Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиакриламидный гель для электрофореза белко

Рис. 3-6. Электрофоретическое разделение белков плгрмы человека пятью различными методами при pH 8. а — электрофорез без носителя б — электрофорез на бумаге в — электрофорез в крахмальном геле г — электрофорез в полиакриламидном геле д — иммуноэлектрофорез (полосы прештитации к поливалентной антисыворотке человека). Стрелки показывают положение отдельных белков плазмы. Рис. 3-6. <a href="/info/139174">Электрофоретическое разделение</a> белков плгрмы человека <a href="/info/671064">пятью различными</a> методами при pH 8. а — электрофорез без носителя б — электрофорез на бумаге в — электрофорез в <a href="/info/213948">крахмальном геле</a> г — электрофорез в <a href="/info/105837">полиакриламидном геле</a> д — иммуноэлектрофорез (полосы прештитации к поливалентной <a href="/info/1393017">антисыворотке человека</a>). Стрелки показывают положение <a href="/info/1393048">отдельных белков</a> плазмы.

Рис. 4-49. ДСН-электрофорез в полиакриламидном геле. Индивидуальные белки образуют комплекс с молекулами додецилсульфата натрия, несущими отрицательный заряд, и мигрируют через пористый гель полиакриламида в виде отрицательно заряженного комплекса ДСН-белок. Поскольку скорость передвижения в этих условиях тем выще. чем меньще размеры полипептида, этот метод может быть использован для определения приблизительной молекулярной массы полипептидной цепи, а также для изучения субъединичного Рис. 4-49. ДСН-электрофорез в <a href="/info/105837">полиакриламидном геле</a>. <a href="/info/1176361">Индивидуальные белки</a> <a href="/info/380826">образуют комплекс</a> с молекулами <a href="/info/32904">додецилсульфата натрия</a>, несущими <a href="/info/17611">отрицательный заряд</a>, и мигрируют <a href="/info/129119">через пористый</a> <a href="/info/1344786">гель полиакриламида</a> в виде отрицательно заряженного комплекса ДСН-белок. Поскольку <a href="/info/379638">скорость передвижения</a> в этих условиях тем выще. чем меньще размеры полипептида, этот метод может <a href="/info/1475207">быть использован</a> для определения приблизительной <a href="/info/532">молекулярной массы</a> <a href="/info/31816">полипептидной цепи</a>, а также для изучения субъединичного
    Сравнительно недавно разработан метод электрофореза на полиакриламидном геле. Метод характеризуется высокой разрешающей способностью и применяется для фракционирования и определения размеров, конфигурации и суммарного заряда молекул (белков, нуклеиновых кислот и др.) см. обзор 24]. [c.399]

Рис. 1.11. Зависимость между молекулярной массой и относительной подвижностью белка при диск-электрофорезе в полиакриламидном геле в присутствии додецилсульфата натрия (в полулогарифмической системе координат). Рис. 1.11. <a href="/info/25969">Зависимость между</a> <a href="/info/532">молекулярной массой</a> и <a href="/info/501787">относительной подвижностью</a> белка при <a href="/info/150015">диск-электрофорезе</a> в <a href="/info/105837">полиакриламидном геле</a> в <a href="/info/1396908">присутствии додецилсульфата</a> натрия (в полулогарифмической системе координат).
    Электрофорез белков в пластине полиакриламидного геля имеет ряд преимуществ по сравнению с электрофорезом в трубочках. Использование тонких пластин облегчает эффективное отведение тепла при электрофорезе. Процесс фиксации, прокраски и отмывания занимает значительно меньше времени. Использование одной пластины позволяет [c.97]

