Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядерный магнитный резонанс интенсивность линий

    В таблице приведены основные характеристики ядер, обладающих магнитным моментом. Величина сигнала относится к наблюдению ядерного магнитного резонанса (ЯМР) данного ядра в сферически симметричном электрическом поле. При наличии квадрупольного момента и тех случаях, когда симметрия поля ближайшего окружения ядра отличается от указанной, интенсивность сигнала резко падает за счет сильного расширения линии ЯМР. [c.317]


    Наличие таких характеристик, как химический сдвиг и константа спин-спинового взаимодействия, тесно связанных со строением молекулы и очень чувствительных к малым изменениям в ее структуре, объясняют большие возможности спектроскопии ядерного магнитного резонанса в исследовании структуры вещества в идентификации сложных соединений. Высокая разрешающая способность и чувствительность спектров к изменению структуры обеспечивает большие аналитические возможности метода, так как практически всегда позволяет найти аналитические линии даже для очень сложных смесей или соединений, близких по своему строению. Очень важным для аналитических целей является то обстоятельство, что взаимное влияние различных соединений в смеси обычно очень мало или вовсе отсутствует. Интегральная интенсивность сигнала данной группы зависит только от числа протонов в ней, что, конечно, широко используется как при исследовании структуры веществ, так и в аналитических целях. Все современные спектрометры ЯМР снабжены интеграторами, позволяющими быстро измерять интегральную интенсивность любого сигнала, даже сложного мульти- [c.344]

    Центральная проблема, обсуждаемая в настоящей главе, формулируется следующим образом как можно получить спектральные параметры— химические сдвиги и константы спин-спинового взаимодействия — из спектров ядерного магнитного резонанса Для того чтобы ответить на этот вопрос, необходимо знать принципы расчета спектров ЯМР высокого разрешения. Поэтому вначале мы ответим на вопрос каким образом можно определить частоты и интенсивности линий спектра, если известен набор химических сдвигов и констант спин-спинового взаимодействия Итак, прежде чем рассмотреть анализ спектров, нам необходимо понять, как происходит синтез спектров. [c.142]

    В том случае, если одно из значений [ВА]/а получается независимо, так что отношение может быть определено. Например, рамановское изучение диссоциации йодноватой кислоты зависит от определения [НЮз]/[Юз"] с помощью ядерного магнитного резонанса [69]. Также необходимо, чтобы относительные вклады ВА и А в интенсивности при V и V заметно отличались друг от друга. Были предприняты попытки визуально оценить перекрывание линий, обусловленных различными формами [169]. [c.346]

    Матрица наблюдения является единственным источником информации для решения всех задач ФА, поэтому к ее формированию следует относиться с особой ответственностью. Для определенности будем считать, что в матрице X размерности N X М столбцы будут представлены наборами значений аналитических признаков для конкретного наблюдения. Число наблюдений равно М. В качестве аналитических признаков могут выступать самые различные характеристики исследуемого объекта — это могут быть интенсивности пиков ионных токов с различными значениями отношений массы к заряду miz в масс-спектрометрии, значения оптических плотностей при различных длинах волн в оптической абсорбционной спектроскопии, интенсивности линий или полос люминесценции при различных длинах волн в люминесцентных исследованиях, интенсивности поглощения в различных диапазонах спектров ядерного магнитного резонанса, данные об элементном, функциональном составе и т. п. При этом в состав набора из N признаков, рассматриваемых в качестве аналитических, могут входить одновременно и разнородные данные, т. е. полученные различными методами исследования. Столбец матрицы данных в этом случае может представлять собой последовательность следующих чисел сначала — набор интенсивностей линий в масс-спектре, затем — набор оптических плотностей образца в оптическом диапазоне спектра и т. д. Необходимым условием формирования матрицы наблюдений являются единообразие и полнота набора характеристик для всех столбцов (наблюдений) — все столбцы должны содержать наборы N одинаковых характеристик. [c.73]


