Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Потенциал электрический окислительно-восстановительны

    Мы рассмотрели три типа электродов металл в растворе его соли, инертный металл, поверхность которого насыщена каким-либо газом, в растворе ионов того же элемента и инертный металл в растворе окислителя или восстановителя. Легко видеть, что никакого принципиального различия между этими тремя типами нет они отличаются лишь по своему оформлению. Во всех случаях причиной возникновения скачка потенциала является окислительно-восстановительный процесс, происходящий на поверхности электрода и приводящий к образованию двойного электрического слоя. При равновесии продолжается протекание двух противоположных по смыслу процессов (окисления и восстановления), но идущих с равными скоростями. Более положительным значениям потенциала отвечает большая окислительная способность раствора. [c.220]


    Как уже отмечалось, при погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающая между металлом и окружающей его жидкой средой, называется электродным потенциалом. Этот потенциал является характеристикой окислительно-восстановительной способности металла в виде твердой фазы. Заметим, что у изолированного металлического атома (состояние одноатомного пара, возникающее при высоких температурах и высоких степенях разрежения) окислительно-восстановительные свойства характеризуются другой величиной, называемой ионизационным потенциалом. Ионизационный потенциал — это энергия, необходимая для отрыва электрона от изолированного атома. [c.79]

    Часто процессы электровосстановления анионов носят необратимый характер. Если стандартный потенциал окислительно-восстановительной системы соответствует значительному положительному заряду электрода, то процесс электровосстановления также может начаться при < >0 ( , =о)- Эти системы [к ним относятся системы (I) — (111)1 представляют наибольший интерес с точки зрения установления связей между строением двойного электрического слоя и кинетикой электродных процессов. В самом деле, именно при переходе через п. н. 3. происходит наиболее существенная перестройка двойного слоя, которая может оказать влияние как на скорость стадии разряда  [c.263]

    Соединение электродов металлическим проводником приводит к возникновению электрического тока. Следовательно, в этой системе возникает электродвижущая сила — ЭДС элемента. 3)та ЭДС способна совершать работу по переносу электрона по металлическому проводнику (а следовательно, и любые виды работы, в которые можно преобразовать энергию электрического тока) за счет химической реакции окисления — восстановления. Таким образом, гальванический элемент представляет собой устройство, в котором уменьшение термодинамического потенциала в результате окислительно-восстановительной реакции преобразуется в энергию электрического тока. [c.294]

    Образование осциллополярограммы можно объяснить при рассмотрении эквивалентной схемы и хода кривой постояннотоковой полярографии (рис. 4.31). Поверхность раздела фаз между поляризованным электродом и раствором электролита в отсутствие деполяризатора является конденсатором. Синусоидальный ток вызывает возникновение потенциала, как показано на рис. 4.31, б. При значении потенциала, большем чем потенциал разложения фонового электролита или потенциал растворения материала электрода, на кривой появляется плоский участок. Дальнейшей зарядки конденсатора двойного электрического слоя не происходит, так как возникает фарадеевский ток (например, при восстановлении К" , растворении Hg). Соответствующая кривая на рис. 4.31 дана полужирной линией. Происходящие при этом окислительно-восстановительные процессы также ясны из рисунка. В середине задержки , например для процесса выделения калия, ток меняет свой знак (рис. 4.31), и при этом вместо восстановления снова происходит окисление ионов калия, находящегося в виде амальгамы. В при- [c.159]


    Окислительно-восстановительная реакция включает в себя два конкурирующих процесса восстановление и окисление. Поэтому ЭДС реакции зависит от окислительно-восстанови-тельных или электродных потенциалов ф, характеризующих энергию (или электрическое напряжение), с которой и окислитель, и восстановитель удерживают электроны, и определяется их разностью. Так как окислитель отбирает электроны у восстановителя, то его потенциал должен быть больше потенциала восстановителя ф , и тогда [c.239]

    Определим падение напряжения в электролите Платиновые электроды, опущенные в регенерируемый раствор, показывают величину окислительно-восстановительного потенциала, значение которого относительно мало отличается в католите и анолите (при неполной ре генерации раствора). Поэтому разность между потенциалами платино вых электродов, расположенных по обе стороны диафрагмы при прохождении электрического тока, равна омическому падению напряже [c.261]