    При разделении нуклеиновых кислот используют те же методы, что и при фракционировании белков, однако имеются ограничения, обусловленные большим диапазоном величин молекулярной массы (2-10 —Ы0 ° Да), отклонениями от глобулярной формы, различиями в четвертичной структуре (двухнитевые, однонитевые, кольцевые), значительным отрицательным зарядом в нейтральной области pH. Поэтому методы гель-фильтрации и ионообменной хроматографии не получили широкого распространения при фракционировании нуклеиновых кислот и значительно уступают ультрацентрифугированию и электрофоретическому разделению в геле агарозы, полиакриламидном геле или их смеси. Поскольку величина отрицательного заряда нуклеиновых кислот и продуктов их расщепления мало зависит от pH, а отношение заряда к молекулярной массе сохраняется практически неизменным, разделение нуклеиновых кислот при электрофорезе определяется не их зарядом, а размером молекул. При наличии маркеров с известной молекулярной массой возможно определение молекулярной массы препаратов нуклеиновых кислот и их фрагментов. [c.171]


    Электрофорез, процесс разделения молекул, основанный на разной скорости перемещения их в электрическом поле, проводят самыми разными способами. Очень небольшое количество раствора, содержащего смесь белков (например, белков сыворотки крови), наносят в виде тонкой полоски на лист фильтровальной бумаги или ацетата целлюлозы. Лист насыщают буфером и пропускают через него электрический ток. Напряжения в несколько сот вольт достаточно для разделения белков сыворотки в течение 1 ч. Для ускорения процесса и снижения диффузии низкомолекулярных веществ широко используют высоковольтный электрофорез. Прикладываемое напряжение составляет в этом случае 2—3 тыс. вольт. Образец постоянно охлаждают с помощью термостатируемых пластин иногда для той же цели всю систему погружают в сосуд с керосином. Электрофоретическое разделение больших количеств материала проводится в плоских лотках, заполненных крахмальным или каким-либо другим гелем. Одним из наиболее распространенных и чувствительных методов разделения белков является электрофорез в колонке, заполненной полиакриламидным гелем. Этот метод, в настоящее время сильно усовершенствованный, позволяет проводить разделение молекул одновременно и по размеру, и по электрическому заряду его называют методом электрофоретического молекулярного сита 127, 128]. [c.164]

    Согласно той же формуле (18.4) коэффициент диффузии обратно пропорционален вязкости растворителя. Поэтому особенно высокого качества разделения удается достигнуть, проводя электрофорез в гелях, вязкость которых чрезвычайно высока. Для разделения белков и нуклеиновых кислот наиболее широко используются полиакриламидные гели (см. 8.5). С помощью электрофореза в таких гелях удается в один прием разделить десятки компонентов. В качестве иллюстрации на рис. 91 приведен результат разделения смеси фрагментов нуклеиновой кислоты разной длины от 40 до 72 нуклеотидных звеньев. Электрофорезу подвергались фрагменты, меченые радиоактивным фосфором После завершения разде- [c.331]

    Белки, обработанные концентрированным раствором додецилсуль-фата натрия в присутствии р-меркаптоэтанола, распадаются на отдельные полипептидные цепи и приобретают отрицательный заряд, значительно превышающий собственный заряд белковой молекулы. При последующем разделении с помощью диск-электрофореза в полиакриламидном геле белковые зоны распределяются на электрофореграммах таким образом, что подвижность белковой зоны обратно пропорциональна логарифму молекулярной массы. Метод дает возможность определять молекулярные массы субъединиц олигомерных белков. Электрофоретическое разделение можно проводить различными методами. Ниже описаны два из них метод Вебера и Осборн, а также метод, предложенный Лэммли. [c.119]

    При электрофорезе в полиакриламидном геле заряд белков не играет решающей роли в определении подвижности данной макромолекулы — особенно при электрофоретическом разделении кислых белков, обычно диспергированных в 0,1%-ном растворе додецилсульфата натрия. В этих условиях основные группы белка образуют комплексы с додецилсульфатом натрия и благодаря этому белки, подобно нуклеиновым кислотам, ведут себя главным образом как полианионы. Разделение в этом случае происходит в основном за счет различий в молекулярных весах, причем более мелкие компоненты движутся впереди более крупных. Путем стандартизации таких гелей с помощью белков или нуклеиновых кислот известного молекулярного веса можно с достаточной точностью определить молекулярный вес неизвестных компонентов [435]. Следует особо отметить, что если исследуемый белок состоит из двух или большего числа цепей, связанных друг с другом дисульфидными связями, и если разделение при этом проводят, как обычно, в присутствии сильных денатурирующих и восстанавливающих агентов, то полученные данные относятся к молекулярным весам структурных субъединиц или даже пептидных цепей. [c.62]

