Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы очистки газов от серы

    Метод фотохимического разложения сероводорода. Разработан швейцарскими и итальянскими химиками. При фотохимическом разложении сероводорода в присутствии катализатора — суспензии сульфида кадмия и диоксида рутения — образуются водород и сера. Механизм этой реакции заключается в следующем. В сульфиде кадмия (соединение С полупроводниковыми свойствами) электроны под действием света начинают перемещаться, оставляя положительно заряженные дырки, и восстанавливают водород из водного раствора. Ион гидроксида разлагает молекулу водорода с образованием сульфид-иона, который окисляется до элементарной серы. Этот процесс можно использовать для очистки газов от сероводорода. [c.54]


    В последнее время в связи с совершенствованием методов очистки газа и развитием техники используют цинк-(медь-алюминиевые и цинк-медные катализаторы 112, 113]. Известно, что катализаторы на медной основе повышают скорость образования метанола из синтез-газа, но быстро становятся инертными из-за наличия в синтез-газе примесей серы. Использование медьсодержащих катализаторов позволяет синтезировать метанол при пониженных температуре и давлении. Схема синтеза метанола представлена на рис. IX-2. Синтез-газ сжимается компрессором 1, проходит через масляный фильтр и поступает в теплообменник 2. После теплообменника синтез-газ пропускают через каталитический реактор 3. [c.261]

    Более дешевым, но менее эффективным адсорбентом для сухой очистки газа служит активированный уголь. Сероводород адсорбируется на его поверхности и окисляется до элементарной серы кислородом воздуха (активированный уголь служит одновременно и катализатором реакции)  [c.247]

    Никель-хромовый катализатор (индекс 51—U12, ГОСТ. 12410—66) [57, 58]. Используется для гидрирования органических соединений различных классов (альдегидов, бензола, фенола й др.), для очистки газов и паров от примесей кислорода, окиси углерода, серы. Выпускаются два сорта этого катализатора, отличающиеся активностью. [c.412]

    Таким образом, на никельхромовом катализаторе, варьируя технологические параметры (температуру и объемную скорость), можно получать различные целевые продукты (серу или диоксид серы). Этот катализатор предложен для селективной очистки газов от сероводорода окислением последнего кислородом воздуха до элементной серы при температуре 270...280"С и объемной скорости 10000 ч . Степень утилизации сероводорода составляет 92% [3]. [c.103]

    Для сравнения действия трехокиси мышьяка на платиновые и ванадиевые катализаторы надо учесть, что по каталитической активности 1 г платины эквивалентен примерно 0,5 л ванадиевого катализатора. Исходя из этого и значений отравляемости катализаторов, приведенных на стр. 98 и 167, приходим к выводу, что ванадиевые катализаторы в отношении трехокиси мышьяка в несколько тысяч раз (в среднем в 5000 раз) устойчивее платиновых. Другими словами, одинаковое снижение активности произойдет при добавлении к ванадиевому катализатору в 5000 раз большего количества мышьяка, чем к платиновому. Это является значительным преимуществом ванадиевых катализаторов. Отсюда нельзя, однако, делать вывод о том, что при работе с ванадиевыми катализаторами очистка газа от мышьяка становится излишней. Исходя из приведенных выше данных об отравляемости ванадиевых катализаторов, нетрудно подсчитать, что при работе на неочищенном газе (получаемом обжигом колчедана, содержащего около 0,1% мышьяка, или сжиганием серы, полученной из сульфидных руд и содержащей около 0,2% мышьяка) активность ванадиевого катализатора в первом по ходу газа слое снизится в два раза примерно через месяц. [c.172]


