется в прежнее равновесное (или квазиравновесное) состояние. Такой процесс перехода к равновесию называется диэлектрической релаксацией и характеризуется временем релаксации т . Если к полимерному диэлектрику приложить переменное электрическое напряжение, то очевидно, что диэлектрические свойства полимера будут зависеть от соотношения между частотой приложенного электрического напряжения О) и временем диэлектрической релаксации т,. [c.256]


    Для ПОЛНОГО исследования диэлектрических свойств растворов необходим широкий диапазон частот от О до 10 Гц, который невозможно охватить единым методом измерения е и е". Каждый частотный диапазон требует своей измерительной техники. Так, для определения диэлектрической проницаемости в статическом электрическом поле (/ = 0) или при постоянном токе используются установки на основе метода силового электростатического взаимодействия [19]. В диапазоне частот/< 10 Гц применяются преимущественно мостовые измерительные схемы, а при 10 колебательными контурами (резонансные и генераторные методы). Для измерений в сантиметровом и миллиметровом СВЧ-диапазоне радиоволн обычно применяются методы, основанные на использовании резонансных линий и объемных резонаторов [21, 78, 79], методы, использующие волны в свободном пространстве. В последние годы все более широкое применение находят методы временной диэлектрической спектроскопии [80], позволяющие производить измерения в диапазоне 10 средств современной диэлектрометрии и ограниченности настоящего издания в данном разделе будут рассмотрены лишь те из них, которые наиболее широко используются в практике измерений дипольных моментов молекул и в исследовании межмолекулярных взаимодействий в растворах. К ним относятся работающие на фиксированной частоте диэлектрометрические установки (диэлькометры) в ВЧ-диапазоне (/= 10 - 10 Гц), а также резонаторные средства измерений в СВЧ- диапазоне сантиметровых волн с/ 10 ° Гц. Первые из них фактически являются измерителями статической диэлектрической проницаемости, вторые измеряют е и е" в области аномальной дисперсии и позволяют наряду с ц определять времена диэлектрической релаксации молекул. [c.172]

    Если снять внешнее электрическое поле, приложенное к полимерному диэлектрику, то вследствие теплового движения через некоторое время поляризация полимерного образца исчезает и он возвращается в прежнее равновесное состояние. Такой процесс перехода системы в равновесное состояние называется диэлектрической релаксацией и характеризуется временем релаксации т. Если к полимерному диэлектрику приложить переменное электрическое поле, то очевидно, что диэлектрические свойства полимера (в том числе и диэлектрическая проницаемость) будут зависеть от соотношения между частотой изменения приложенного внешнего электрического поля ш и временем диэлектрической релаксации т. [c.172]

    В тех случаях, когда переход в возбужденное состояние значительно изменяет электрический дипольный момент молекулы по сравнению с дипольным моментом в состоянии б о, поле диполей окружающей среды также оказывается неравновесным. Диполи среды за время жизни молекулы-хромофора в возбужденном состоянии могут успеть переориентироваться в соответствии с новым полем диполя возбужденного хромофора. Очевидно, релаксация диполей лимитируется динамическими свойствами среды. Ясно, что если время дипольной релаксации среды Хр [c.268]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Электрические свойства растворов полиэлектролитов. Электрокинетический потенциал, как известно, с большей или меньшей точностью может быть подсчитан по уравнениям Гельмгольца — Смолуховского или Генри только для коллоидных частиц, размер которых значительно превосходит толщину двойного электрического слоя. Для частиц же, диаметр которых мал по сравнению с толщиной двойного электрического слоя, при расчете электрокинетического потенциала следует вводить ряд поправок и в первую очередь поправку на электрическую релаксацию. Кроме того, если макромолекулы находятся в растворе в виде рыхлого клубка, то должно быть принято во внимание движение среды через петли свернутой цепи. К сожалению, до сих пор теория электрофореза для свернутых в клубок макромолекул отсутствует. Поэтому в настоящее время распространено определение электрофоретической подвижности не отдельных макромолекул, а макромолекул, адсорбированных на достаточно крупных частицах кварца или угля или на капельках масла. В этом случае электрокинетический потенциал легко определить с помощью микроэлектрофоретических методов. Как показали многочисленные исследования, при достаточной толщине слоя полимера, покрывающего частицу, подобный прием дает вполне воспроизводимые результаты. [c.477]