    Ситуация изменилась в середине 60-х гг. после внедрения в исследовательскую практику метода гель-электрофореза белков. Суть его заключается в разделении в полиакриламидном (или крахмальном) геле родственных белков (изозимов), чьи электрофоретические подвижности различаются из-за мутационной замены отдельных аминокислотных остатков. Использование этого метода показало, что примерно треть всех локусов, контролирующих биохимические реакции, находится в полиморфном состоянии. При этом средняя гетерозиготность колеблется от 7% у человека до 42% у дрозофилы. [c.178]

    При электрофорезе в кислой среде на крахмальном или полиакриламидном геле глиадины делятся по подвижности на а-, -, у- и СО-группы, каждая яз к-рых включает неск. белков. Гордеины делятся на С и В группы. Причем малоподвижные белки группы В-это S-бедные П. Глютенины при обычных условиях электрофореза остаются на старте. При двухмерном электрофорезе глиадинов выделено более 50 компонентов, причем разные сорта пшеницы существенно различаются по составу белков, относящихся к П. [c.100]


    Ионообменная ТСХ гидрофильных белков вполне возможна, но ее практически оттеснил более совершенный метод электрофореза в полиакриламидном геле и пленках ацетилцеллюлозы (последний метод нашел себе применение для клинических анализов физиологических жидкостей). [c.490]

    Для идентификации белков, элюируемых с колонки, содержимое пробирок, соответствующее отдельным пикам на кривой элюции, объединяют, подвергают диализу, лиофилизируют и исследуют с помощью электрофореза на бумаге или в полиакриламидном геле. [c.112]

    Для построения калибровочной кривой при определении молекулярных масс используют белки-стандарты тропонин С (18 000 Да), тропонин I (24 000 Да), тропонин Т (38 000 Да), яичный альбумин (42 000 Да) и бычий сывороточный альбумин (68 000 Да), а также стандартный набор для определения молекулярной массы белков. При электрофорезе в полиакриламидном геле в присутствии додецилсульфата натрия препарат миозина дает расположенную почти у старта интенсивную полосу тяжелых цепей с м. м. ок. 20 ООО Да и три слабые, но отчетливые полоски легких цепей с м. м. ок. 20 ООО Да для самой тяжелой из них и около 16 000 Да — для самой легкой. Подвижность этих полос в описанных выше условиях высока, поэтому при достаточно большой продолжительности электрофореза эти полоски могут обнаружиться почти у фронта красителя (бромфенолового синего). [c.397]

    Электрофорез белков в полиакриламидном геле [c.38]

    Существует три типа электрофоретических систем электрофорез по Тизелиусу (с подвижной границей) зональный электрофорез (например, в среде с капиллярной структурой) стационарный электрофорез (изоэлектрическое фокусирование, изотахофорез). В медицинской и фармацевтической практике чаще применяется зональный электрофорез на фильтровальной бумаге, пленке из ацетатцел-люлозы, агаровом, агарозном, крахмальном или полиакриламидном гелях. Электрофорез белков сыворотки крови ведут в буферной среде с pH 8,6, когда молекулы белка и липопротеинов заряжаются отрицательно и движутся к аноду. После заверщения электрофоретического разделения электрофореграммы фиксируются и окрашиваются. Затем производят визуальную и денситометрическую оценку разделения белков. Для окраски различных белков на электрофоре-граммах используют специальные красители, часть из которых представлена в табл. 5. [c.44]

    Электрофорез в градиенте концентрации. Здесь опять речь идет о методе, при котором определяющую роль играет размер молекулы белка. Носитель состоит из полиакриламидного геля возрастающей концентрации (например, от 2 до 16 или от 3 до 30 % акриламида). В этом градиенте пористости белковые молекулы тормозятся, т. е. останавливаются, по мере того как ячейки сетки становятся все более мелкими. [c.40]