    В работе 34 стационарное прохождение электрического тока в ячей ке с нерастворимыми платиновыми электродами наступало после того как внешняя разность потенциалов, приложенная к ячейке, по мень шей мере становилась равной э. д. с. водородно-кислородного элемента образующегося на обоих ее электродах. Если электролизу подверга ется раствор иода в КI, то на электродах ячейки возникает один и тот же окислительно-восстановительный потенциал, соответствующий электродной реакции [c.178]

    Аккумуляторы—аналогичные элементы, отличающиеся, однако, тем, что их можно возвратить в первоначальное состояние (можно зарядить) после того, как они отдали электрический ток для этого достаточно наложить электрический потенциал между электродами, под действием которого окислительно-восстановительная реакция будет идти в обратном направлении. [c.323]

    Для оценки окислительно-восстановительной способности более удобной оказалась другая термодинамическая величина — потенциал. Это связано с уникальной особенностью данного типа реакций полуреакции окисления и восстановления можно разделить в пространстве, поскольку при переносе электронов возникает электрический ток. Следовательно, энергию химической реакции можно преобразовать в электрическую. Практически такое преобразование осуществляется в гальваническом элементе. [c.178]

    Гальванический элемент. Ячейка для измерения электродного потенциала (рис. 10.3) представляет собой пример электрохимического (гальванического) элемента — устройства, в котором химическая энергия окислительно-восстановительной реакции непосредственно преобразуется в электрический ток. [c.149]

    Как уже отмечалось, при погружении металла в раствор на границе раздела фаз образуется двойной электрический слой. Разность потенциалов, возникающую между металлом и окружающей его жидкой фазой, называют электродным потенциалом. Этот потенциал является характеристикой окислительно-восстановительной способности металла в виде твердой фазы. [c.141]

    Потенциометрия — электрохимический метод анализа, основанный на измерении разности электрических потенциалов, которая возникает между разнородными электродами, опущенными в раствор с определяемым веществом. Электрический потенциал возникает на электродах при прохождении на них окислительно-восстановительной (электрохимической) реакции. Потенциал Е определяется по уравнению [c.239]

    Нри коррозионном мониторинге на стадии эксплуатации оборудования используются такие методы непрерывного (или периодического) контроля его состояния, как визуальный осмотр осмотр труднодоступных участков оборудования при помощи телеметрических систем определение технологических свойств коррозионной среды (окислительно-восстановительного потенциала, наличия продуктов растворения элементов металлической конструкции, изменения концентрации коррозионно-активных агентов и др.) определение потенциала металла определение скорости коррозии образцов-свидетелей определение электрического сопротивления образцов-свидетелей ультразвуковая, магнитометрическая и акустическая дефектоскопия. [c.148]

    Таким образом, в процессе окислительно-восстановительной реакции электроны переносятся от одного из реагирующих веществ к другому. Поток электронов представляет собой электрический ток соответственно перенос электронов можно измерить в электрических единицах. Окислительно-восстановительный потенциал или электродвижущую силу системы (Е) измеряют в вольтах. [c.352]

    Термодинамическая теория окислительного потенциала рассматривает окислительный электрод как индифферентный по отношению к раствору проводник электрического тока [6—12]. Поэтому в качестве электрода может быть применен любой, не взаимодействующий в данных условиях с раствором металл платина, золото, вольфрам, ртуть и т. д. Следствием термодинамической теории является деление систем на обратимые , в которых потенциал может быть измерен, и необратимые , в которых лотенциал измерить невозможно. Критерием обратимости или необратимости системы считается возможность или невозможность измерения в ней окислительного потенциала [7]. Величина окислительного потенциала в обратимой системе должна зависеть не от материала и состояния поверхности электрода, а только от концентрации и природы окисленных и восстановленных компонентов реакции [11]. Термодинамическая теория справедлива при условии достижения равновесия между окислительно-восстановительной системой и электродом. Термодинамическая теория не может, однако, характеризовать систему до наступления равновесия. Известно вместе с тем, что в слабых, т. е. имеющих слабую тенденцию вызывать потенциал на электроде, системах время установления потенциала может исчисляться не только часами, но и сутками [7—9, 17, 18]. К слабым системам относятся, как правило, системы молекулярно-водородные и в особенности кислородные. Впервые вопрос о кинетическом характере окислительного потенциала рассмотрен в работах Н И. Некрасова [19], где показано, что в случае достижения предельного потенциала в неравновесных системах или окислительного потенциала в равновесных, но медленно реагирующих системах, величина его определяется кинетическими факторами. Можно, однако, показать, что кинетические факторы имеют существенное значение не только при измерении окислительного потенциала в слабых системах — регулируя соответствующим образом кинетику установления потенциала, в принципе можно измерить окислительный потенциал в любых химически обратимых системах. [c.169]