    Все механические и электрические процессы в полимера.х определяются соответствующими временами релаксации. Температурная зависимость механических и электрических свойств полимеров является следствием существенного влияния температуры на времена релаксации. Виллиаме показал, что температурная зависимость механических и электрических свойств [c.80]

    Времена релаксаци вычислялись и.я экспериментальных измерений различных механических и электрических свойств. [c.80]

    Двойное лучепреломление, возникающее при действии электрического поля на высокомолекулярный раствор, является результатом ориентации диполей (см. раздел 6в). Используя синусоидально изменяющееся поле или кратковременные прямоугольные электрические импульсы, можно измерять время релаксации, связанное с этим процессом. Полученная величина может и в этом случае быть связана с коэффициентом вращательной диффузии. При использовании прямоугольного импульса можно наблюдать два независимых свойства нарастание двойного лучепреломления, вызываемое наложением поля, и спад двойного лучепреломления после окончания действия импульса. Согласно Tинoкo , сравнение этих двух явлений позволяет однозначно определить время релаксации, обусловленное вращательной диффузией, так как эффекты, вызываемые постоянными и флюктуирующими дипольными моментами, могут быть в принципе, разделены. Теория и измерение электрического двойного лучепреломления полно обсуждены Бепуа и Тиноко . Три коэффициента вращательной диффузии, полученные этим методом, включены в табл. 29. [c.510]

    При введении в молекулу полиорганосилоксана полярных групп вследствие увеличения межмолекулярного взаимодействия изменяются физические свойства, а именно растут плотность, вязкость и диэлектрическая проницаемость, повышается также температура кипения и область релаксационных явлений в электрическом поле перемещается в сторону более высоких температур (времена релаксации возрастают). Это сказывается и на повышении механических свойств полимеров, их адгезии, стойкости к действию растворителей. Так, при введении фторорганических или нитрильных групп в каучуки повышается их стойкость к действию растворителей. [c.13]

    Верещагин с сотрудниками [87—92] исследовали влияние давления на температуру плавления, параметры кристаллической структуры, полиморфные превращения, энергетический спектр и гальваномагнитные свойства графита. Лихтер и Кечин [91] установили, что закон рассеяния носителей заряда в сжатом графите (10 ба/7) не меняется. Однако, как показано в другой работе [90], общее число носителей в графите при 10 бар увеличивается на 23%. При этом давлении увеличивается также на 3% время релаксации. Указанные изменения обусловливают снижение электрического сопротивления сжатого графита. [c.208]

    Под действием электрического поля происходит ориентация сегментов и полярных групп макромолекул, что вызывает изменение структуры и свойств полимеров. Так, например, увеличение рентгеновской степени кристалличности полиамида наблюдается после обработки его в электрических полях напряженностью 50-500 кВ/см [57]. Показано, что изменения в ИК-спектрах ПЭТР после поляризации обусловлены появлением ориентированных групп С=0 [14], Перестройка структуры полимеров, происходящая при поляризации под воздействием электрических полей, обусловливает повышение прочностных и ухудшение деформаююнвых характеристик полимеров. Например, в поляризованных пленках из поликарбоната и ПЭТФ разрушающее напряжение при растяжении возрастает на 15-50%, а время релаксации механических напряжений - в несколько раз [14], Аналогичные результаты получены для пленок на основе полярных полимеров - полиамида и политрифторхлорэтилена [57], [c.64]