    Для анализа жидких веществ в химии сейчас широко применяются спектры ядерного магнитного резонанса (ЯМР) высокого разрешения. Та или иная узкая линия спектра часто характерна для определенной функциональной группы, а интенсивность линии пропорциональна концентрации. Поэтому спектры ЯМР высокого разрешения используются для определения молекулярной структуры жидких веществ, их качественного и количественного анализа. Однако использовать этот метод для анализа молекулярной структуры твердых тел из-за значительного уширения линий спектра не представляется возможным. Это уширение обусловлено межъядерным магнитным взаимодействием, которое при усреднении может быть очень малым, если ядра беспорядочно движутся друг относительно друга, как в жидкости. В некоторых веществах, например кристаллах лития и натрия, вследствие диффузии атомов резонансная линия сужается задолго до плавления. [c.82]

    Интенсивное применение наиболее длинноволновой части электромагнитного спектра — микроволн и радиоволн в физикохимических исследованиях и аналитической химии — началось сразу после открытия явлений электронного и ядерного магнитного резонанса. Эти явления отражают взаимодействие молекулы с магнитным полем. Электронный парамагнитный резонанс (ЭПР) характеризует взаимодействие с магнитным полем магнитного момента электрона. Явление ядерного магнитного резонанса (ЯМР) отражает взаимодействие с полем магнитного момента ядра. Оба явления основаны на эффекте Зеемана, заключающемся в расщеплении спектральных линий или уровней энергии в магнитном поле на отдельные компоненты. [c.138]

    АН н (ДЯ) —соответственно ширина линии н момент второго порядка в спектрах ядерного магнитного резонанса. I — интенсивность свечения аурамина, введенного в полимер. [c.520]

    Определен состав сополимеров, содержащих фтор и водород. По отношению интегральных интенсивностей широких линий ядерного магнитного резонанса [21]. [c.103]

    Спектр ядерного магнитного резонанса этого соединения оказался особенно интересным с точки зрения структуры и связи. Если принять равнозначность обоих атомов фосфора, как это было установлено для соответствующего метильного соединения (см. разд. 1 этой главы), то следует ожидать в случае свободного вращения вокруг связи С—N для протонов диметиламино-группы симметричный триплет 1 2 1. Вместо него, однако, был обнаружен еще не расшифрованный симметричный квартет с одинаковыми но интенсивности линиями. Это указывает на спектр А Ха [23]. Если предположить, что диметиламино-группа фиксирована в плоскости молекулы, то связь между протонами метильной группы и обоих атомов фосфора может оказаться различной. В общем [c.112]

    Новые возможности в исследовании фазовых переходов открыло применение метода ядерного магнитного резонанса (ЯМР). Большая эффективность применения ЯМР к изучению фазового перехода твердое тело-жидкость обусловлена тем, что теоретически ширина спектра ЯМР при этом переходе уменьшается на несколько порядков ([4], с. 26—28). Если спектр состоит из нескольких линий различной ширины (рис. 1), то относительная интегральная интенсивность каждого компонента дает воз- [c.90]

    Метод непрерывного воздействия позволяет измерять время релаксации Т1, используя явление насыщения системы ядерных магнитных моментов. Однако для Т1<10 с абсолютные измерения слишком затруднительны и ненадежны. Время релаксации Тг как величину, обратную ширине линии, можно определять только в том случае, если линия не расширена неоднородностью постоянного поля. При использовании импульсных методов измерение времени релаксации удобнее и точнее производить по неустановившимся процессам в системе ядерных магнитных моментов, которые возникают после прекращения действия коротких интенсивных импульсов высокочастотного поля. Напряженность постоянного магнитного поля и частота высокочастотного поля остаются неизменными, удовлетворяя условию резонанса в соответствии с формулой (8.2). [c.220]