    Хорошей электронной проводимостью обладают пассивирующие слои на железе, никеле, хроме и на некоторых других металлах, а также очень тонкие слои на благородных металлах. При исследовании поведения железа в азотной кислоте методом применения переменного тока Феттеру не удалось обнаружить какого-либо сопротивления R слоя прохождению электронов R < <С 0,1 ом-см ). На основании данных, приведенных на рис. 348— 350, можно сделать вывод о возможности выделения кислорода при обычных перенапряжениях. Феттер показал (прежде всего теоретически), что на пассивирующем слое, характеризуемом скачками потенциалов на фазовых границах металл/окисел к окисел/электролит, несмотря на падение потенциала внутри слоя, при достаточно хорошей электронной проводимости могут устанавливаться обратимые окислительно-восстановительные потенциалы, определяемые концентрациями окислителей и восстановителей. Равновесие на фазовой границе металл/электролит относительно находящейся в электролите окислительно-восстанови-тельной системы может осуществляться в том случае, когда разность потенциалов такова, что электрохимический потенциал г е = = Це — ф электронов в металле равен соответствующему потенциалу электронов в электролите (см. 13). Если между металлом и электролитом имеется пассивирующий слой, то при электронном равновесии между металлом и электролитом электрохимический потенциал электронов г е должен быть постоянным также во всем пассивирующем слое и равным потенциалу электронов в металле и в электролите, содержащем окислительно-восстановительную систему. При этом характер распределения электрического потенциала ф на пути от металла к электролиту не имеет значения. Такой вывод непосредственно вытекает из данных рис. 352. [c.815]

    В результате платина получает положительный заряд, а раствор у поверхности ее — отрицательный заряд за счет образовавшегося избытка ионов С1 . Равновесие в двойном электрическом слое выразится уравнением Ре +е s f Pe2. " Таким образом, возникает положительный потенциал на платине, который будет тем выше, чем больше окислительная способность катиона. И, наоборот, чем сильнее восстановительная активность иона, тем вероятнее отдача электрона им в кристаллическую решетку платины и возникновение отрицательного заряда на ней. Так появляется отрицательный потенцйал на платине в растворе, содержащем ионы Ст . В двойном слое устанавливается равновесие Сг з Сг + е. Потенциал платины в разобранных двух примерах определяется соотношением активных концентраций окисленной и восстановленной формы ионов и характеризует окислительновосстановительную способность каждой из систем Ре , Pe Pt и Сг2, r Pt. Потому потенциал и получил название окислительновосстановительного. Отметим, что это название сохранилось за потенциалами систем только в тех случаях, когда в электродной реакции не участвуют непосредственно металлы газы, хотя очевидно, что во всех случаях причиной возникновения скачка потенциала является окислительно-восстановительный процесс на поверхности электрода, приводящий к образованию двойного электрического слоя и потенциала в нем. Следовательно, потенциал характеризует окислительно-восстановительные свойства системы. [c.195]

    Так появляется отрицательный потенциал на платине в растворе, содержащем ионы Сг +. В двойном слое устанавливается равновесие Сг +ч=з=Сг ++е-. Потенциал платины в данных примерах определяется соотношением активных концентраций окисленной и восстановительной форм ионов и характеризует окислительно-восстановительную способность каждой из систем Fe +, Fe + Pt и Сг2+, r3+ Pt. Потому потенциал и получил название окислительно-восстановительного. Необходимо отметить, что это название сохранилось за потенциалами систем только в тех случаях, когда в электродной реакции ие участвуют непосредственно металлы и газы, хотя очевидно, что во всех случаях причиной возникновения скачка потенциала является окпслительно-восстанови-тельный процесс на поверхности электрода, приводящий к образованию двойного электрического слоя и потенциала в нем. Следовательно, потенциал характеризует окислительно-восстановительные свойства системы. [c.241]