    Однако для полимеров общая сложность молекулы и большое количество возможных видов колебаний, которые допускаются, как только начинаемся вращение около связей углерод—углерод, обусловливают размытость перехода теплоемкости. Можно говорить о распределении А -точек переходов, так как этих точек так много и онгт расположены так близко друг к другу, что дают сплошное поглощение внешней энергии, как только достигается температура перехода. Это согласуется с распределением времени релаксации, которое принимается при расчете электрических и механических свойств полимеров [101]. Больше того, если максимум фактора потерь для полярных полимеров много меньше, чем эго вытекает из теории Дебая для диэлектриков, имеющих одно время релаксации, то и аномалия удельной теплоемкости также довольно мала по сравнению с аномалией удельной теп- [c.22]

    СИМОЙ л<>лекулой. Но в полимерах эти диполи соединены химическими валентными связями и свобода вращения в углеродной цепи обусловливает появление многих степеней свободы у каждой макромолекулы. Вращательная диффузия, при помощи которой молекула приближается к равновесию с полем и релаксирует, характеризуется многими временами релаксации, целым рядом для каждой из многих возможных конфигураций [18], принимаемых молекулой, что в свою очередь определяется ориентацией различных сегментов гибкой цепной молекулы. Другими словами, полимерная система ведет себя, по существу, подобно смеси различных молекул, где каждая имеет свое время релаксации. Влияние этого факта на электрические свойства сказывается в расширении частотной области дисперсии таким образом, наблюденная кривая коэфициента потерь является суммой большого числа кривых потерь, из которых каждая характеризует отдельный механизм релаксации в молекуле. Имеется так много возможных времен релаксации, что для всех практических целей ряд точек может быть заменен непрерывным распределением. Такое представление о распределении времен релаксации объясняет вид кривых е —log / и е"—log/для полиме1Х>в кривая распределения может быть получена из экспериментальных данных [jl5j. Она оказывается очень широкой для полимеров, подобных поливинилхлориду, значительно шире, например, чем кривая распределения Гаусса. [c.278]

    Вязкость систем поливинилхлорид — пластификатор при низком содержании пластификатора очень велика. Только при высоком содержании пластификатора и связанным с этим снижением внутренней вязкости системы время релаксации становится настолько мало, что сегменты макромолекул полярного полимера могут ориентироваться в электрическом поле. С повышением температуры вязкость системы уменьшается и для того же времени релаксации, которое устанавливается при данной частоте, требуется меньшее количество пластификатора. Методы определения вну-треннней вязкости системы, основанные на измерении диэлектрических показателей, весьма чувствительны, поскольку диэлектрические свойства очень сильно изменяются при незначительном изменении концентрации пластификатора. При различном содержании пластификатора в пластических массах б достигает максимального значения, зависящего от температуры и частоты. Так как максимальные значения б обусловлены строением пластификаторов, возникает еще одна возможность сравнения действия пластификаторов. Для этой цели было предложено уравнение  [c.147]

    Как мы видели, нелинейные свойства возбудимых мембран отчетливо проявляются в генерации и распространении нервного импульса (гл. И). Рассмотрим периодические изменения состояния мембран, установленные в ряде опытов. Так, наблюдались колебания электрического потенциала в очень тонких двойных полиэтиленовых мембранах. Двойной слой состоял из поликислоты (а) и полиоснования ( ). Таким образом, в нем имелись три зоны — отрицательно заряженная а, нейтральная и положительно заряженная Ь (рис. 16.13). Мембрана помещалась в 0,15 М раствор Na l. При наложении отрицательного потенциала со стороны полиоснования наблюдались периодические импульсы (спайки) и при некотором критическом значении тока незатухающие колебания, сохраняющиеся часами. Ток через мембрану состоит из перемещения катионов сквозь зону а и анионов сквозь зону Ь. В результате в центральной нейтральной зоне накапливается Na l. Возрастание осмотического давления приводит к появлению потока растворителя в мембрану и к возрастанию в ней гидростатического давления. В то же время увеличение концентрации соли вызывает сокращение молекул полиэлектролита, что также увеличивает давление. Когда это увеличение превзойдет осмотическое давление, поток растворителя изменит знак, и концентрация соли внутри мембраны увеличится еще больше. Возникнет градиент концентрации, соль покинет мембрану и будет вытекать после того, как мембрана достигнет максимального сокращения. Затем наступает релаксация, возвращение мембраны в исходное состояние, и процесс начинается снова. [c.525]