    При использовании диск-электрофореза в полиакриламидном геле для определения молекулярной массы белков также строят график зависимости между логарифмом молекулярной массы калибровочных белков и подвижностью белковых частиц в полиакриламидном геле, а затем, определив подвижность исследуемого белка, по графику находят его массу (рис. 1.11). Электрофорез проводят в присутствии детергента додецилсульфата натрия, так как только в этом случае наблюдается прямая пропорциональная зависимость между молекулярной массой и подвижностью белков. Белки с четвертичной структурой при этих условиях распадаются на субъединицы, поэтому метод находит широкое применение для определения молекулярной массы субъединиц белка. [c.46]

    Выделение из мембран индивидуальных компонентов производится с помощью детергентов (например, додецилсульфата натрия), солюбилизирующих нерастворимые вещества, и разделения полученных белков путем электрофореза в полиакриламидном геле. [c.334]

    Для контроля за степенью очистки белков чаще применяют метод электрофореза. Большинство авторов в качестве носителя используют гомогенные гели или градиент концентрации акриламида. Основной способ при этом — электрофорез в диссоциирующей среде ДДС-Na соответственно процедуре, которую описал Лэммли [68]. В определенных случаях завершающим приемом при этом являются иммунодиффузия [29, 114] либо иммуноэлектрофорез [17, 80, 118]. При исследовании структуры некоторые авторы прибегают к двумерному электрофорезу. Тогда первая миграция молекул может происходить в гомогенном геле полиакриламида с ДДС-Na или без него во втором направлении молекулы мигрируют в полиакриламидном геле с ДДС-Na в присутствии восстановителей дисульфидных связей (р-меркапто-этанол) [10, 40, 61, 78]. Чтобы охарактеризовать субъединицы легуминов гороха и конских бобов, Матта и др. [77, 78] применяют сочетание ДДС-Na с р-меркаптоэнталом и электрофокусированием. Рестани и др. [92 пользуются этим же способом применительно к глобулинам люпина, а Ху и Еэзен [53] демонстрировали гетерогенность белков сои. Указанные методы с [c.155]

    Заряженные частицы перемещаются в растворе под влиянием электрического поля с различной скоростью. Уже в первой половине нашего столетия для этого явления было введено понятие "электрофорез" или "электрический перенос". Различие скоростей перемещения может быть обусловлено двумя причинами (а) различные молекулы несут на себе различные заряды и поэтому при наложении электрического поля могут ускоряться в различной степени (б) их перемещению препятствует различающееся по величине сопротивление трения. В простейшем случае разделительная среда (раствор электролита) находится в трубке. Из-за отвода Джоулева тепла на практике зачастую наблюдается искажение зон за счет различных плотностей электролита и конвекционных потоков. В случае классического электрофореза применяются гели или полоски бумаги, пропитанные электролитами для того, чтобы уменьшить помехи, вызванные конвекцией, а также чтобы увеличить сопротивление трения макро-молекул с незначительными различиями в зарядах и тем самым усилить эффект разделения. Использование полиакриламидного гель-электрофореза (ПААГ-электрофореза) позволяет проводить эффективное разделение молекул ДНК и белков. Благодаря изменению степени сшивания геля может быть оптимизирована производительность разделения. При использовании гель-электрофореза белков, денатурированных додецилсульфатом натрия (ДДСН), возможно непосредственное определение их молекулярной массы. Разделение в этом случае основано исключительно на затруднении миграции пробы через гель (без геля все денатурированные додецилсульфатом натрия белки перемещаются с одинаковой скоростью). [c.5]