    Изменение интенсивностей линий ядерного резонанса, которое возникает в результате этого эксперимента, можно понять, если обратиться к рассмотрению диаграммы Соломона, приведенной на рис. IX. 12. На нем представлены собственные состояния двухспиновой системы 13 в магнитном поле. Всего существуют четыре состояния с различной энергией, и их расположение определяется знаками ядерного и электронного спинов. Переходы ядра или электрона могут быть индуцированы ВЧ-полем с частотой V/ или соответственно. Рассмотрим вероятность W тех релаксационных переходов, которые ответственны за поддержание больцмановского распределения. Пусть величины и W l соответствуют вероятности продольной релаксации ядерного и электронного спинов соответственно. Кроме того, имеются также определенные вероятности переходов ( 2 и Wй, в которых ядерный и электронный спины переворачиваются одновременно. 1 2 и 1 о имеют заметный вклад только тогда, когда имеется спин-спиновое взаимодействие между спинами / и 5. Если насыщается электронный резонанс, т. е. переходы (3)->-(1) и (4)— (г), ВЧ-полем В с частотой Уз, то больцмановское распределение между состояниями (3) и (1), а также (4) и (2) нарушается, т. е. населенности состояний (1) и [c.319]


    Привлекает внимание результат исследования мезитилена (1,3, 5-три-метилбензола), адсорбированного на силикагеле [19], методом ЯМР. Спектр ядерного протонного резонанса жидкого мезитилена характеризуется двумя резкими максимумами. При переходе к твердому мезитилену линии спектра настолько расширяются, что их не удается наблюдать. Спектр адсорбированного мезитилена при 0=2 характеризуется двумя резкими максимумами. С ростом числа адсорбированных слоев наблюдается расширение линий, но не изменяется относительное положение их максимумов. Однако было замечено изменение интегральной интенсивности протонных сигналов СНд- и СН-групп. В жидкости это соотношение равно 3 1, а в адсорбированном состоянии — 4,5. Такое явление, по-видимому, обусловлено более частыми магнитными дипольными переходами протонов в адсорбированных СНз-группах по сравнению с протонными переходами для СН-групп. Во время изучения адсорбции пиридина на том же образце силикагеля было установлено, что при 0=2 также наблюдается резонансная линия с двумя максимумами в области, близкой к спектру жидкого пиридина. [c.214]

    Метод ядерного (протонного) магнитного резонанса был также применен для изучения зависимости спектров жидкого метана и метана, адсорбированного на двуокиси титана, от температуры [16]. В этой работе показано, что для жидкого метана ширина линии первой производной (ДЯ) мало изменяется с температурой даже при переходе Х-точки. ДЯ для 0 < < 1 уменьшается с ростом температуры. При 0 = 3,9 линия поглощения может быть разделена на широкую и узкую компоненты, причем первая характеризуется большей интенсивностью и, по мнению авторов [16], соответствует жидкому метану. Узкая компонента, по-видимому, обусловлена поверхностной диффузией молекул. Интересно отметить, что ДЯ и ДЯ = / Т) для жидкого и адсорбированного метана (0 = 3,9) очень близки. Это свидетельствует о том, что при адсорбции метана, равной примерно четырем статистическим слоям, его свойства схожи со свойствами жидкого метана. [c.213]

    Поскольку положение линий и их интенсивности не зависят от знака константы /да, то он не может быть определен из спектра. Знак константы можно установить с помощью метода ядерного магнитного двойного резонанса. [c.114]

    Существуют два основных метода наблюдения резонансных сигналов метод непрерывного воздействия слабого высокочастотного магнитного поля на образец и импульсный метод, при котором интенсивное высокочастотное поле включается лишь на короткое время. В случае использования метода непрерывного воздействия при изучении спектра и формы линии ядерного резонанса производится облучение образца монохроматическим переменным магнитным полем Я1 с частотой, определяемой формулой (8.3). Для протонов, например, резонансная частота, согласно формуле (8.3), при Яо = 5000 Гс равна 21,25 МГц (коротковолновый диапазон). Амплитуда переменного поля Я1 не должна [c.217]