    В табл. XX, 2 приведены значения некоторых стандартных окислительно-восстановительных потенциалов. Правн. 1с) знаков для них вытекает из рассмотренных раньше общих положений. Соединив какой-либо окислительно-восстановите.чьньп а.шктрод со стандартным водородным и поместив последний лeвil, э.д.с. составленного таким образом элемента считают положительной, и следовательно, потенциал правого электрода положителен, если электрический ток в элементе [c.555]

    Принципиально для конструирования гальванического элемента и яревращения убыли изобарно-изотермического потенциала — ДОг лри электрохимическом процессе в электрическую форму энергии можно использовать любую окислительно-восстановительную реакцию ионного типа. Рассмотрим работу никелево-цинкового (N1—2п) гальванического элемента (см. рис. 27). Электрический ток в нем возникает вследствие окислительного процесса, протекающего на границе Zn — раствор, содержащий ион Zп + (на цинковом электроде), и восстановительного на границе N1 — раствор, содержащий ионы N 2+ (на никелевом электроде). Цинковая и никелевая пластинки, опущенные в растворы своих солей, посылают в раствор разное количество ионов. Прн установившемся равновесии разность потенциалов на границах 2п — раствор и N1 — раствор по величине ле равна одна другой. Поверхность цинка имеет больший отрицательный заряд, чем поверхность никеля. Цинк обладает большей способностью посылать свои ионы в раствор, чем никель. При процессе 2п = 2п +-Ь2е —ЛОт больше, чем —АСг при процессе N1 = = Ы12+-(-2( . Когда цинковую пластинку с никелевой соединяют -проводником первого рода — медью, электроны с цинка перетекают а никель. Равновесие двойного электрического слоя на никелевом электроде нарушается, электродный процесс принимает обратное направление, иоиы N1 + из раствора переходят на никелевую пластинку. Нарушенное равновесие восстанавливается за счет того, что в раствор поступает новая порция ионов Zn + и разряжается эквивалентное число ионов N1 +. Снова возникает разное количество зарядов на цинковой и никелевой пластинках и переход электронов и т. д. В итоге на цинковом электроде протекает окислительный процесс Zп = Zп2+-t-2e(Zn). Электроны от цинковой пластинки переходят к никелевой 2e(Zn)- 2e(Ni). На никелевом электроде идет восстановительный процесс N +- -26(Ni) = N1. Запись пе(Ме) указывает, что электроны остаются в металле. [c.124]

    Скачок потенциала а1пС12Ф представляет собой частный случай разности электрических потенциалов А ф между металлом М и раствором (р), который может обратимо взаимодействовать (с помощью соответствующей окислительно-восстановительной электродной реакции) с металлом М при прохождении электрического тока через поверхность их раздела. Эту разность потенциалов принято называть электродным потенциалом или потенциалом электрода М. В этой книге мы часто будем для краткости обозначать его символом Дф или Дф , Д ф = ф —фР= [c.497]

    Окислительно-восстановительные фотореакции на поверхно сти раздела между полупроводниками и жидкими электролита ми дают значительно более впечатляющие результаты, чем го могенные процессы. Эти процессы химически эквивалентны таковым в твердотельном спае фотогальванических приборов Кремниевые солнечные элементы сейчас хорошо утверди лись в качестве источников энергии. Их применения простира ются от питания контрольно-измерительной аппаратуры на кос мических зондах до обеспечения работы сигнального оборудо вания на удаленных железнодорожных ветках или питания кар манных калькуляторов. Цель разработки химического полупро водникового преобразования солнечной энергии — превзойти твердотельные солнечные элементы по выходу или по меньшей стоимости производства. Чтобы объяснить функционирование полупроводниковых фотоэлектрохимических элементов, а также чтобы сравнить химические и физические элементы, вспомним вкратце свойства полупроводниковых переходов и механизм появления электрического потенциала на переходе под действием освещения. [c.273]