Рис. 6.7. Электрофорез вирусных РНК и белков, меченных радиоактивной меткой, как описано в разд. 7. а — вирус метили >[ Р]-ортофосфатом в течение 24 ч и из очищенных вирионов экстрагировали РНК б — ФЭК метили [ 5]-метионином в течение 30 мин на разных сроках после заражения вирусом чумы птиц (штамм 34/Росток). Клетки разрушали кипячением в содержа щем ДД -Na буфере для нанесения проб и анализировали белки электрофо резом в 15%-ном полиакриламидном геле. К — белки из незараженных клеток Цифры под остальными дорожками обозначают время (в часах) после зара жения, когда вносили [ З]-метионин Рис. 6.7. <a href="/info/1310752">Электрофорез вирусных</a> РНК и белков, <a href="/info/477601">меченных радиоактивной</a> меткой, как описано в разд. 7. а — вирус метили >[ Р]-ортофосфатом в течение 24 ч и из очищенных вирионов экстрагировали РНК б — ФЭК метили [ 5]-метионином в течение 30 мин на разных <a href="/info/1073691">сроках после</a> заражения <a href="/info/1301556">вирусом чумы птиц</a> (штамм 34/<a href="/info/1280313">Росток</a>). Клетки разрушали кипячением в содержа щем ДД -Na буфере для <a href="/info/215298">нанесения проб</a> и анализировали белки электрофо резом в 15%-ном <a href="/info/105837">полиакриламидном геле</a>. К — белки из незараженных клеток Цифры под остальными дорожками обозначают время (в часах) после зара жения, когда вносили [ З]-метионин
    Наряду с разделением белков по величине электрофоретической подвижности ири использовании указанных носителей имеет значение молекулярно-ситовой эффект геля и размеры молекул Оелка ири прохождении их через ячеистую структуру геля. Так, если при электрофорезе иа бумаге белки сыворотки разделяются на 4—5 четких зон, то в полиакриламидном геле выявляется 13—16 полос, соответствующих отдельным белкам (рис. 98). [c.219]

    Подобно крахмальному и акриламидному агаровый гель является очень мягким носителем в отличие от электрофореза на бумаге при нем не происходит инактивации белков, что позволяет определять активность отдельных фракций бeлкОДJieпo peд твeннo в геле после проведения электрофореза. Приготовление агарового геля значительно проще, чем крахмального или полиакриламидного, продолжительность электрофореза составляет I—4 ч. [c.92]

    Использование диск-электрофореза в полиакриламидном геле, т. е. электрофореза в неоднородной разделяющей среде, добавляет к этому эффект концентрирования, что позволяет проводить разделение белков из разбавленных растворов без их предварительного когщентрирования. [c.94]

    Фракционирование белков сыворотки крови на КМ-целлюлозе осуществляют с помощью ступенчатого элюирования, подавая на колонку последовательно следующие растворы 0,02 М натрий-ацетатный буфер, pH 4,6 ( стартовый буфер), затем 0,05 М натрий-ацетатный буфер, pH 5,2 0,08 М натрий-ацетатный буфер, pH 6,0 0,1 М фосфатный буфер, pH 7,0 и, наконец, 0,1 М фосфатный буфер, содержащий 0,5 М Na l, pH 8,3. Каждый новый раствор подают на колонку только после того, как полностью элюируется пик, вымываемый предыдущим раствором. Скорость тока приблизительно составляет 50 мл/ч. Элюат собирают порциями по 2—3 мл. Обработку результатов см. на с. 108. Идентификацию белков осуществляют методом электрофореза на бумаге или в полиакриламидном геле (с. 112). Регенерацию КМ-целлюлозы проводят вне колонки. [c.113]

    К наиболее распространенным физико-химическим методам определения молекулярной массы белков наряду с седиментационными относятся гель-хроматография (на колонках и в тонком слое), а также электрофорез в полиакриламидном геле в присутствии додецилсуль-фата натрия. Использование этих методов не требует сложной аппаратуры и большого количества исследуемого материала. Получаемые результаты хорошо воспроизводятся и, как правило, коррелируют с данными, полученными другими методами. [c.116]