    Основные параметры спектра ЯМР высокого разрешения — химические сдвиги, константы спин-спинового взаимодействия и интегральные интенсивности. Химический сдвиг — смещение сигнала ядерного резонанса, вызванное различным экранированием ядер электронными оболочками от действия магнитного поля. Химический сдвиг одной линии относительно другой в спектре наблюдается, когда ядра находятся в различном химическом окружении. [c.251]

    Спектры ядерного резонанса жидких веществ содержат исключительно узкие линии, по которым можно обнаружить очень слабые магнитные взаимодействия, характеризующие химическое окружение ядер. Интенсивные исследования слабых магнитных взаимодействий привели к тому, что метод ЯМР стал необходимым инструментом в структурном химическом анализе. Не пытаясь дать обзор огромной области, сконцентрируем наше внимание на рассмотрении основных типов взаимодействий, которые при этом встречаются, и опишем методы, используемые для анализа спектров, главным образом спектров резонанса протонов. [c.60]

    Электронная структура и физические свойства ряда стабильных алифатических нитроксильных радикалов исследованы главным образом американскими [34, 35], советскими [41] и французскими [36, 42, 44] исследователями. Как и все радикалы, нитроксильные радикалы можно изучать методом электронного парамагнитного резонанса [45]. Наибольший интерес представляет сверхтонкое расщепление на ядре (рис. 5). Это ядро имеет спин, равный 1, поэтому оно может взаимодействовать со спином электрона, расщепляя сигнал в ЭПР-спектре на три отдельные линии равной интенсивности соответственно трем значениям проекции ядерного спина на направление магнитного поля +1, 0,-1. Каждая линия этого триплета может далее расщепляться из-за слабого взаимодействия с ядром (спин /г) соседней метильной группы [36, 46], а в отдельных случаях даже может наблюдаться слабое расщепление на протонах [35, 42]. Кроме того, в спектре может наблюдаться слабый дублет, разделенный приблизительно на 21 Гс, возникающий из-за взаимодействия с ядром (спин Чг), природное содержание которого, равно 0,36% [42]. [c.18]

    Баргон И., Фишер X. и Йонсен Ю., изучая спектры ядерного магнитного резонанса (ЯМР) диамагнитных продуктов сразу после их образования, впервые наблюдали химически индуцированную неравновесную поляризацию ядерных спинов [5] интенсивность линий в спектре существенно превосходила соответствующую величину в условиях термодинамического равновесия. Вскоре было показано, что химически индуцированная поляризация ядер может привести и к эмиссии на резонансных частотах ЯМР. В продуктах химических реакций спектры ЯМР обнаруживают два типа эффекта ХПЯ - интегральный и мультиплетный. Интегральный эффект характеризует суммарную интенсивность отдельных мультиплетов в спектре ЯМР, которые возникают благодаря спин-спиновому взаимодействию ядер. Мультиплетный эффект характеризует появление эмиссии и усиленного поглощения линий внутри мультиплетов. Для иллюстрации на рис. 2 приведены Фурье-образы спада сигнала свободной индукции, полученные после действия 7г/4 и 37г/4 импульсов (два верхних спектра, соответственно). Эти результаты получены для фотолиза ди-терт-бутил кетона. Их сумма дает интегральный эффект ХПЯ, в то время как их разность (нижний спектр на рис. 2) дает мультиплетный эффект ХПЯ. [c.6]

    В межпакетном пространстве довольно подвижной водной фазой [5]. По мере обезвоживания интенсивность этого сигнала в спектре ЯМР 1Л быстро уменьшается с появлением боковых полос. Эти последние свидетельствуют о том, что часть обменных Ь1+-ионов теряет свою подвижность. По расщеплению боковых полос рассчитана константа квадрупольной связи (ККС) и оценен градиент электрет Кого поля в месте расположения ионов лития. Полученные результаты сопоставимы с аналогичными величинами для различных литийсодержа.щи еществ. После вакуумирования при 100°полосы исчезают, а центральный максимум становится асимметричным. Это явление связано с более сильными электрическими взаимодействиями квадруполь-ных моментов ядер с решеткой. Одним из возможных объяснений является внедрение обменных Ь1" -ионов в вакантные октаэдрические позиции структуры. Состояние воды в вёрмикулите отличается от монтмориллонита более прочной связью молекул с поверхностью. Соответственно ширина линий спектров ЯМР значительно выше, чем в монтмориллоните. В последнее время нами получены интересные данные и по ядерному магнитному резонансу в цеолитах и мономинеральных вяжущих. [c.5]