    Мы рассмотрели частный случай возникновения разности потенциалов за счет окислительно-восстановительного процесса вытеснения одного металла другим, но вообще любая реакция, идущая с изменением степеней окисления, может служить источником электрической энергии. Чтобы получить электрический ток, т. е. заставить электроны двигаться по проводнику, нужно упорядочить хаотический обмен связями и электронами. Обычно для этой цели используют инертные электроды, не посылающие свои электроны в раствор, а именно Р1, Сграф т. Так это и было сделано в нормальном водородном электроде (см. рис. 122) поверхность губчатой платины насыщали водородом, который, частично диссоциируясь на атомы, давал скачок потенциала с раствором ионов Н+(Н.зО" ). [c.236]

    Электролизом назьшается окислительно-восстановительный процесс, вызьшаемый электрическим током при прохождении его через раствор или расптв электролита. Рассмотрим работу электролитической ванны Си(1)1Си504 Си(2). Подключим внешний источник тока так, чтобы электрод Си(1) находился под небольшим отрицательным потенциалом (катод), а Си(2) — под положительным потенциалом (анод). Так как потенциал катода окажется ниже равновесного потенциала меди в растворе СиЗО данной концентрации, то на нем пойдет восстановление ионов Си2, стремящееся вернуть систему Си 1 Си(1) к равновесному состоянию Си + 2е.= Си. На аноде Си(2) вследствие [c.205]

    Знак электрического потенциала по отношению к водородному электроду должен сохраняться в обозначениях электродных потенциалов. Например, потенциалы металлов, более активных, чем водород, обозначают знаком минус. Если активность катионов металла в растворе его соли не равна единице, то электродный потенциал имеет другое значение, чем при стандартных условиях. Зная нормальные потенциалы, можно вычислить э. д. с. любой гальванической пары двух металлов по алгебраической разности их нормальных потенциалов. Э. д. с. гальванической пары позволяет судить о направлении данной окислительно-восстановительной реакции в каждом отдельном с.гтучае. [c.108]

    Электролиз — окислительно-восстановительный процесс, вызываемый электрическим током при прохождении его через раствор или расплав электролита. Рассмотрим работу электролитической ванны Си (1) Си3041 Си (2). Подключим внешний источник тока так, чтобы электрод Си(1) находился под небольшим отрицательным потенциалом (катод), а Си (2)—под положительным потенциалом (анод). Так как потенциал катода окажется ниже равновесного потенциала меди в растворе Си804 данной концентрации, то на нем пойдет восстановление ионов Си +, стремящееся вернуть систему Си2+1Си (1) к равновесному состоянию Си +-Ь2 = Си. На аноде Си (2) вследствие нарушения равновесия в двойном электрическом слое за счет более высокого потенциала на медном электроде, чем при равновесном состоянии, пойдет окисление меди Си—2е = Си +. [c.253]

    Другое условие успешной реализации химических методов, имеющее решающее значение в титриметрии, наличие способов установления точки эквивалентности при взаимодействии компонентов. Поскольку вблизи точки эквивалентности многие физикохимические свойства (окислительно-восстановительный потенциал, pH, электрическая проводимость, температура) и соответствующие аналитические сигналы анализируемых систем изменяются заметный образом (резко возрастают, падают или меняют наклон), большую долю из общего арсенала физико-химических методов составляют методы, основанные на инструментальной регистрации точки эквивалентности. Это — рН-потенциометрия и другие виды потенциометрического титрования, кондуктометриче-ское, амперометрическое, калориметрическое и спектрофотометрическое титрование. Сами по себе физико-химические методы анализа обычно малоспецифичны, поскольку в большинстве случаев основаны на измерении аддитивных или коллигативных свойств. Аддитивные свойства многокомпонентных систем — свойства, которые могут быть представлены или выражены в виде суммы свойств отдельных компонентов, составляющих систему. Колли-гативные свойства систем — свойства, зависящие от числа частиц в единице объема или массы, но не зависящие от их природы. Измерение электрической проводимости позволяет получить информацию о концентрации токопроводящих частиц в растворе, [c.14]

    Именно эти реакции приводят к образованию двойного электрического слоя, если с раствором контактирует неактивный металл (см. рис. 2). В этом сл е электродйдй потенциал отождествляют с окислительно-восстановительным (редокс) потенциалом раяво-ра. Высокий окислительно-восстановительный потенциал означает, что раствор обладает сильными окислительвыми свойствами. [c.12]