    Исследования времени диэлектрической релаксации и других свойств, упомянутых выше и зависящих от скоростей молекулярных движений, дают достаточно точные значения скоростей молекулярной переориентации и трансляции в жидкой воде. Общий метод таких исследований состоит в том, что прикладывается напряжение к жидкой воде и измеряется время, необходимое для того, чтобы жидкость пришла в равновесное состояние в присутствии напряжения, или в том, что напряжение снимается и измеряется время, необходимое жидкости для возвращения в исходное состояние равновесия. Для диэлектрической релаксации напряжением является нриложенное электрическое иоле, для самодиффузии — градиент концентрации изотопа, для вязкости — напряжение сдвига и т. д. Однако подобные исследования свойств воды, зависящих от скоростей молекулярных движений, не дают детальной картины движений молекул воды, и поэтому представляется вероятным, что прежде чем получить такую картину, необходимо дальнейшее развитие фундаментальной теории неравновесных процессов. [c.207]

    Измерения поверхностной проводимости можно осуществить несколькими способами. 1) Одним из таких способов является измерение общей проводимости в монокристаллах или поликристаллических образцах, состоящих из небольших зерен. Толщина слоя пространственного заряда в этих зернах относительно велика (СиаО) [17] . 2) В тех случаях, когда проводимость поверхностного слоя значительно больше, чем в объеме, т. е. если в объеме кристалл является фактически изолятором (СигО), то можно использовать кристаллы обычных размеров [18]. 3) Использование электрического поля между кристаллом и металлическим плоским электродом, помещенным вблизи поверхности кристалла, изменяет свойства поверхностного слоя как в области пространственного заряда, так и в адсорбционном слое. Исследуя влияние электрических полей различных частот (постоянный или переменный ток от 0,01 гц до высоких частот) на проводимость, можно обнаружить особые состояния — ловушки с большими и малыми временами релаксации (так называемые медленные и быстрые состояния). Теория низкочастотных измерений изложена в работе Моррисона [19], теория высокочастотных эффектов приведена в работе Гаррета [20[ и Верца [21]. Измерения такого типа были проведены для Ое [22, 23], Те [24] и РЬ5[251. 4) В тех случаях когда поверхностный слой кристалла обладает проводимостью л-типа, а проводимость его в объеме характеризуется р-типом или наоборот ( каналы ) [261, ток, идущий от поверхностного слоя к объему, можно запереть с помощью наложения разности потенциалов между поверхностным слоем и объемом кристалла, так что р-п-переход смещается в направлении запирания. При таких условиях возникающий в поверхностном слое ток не проникает в объем кристалла и поверхностная проводимость может быть измерена, даже если объемная проводимость велика. В последнее время оказалось возможным измерить не только проводимость, но и постоянную Холла Р) поверхностного слоя и таким образом определить подвижность носителей р, = [27[. Измерения поверхностной проводимости германия показали, что, если предпринять особые меры для очистки поверхности (ионная бомбардировка, травление путем испарения в высоком вакууме), [c.556]


Смотреть страницы где упоминается термин Время релаксации и электрические свойства: [c.653]    [c.146]    [c.64]    [c.217]    [c.281]   
Высокомолекулярные соединения Издание 2 (1971) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Релаксация время

Релаксация электрическая

Электрические свойства

время релаксации Сжу время релаксации при



© 2025 chem21.info Реклама на сайте