    Спектроскопия ядерного магнитного резонанса (ЯМР) является одним из самых молодых физических методов исследования органических соединений. Впервые явление ЯМР было экспериментально обнаружено в 1945 г., хотя теоретически оно было предсказано значительно раньше [1]. Практическое использование спектроскопии ЯМР для исследования строения сложных органических соеди-нениЁ стало возможным лишь после того, как в 1951 г. было обнаружено, что спектр этилового спирта состоит из трех отдельных сигналов, соответствуюш,их резонансу протонов метильной, метиленовой и гидроксильной групп [2], и что сигналы различных групп магнитных ядер в молекулах жидкостей проявляют более тонкое расш епле-ние, зависящее от числа и характера ядер, содержащихся в молекуле [5]. Ядерный резонанс жидких веществ или растворов, позволяющий исследовать число, положение и интенсивность линии в спектре, получил название ЯМР-спектроскопии высокого разрешения, в отличие от резонанса твердых веществ, называемого ЯМР-спектроскопией широких линий. В настоящее время к спектрам ЯМР высокого разрешения принято относить главным образом такие спектры, в которых ширина отдельных линий не превышает нескольких герц. Нет сомнения, что такое определение — не окончательное и в недалеком будущем требования к спектрам высокого разрешения станут еще более жесткими. [c.5]

    Наконец, особый интерес представляют результаты Хиндмана с сотрудниками полученные при исследовании волокон полиэтилена, подвергнутых холодной вытяжке. Эти авторы нашли, что между узкой и широкой линиями появляется новая резонансная линия, которую удалось наблюдать и Слихтеруно при более высокой температуре. Эта промежуточная линия зависит от ориентации волокна в магнитном поле. При отжиге образцов в течение некоторого времени при 125° С промежуточная линия почти полностью исчезает. Возможно, во время отжига большая часть протонов, ответственных за появление промежуточной линии, становится настолько подвижной, что начинает усиливать интенсивность узкой компоненты. Исходя из сказанного следует пожелать, чтобы во всех работах, посвященных исследованию ядерного магнитного резонанса в полиэтилене, приводилось как можно более детальное описание методики приготовления испытываемых образцов. [c.345]

    Применение метода ядерного магнитного резонанса (ЯМР) для исследования молекулярных процессов в аморфных областях полимеров при нагружении. ЯМР является одним из методов, способных давать информацию об аморфных и кристаллических участках в полимере раздельно 477—480]. В спектре ЯМР для аморфно-кристаллических полимеров при температурах выше температуры их стеклования достаточно четко р-ыделяются две компоненты широкая и узкая [477—480] (рис. 146,а). Появление двух компонент в спектре обусловлено резкими различиями в интенсивности и характере молекулярного движения в кристаллических и аморфных областях полимера. Как известно [477—480], ширина ЯМР-спектра твердого полимера определяется, в основном, магнитным взаимодействием между протонами. Это взаимодействие приводит к тому, что любой из резонирующих протонов оказывается под действием двух магнитных полей внешнего поля (Я) ЯМР-спектрометра и внутреннего локального поля (ДЯ), созданного соседними протонами. Локальные внутренние поля, естественно, не являются неизменными по величине. Для разных протонов они различаются, поскольку различаются расположение и расстояние между атомами. Кроме того, локальные поля либо складываются, либо вычитаются из внешнего поля (Я АЯ). Это приводит к тому, что резонансное поглощение электромагнитных волн, строго определяемое напряженностью магнитного поля, фактически размазывается , а линия поглощения приобретает некую ширину. Так в ЯМР-спектрометре, работающем на частоте 30 Мгц, резонанс протонов наблюдается при напряженности поля, равной 7000 э, а резонансная линия для твердого полимера из-за действия внутренних локальных полей размазывается по полю примерно на 10- 15 Э- Это и есть широкая  [c.280]