    Реакции обмена протекают при взаимодействии ионов. При окислительно-восстановительной реакции происходит разруиление металлов, а при реакции обмена разрушения металлов не происходит. Поэтому основной задачей, которую решает катодная защита, является преобразование окислительно-восстановительной реакции в реакцию обмена, при которой, как было отмечено, коррозии металлов не наблюдается. Окислительно-восста-новительные реакции происходят в местах контактирования металла подземного сооружения по всей его длине с грунтом, а поэтому и потенциал образуется по всей длине сооружения. Учитывая, что падение потенциала по длине сооружения незначительно, можно допустить достаточно равномерное его распределение. Тогда разность потенциалов между каждой точкой подлине сооружения и анодным зазем,1ением будет характеризовать ЭДС источника Е . Действительно, мы имеем множество элементарных источников, образованных сооружением и окружающей его средой. Действие этих источников на определенном участке можно представить электрической эквивалентной схемой (рис. 52). Из эквивалентной схемы  [c.92]

    Отклонение потенциалов электро дов от равновесных значении происходящее при прохожде НИИ электрического тока через электрохимическую систему, на зывается полАризациеи электродов Степень выраженности этого явления зависит от тока обмена на электроде Более сильно поляризуется т е сильнее изменяет свои потенциал электрод с малым током обмена так как протекающие на нем окислительно восстановительные процессы слабы и не могут компенсировать изменение потенциала вызванное протеканием тока Наоборот, потенциал электрода с большим током обмена мало меняется от действия тока [c.327]

    Уже давно было отмечено, что проводимость приповерхностной области как легированных бором, так и не легированных (диэлектрических) алмазных пленок на воздухе часто превышает объемную проводимость алмаза [57]. Образование проводящего канала объясняли наличием поверхностных состояний на поверхности алмаза [58] (как это принято в физике полупроводников) но было вьщвинуто и электрохимическое объяснение [59]. Именно, предполагается, что на поверхности алмаза конденсируется влага в пленке воды растворены газы (например, СО ) и соли, которые образуют окислительно-восстановительную систему. Если эта система находится в электрическом равновесии с твердым телом, то при соответствующем значении электрохимического потенциала она может вызвать обогащение поверхности алмаза дырками. Аналогичным образом обстоит дело и в растворах, причем возникновение проводящего канала зависит от степени окисленности поверхности, pH раствора и других факторов [60]. Само явление образования такого канала может быть использовано при разработке электрохимического полевого транзистора , в котором ток, протекающий в канале, регулируется внешним напряжением, прикладываемым к алмазу с помощью вспомогательного электрода- сетки , находящегося в растворе [61, 62]. [c.21]

    Цветные индикаторы очень удобны и в большинстве случаев дают при титровании вполне удовлетворительные результаты. Иногда применение их оказывается затруднительным или вовсе невозможным. Это относится, например, к титрованию мутных, окрашенных или очень разбавленных растворов кислот и оснований. Кроме того, для некоторых реакций еще не найдены подходящие цветные индикаторы. Поэтому для нахождения точки эквивалентности при титриметрических определениях часто используют физико-химические методы. В ходе титрования наблюдают не изменение окраски индикатора, а изменение некоторых электрохимичеких показателей титруемого раствора электрической проводимости (кондуктометрическое титрование), окислительно-восстановительного потенциала (потенциометрическое титрование), силы тока (амперометрическое титрование) и т.д. Преимущество определения точки эквивалентности с помощью физико-химических методов состоит в том, что вместо визуального наблюдения за изменением окраски индикатора используют специальные приборы, дающие объективные показания. [c.252]

    Хорощо известно, что обычно не существует трудностей при определении потенциала систем инертных комплексов (с одинаковой стехиометрической формулой), различающихся лишь электрическим зарядом. Примером этого служит точно определенный окислительно-восстановительный потенциал системы ферро-феррицианидных ионов. [c.229]


Смотреть страницы где упоминается термин Потенциал электрический окислительно-восстановительны: [c.185]    [c.255]    [c.158]    [c.274]    [c.199]    [c.229]    [c.189]    [c.209]    [c.152]   
Практикум по физической химии Изд 5 (1986) -- [ c.280 , c.292 ]




ПОИСК





Смотрите так же термины и статьи:

Окислительные потенциалы окислительно-восстановительных

Потенциал окислительно-восстановительны

Потенциал окислительный

Электрический потенциал



© 2025 chem21.info Реклама на сайте