    К насыщенному раствору (NH4)2S04 добавляют 2 н. NaOH и доводят pH до 7,8. При постоянном перемешивании медленно, по каплям к 50 мл сыворотки кролика добавляют 80 мл насыщенного раствора сульфата аммония (pH 7,8) и перемешивают в течение 2—3 ч. Центрифугируют суспензию при комнатной температуре 30 мин при 1500 g. Первый осадок содержит все -у-глобулины, другие глобулины и следы альбумина. Растворяют осадок в дистиллированной воде до начального объема сыворотки (50 мл). Очищают фракцию у-глобули-нов вторым и третьим осаждениями. После третьего осаждения растворяют осадок в боратном буфере (pH 8,45) до конечного объема 20— 25 мл. Удаляют сульфат аммония диализом при 4°С против боратного буфера в течение 2—3 дней со сменой буфера утром и вечером. Полученный после диализа препарат иммуноглобулинов обычно содержит небольшой осадок денатурированного белка и слегка опалесцирует. Центрифугируют при 4° С в течение 30 мин при 1400 s. В полученном препарате проверяют содержание белка и титров антител. Определяют белковый состав методом электрофореза в полиакриламидном геле в присутствии ДСН (с. 119). Если полученный препарат у-глобулинов не отвечает требованиям эксперимента по стоте, проводят дальнейшую очистку с применением ионообменной хроматографии на ДЭАЭ-целлюлозе. [c.308]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]

    При электрофорезе белков плазматических мембран в полиакриламидном геле с додецилсульфатом натрия (гл. 2, разд. 3.6) получают от 1 до 6 четко выраженных полос и, как минимум, еще 35 менее интенсивных полос, соответствующих мол. весам в интервале от 10 000 до 360 000 [28]. Однако некоторые очень важные мембранные белки, апример (Na+-f К+)-зависимая АТРаза (разд. Б.2.в), присутствуют в столь незначительных количествах (в одном эритроците их содержится всего несколько сотен молекул [3, За]), что эти белки не удается идентифицировать на электрофореграмме. Митохондриальные мембраны могут иметь еще более сложный состав, чем плазматические, тогда как состав миелина несколько проще. [c.352]

    Эти белки характеризуют обычно посредством электрофореза в полиакриламидном геле, проводимого после диссоциации компонентов мембран с помощью додецилсульфата натрия (ДДС-N3). Когда в подходящих условиях происходит диссоциация, на электрофореграммах наблюдается несколько зеленых полос, соответствующих белково-хлорофилловым комплексам (рис. 6.8). Вполне вероятно, что в тилакоидах все хлорофиллы находятся в форме таких комплексов [73]. Некоторые комплексы включают хлорофилл а и хлорофилл б это собирательные антенны для фотонов или ССХБ (светособирающий хлорофилл — белок) [107]. На эти комплексы приходится до 50 % белков и хлорофиллов ла- [c.240]

    Полное аналитическое разрешение всех рибосомных белков достигается с помощью двумерного гель-электрофореза в денатурирующих условиях. Удобная система разделения была предложена Э. Кальт-шмидтом и Г. Виттманном они использовали 8%-ный полиакриламидный гель при pH 8,6 для электрофореза в первом направлении и 18%-ный гель при pH 4,6 во втором направлении. В этих условиях разделялись все белки 30S субчастицы и все белки 50S субчастицы Е. oli. Пример такого разделения белков обеих рибосомных частиц в слегка модифицированной системе дан на рис. 53 и 54. Первое направление электрофореза в рыхлом геле при нейтральном или слегка щелочном pH обеспечивает движение кислых и нейтральных белков влево, к аноду, в то время как основные белки мигрируют вправо, к катоду, разделяясь в основном по заряду. Второе направление электрофореза в плотно сшитом геле при кислом pH обеспечивает движение всех белков в одну сторону —к катоду (вниз), и в их разделение большой вклад вносит размер разделяемых компонентов (чем меньше, тем подвижнее). [c.91]