    В 1967 г. две группы исследователей независимо открыли яь-ление поляризации ядерных спинов в продуктах реакций, протекающих через радикальные стадии. Баргон, Фишер и Джонсен [1] наблюдали радиоизлучение на частотах ядерного магнитного резонанса в продуктах термического разложения перекисных и азотсодержащих соединений. Уорд и Лоулер [2] изучали спектры ЯМР продуктов быстропротекающих реакций металлоорганических соединений и обнаружили, что в спектре одновременно присутствуют аномально интенсивные линии, отвечающие поглощению и излучению. [c.88]

    Результаты, полученные для эфира диметилдибензо-18-краун-б, были подтверждены исследованиями методом ядерного магнитного резонанса [78]. При комплексообразовании краун-эфира с Р ,1Ча+ линия ЯМР от 16 алифатических протонов полиэфирного кольца расщепляется на две компоненты равной интенсивности, которые сдвигаются в сторону сильного поля на 0,75 и 1,1 м. д. соответственно из-за диамагнитной анизотропии ароматических флуоренильных колец. В избытке краун-эфира ниже 0°С наблюдается медленное изменение спектра. Реакция обмена Р ,Е,Ыа+-ЬЕ - р-,Е, На+-ЬЕ (Е, Е — диметилдибензо-18-краун-6) протекает с энергией активации 12,5 ккал/моль. С ионной парой Р ,К " медленного изменения спектра этого эфира не наблюдается даже при низкой температуре, вплоть до —60°С это означает, что в ТГФ краун-эфир более прочно связывается с ионом Ыа+, чем с ионом К+. [c.148]

    Тиклинг всегда сопровождается изменением интенсивностей спектральных линий (рис. 1У-33) [38]. Уравнивание населенностей опоргстичсс1сих уровней возмущаемой линии ведет к уменьшению разности населенностей для линии Л = О и к увеличению — для линии Л = 2 (рис. 1У-30). Такой ядерный эффект Оверхаузера сопровождает все опыты по ядерному магнитному двойному резонансу при условии, что 1. В этом отношении данные 132] неточны. [c.198]

    В качестве простого примера сверхтонкого расщепления рассмотрим свободный радикал с двумя протонами, в различной степени влияющими на электронные уровни энергии в магнитном поле. На рис. 16.9 показано влияние двух протонов на возможные уровни энергии электрона. В присутствии магнитного поля неспаренный электрон имеет два уровня энергии с/Пй== + 72 и /Из=— /г- Два протона расщепляют эти уровни так, что в результате неспаренный электрон имеет восемь уровней энергии. В электронном парамагнитном резонансе происходит переворачивание электронного спина, однако направление ядреных спинов не изменяется. Таким образом, в ЭПР электрон, поглощая энергию, переходит с энергетического состояния в нижней группе гпе= 42) на соответствующий уровень в верхней группе (тз= + 7г)- При увеличении напряженности магнитного поля последовательно выполняются условия резонанса для четырех переходов. Соответственно наблюдаются четыре линии в ЭПР-спектре. Поскольку четыре ядерно-спиновых состояния (а а2, Рг, 1З1С12 и Р1Р2) равновероятны, эти четыре линии имеют одинаковую интенсивность. Сверхтонкие расщепления а и Сг могут быть определены из спектра, как это показано на рисунке. [c.512]


Смотреть страницы где упоминается термин Ядерный магнитный резонанс интенсивность линий: [c.98]    [c.416]    [c.325]    [c.112]    [c.474]    [c.228]    [c.474]    [c.346]    [c.100]    [c.12]    [c.747]    [c.32]   
Физическая Биохимия (1980) -- [ c.494 ]




ПОИСК





Смотрите так же термины и статьи:

Линии интенсивность

Резонанс г ядерный магнитный



© 2025 chem21.info Реклама на сайте