    Существуют два различных метода электрофореза фронтальный электрофорез, который проводят в свободной незакрепленной среде, и зональный электрофорез — в закрепленной среде (стабилизированная жидкость или носители). Они имеют единую аппаратурную схему источник тока, камеру для электрофореза, два электрода, соединяющих камеру с источником тока, и аппаратуру для сбора и идентификации разделенных веществ. Для электрофореза используют как готовые наборы аппаратуры (универсальный прибор для иммуноэлектрофореза и электрофореза белков на бумаге и крахмале, набор для электрофореза в полиакриламидном геле венгерской фирмы Реанал ), так и наборы, составляемые экспериментатором из отдельных приборов (универсальный источник питания УИП-1, двухлучевой регистрирующий микрофотометр ИФО-451 и др.). [c.144]

    Одним из наиболее распространенных методов фракционирования белков (как и методов оценки гомогенности) является диск-электрофорез (от англ. dis ontinuous-прерывистый, перемежающийся) в полиакриламидном геле, при котором используют пары буферных растворов с различными значениями pH и разной степени пористости гель. Следует отметить высокую разрешающую способность гель-электрофореза. Если при электрофорезе белков сыворотки крови человека на бумаге открываются всего 6 фракций, то при электрофорезе в крахмальном геле-10, а в полиакриламидном геле-до 18 разных белковых фракций. [c.31]

    В последние годы широкое распространение для фракционирования белков получили различные сочетания изоэлектрофокусирования и диск-электрофореза в полиакриламидном геле —методы двухмерного электрофореза, которые позоляют параллельно анализировать сотни и даже тысячи белковых фракций. [c.32]

    На заключительном этапе выделения и очистки белков исследователя всегда интересует вопрос о гомогенности полученного белка. Нельзя оценивать гомогенность индивидуального белка только по одному какому-либо физико-химическому показателю. Для этого пользуются разными критериями. Из огромного числа хроматографических, электрофоретических, химических, радио- и иммунохимических, биологических и гравитационных методов наиболее достоверные результаты при определении гомогенности белка дают ультрацентрифугирование в градиенте плотности сахарозы или хлорида цезия, диск-электрофорез в полиакриламидном геле, изоэлектрическое фоьсусирование, иммунохимические методы и определение растворимости белка. Действительно, если при гель-электрофорезе белок движется в ввде одной узкой полосы и в этой зоне сосредоточена его биологическая активность (ферментативная, гормональная, токсическая [c.32]

    В настоящее время качественный состав и содержание сывороточных белков определяют с помощью электрофореза на бумаге и в полиакриламидном геле в небольшом количестве сыворотки крови. Типичная электро-фореграмма белков сыворотки крови, а также соотношение отдельных фракций представлены в главе 11. Альбумины и глобулины отличаются друг от друга также по молекулярной массе — соответственно 40000—70000 и 150000 и более. [c.74]

    Глобулины. Сывороточные глобулины при высаливании нейтральными солями можно разделить на 2 фракции —эуглобулины и псевдоглобулины. Фракция эуглобулинов в основном состоит из у-глобулинов, а фракция псевдоглобулинов включает а-, 3- и углобулины, которые при электрофорезе, особенно в крахмальном или полиакриламидном геле, способны разделяться на ряд подфракций. а- и 3-Глобулиновые фракции содержат липопротеины, а также белки, связанные с металлами. Большая часть антител, содержащихся в сыворотке, находится во фракции у-глобулинов. При снижении уровня белков этой фракции резко понижаются защитные силы организма. [c.571]

    Кристаллизация фермеявляется сложным методом их очистки и применяется для субстанций, проше1Щ1их концентрирование и многоступенчатую очистку [49]. Кристаллическое состояние не является единственным критерием гомогенности ферментного белка, а требует дополтштель-ного подтверждения другими методами (диск-электрофорезом в полиакриламидном геле, ультрацентрифугированием и др.). Методы и техника кристаллизации подбираются индивидуально для каждого фермента. [c.170]


Смотреть страницы где упоминается термин Полиакриламидный гель для электрофореза белко: [c.79]    [c.100]    [c.109]    [c.170]    [c.182]    [c.26]    [c.54]    [c.378]   
Электрофорез в разделении биологических макромолекул (1982) -- [ c.219 , c.226 ]




ПОИСК





Смотрите так же термины и статьи:

Белки электрофорез

Электрофорез



© 2025 chem21.info Реклама на сайте