    Нефтяные и природные газы наряду с углеводородами могут содержать кислые газы — диоксид углерода (СО ) и сероводород (Н jS), а также сероорганические соединения — серооксид углерода ( OS), сероуглерод ( Sj), меркаптаны (RSH), тиофены и другие примеси, которые осложняют при определенных условиях транспортирование и использование газов. При наличии диоксида углерода, сероводорода и меркаптанов создаются условия для возникновения коррозии металлов, эти соединения снижают эффективность каталитических процессов и отравляют катализаторы. Сероводород, меркаптаны, серооксид углерода — высокотоксичные вещества. Повыщенное содержание в газах диоксида углерода нежелательно, а иногда недопустимо еще и потому, что в этом случае уменьшается теплота сгорания газообразного топлива снижается эффективность использования магистральных газопроводов из-за повышенного содержания в газе балласта. Если рассматривать этот вопрос с указанных позиций, то серо- и кислородсодержащие соединения можно отнести к разряду нежелательных компонентов. Однако такая постановка вопроса не исчерпывает всей полноты проблемы, так как кислые газы являются в частности высокоэффективным сырьем для производства серы и серной кислоты. Поэтому при выборе процессов очистки газов учитывают возможности достижения заданной глубины извлечения нежелательных компонентов и использования их для производства соответствующих товарных продуктов. В Канаде, например, сера в зависимости от содержания в газе сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы, а также регламентируются условия разработки и эксплуатации некоторых месторождений [22]. Известны случаи, когда сероводородсодержащий природный таз добывают с целью производства серы, очищенный газ после извлечения сероводорода закачивают обратно в пласт для поддержания пластового давления. В ряде стран мира (США, Канаде, Франции) открытие крупных месторождений природного сероводородсодержащего газа положило начало широкому развитию в 50-х годах добычи и очистки такого газа и производству серы из этого сырья. В Канаде из сероводородсодержащего газа получено около 5,3 млн. т серы (по состоянию на начало 1978 г. доказанные запасы серы составляли 105 млн. т) [23]. [c.135]

    Значительным преимуществом процесса обезвреживания сернистых газов в водных растворах является возможность глубокой очистки от БО, и получения товарной серы из низкоконцентрированных выбросов. Исследования процесса очистки проводились на пилотных и опытных установках в двух вариантах одновременная очистка газов от 50, и Н,5 при их совместном присутствии и очистка газа от 50,. В последнем случае необходимый для процесса сероводород получался восстановлением серы или 50,. В табл. 4.30 приведены данные по очистке газа, моделирующего по содержанию 50, и Н,5 отходящие газы производства серы. Применение катализатора ИК-27-1 в сочетании с тиосульфатом аммония дает максимальную степень очистки по сравнению с цитратным раствором, используемым на практике, а также по сравнению с водной промывкой [81]. [c.204]

    В двухстадийном варианте процесса (рис. 2.28) нагретое сырье и циркулирующий водородсодержащий газ смешивают и пропускают через реактор первой стадии для очистки от серы, азота и частично от ароматических углеводородов, после чего газосырьевая смесь вместе с рециркулирующим остатком и добавочным количеством водорода поступает во второй реактор для контакта с катализатором гидрокрекинга. Продукты, выходящие из второго реактора, отдают тепло сырьевой смеси и поступают в сепаратор высокого давления. Последующее движение продуктов реакции не отличается от предшествующей схемы. [c.153]

    В зависимости от технологической схемы сернокислотного завода (сжигание серы или переработка сульфидов металлов) пыль или окалина, попадая на катализатор, в различной степени забивает промежутки между таблетками. В процессе со сжиганием серы пыль образуется из загрязнений серы, при. разрушении фильтров расплавленной серы, растрескивании кирпича в камере сжигания и пленки окалины стальных аппаратов и труб, а также при вибрации слоя катализатора в ходе процесса [135]. На заводах, где производится сжигание серы, обычно нет системы очистки газов. Сернокислотные заводы, перерабатывающие газы обжига сульфидов меди, цинка или свинца, вынуждены иметь такие системы. Но никогда не удается добиться полного удаления пыли. Небольшое количество ее попадает в реактор и оседает в верхней части первого слоя катализатора. Некоторые специфические загрязнения, образующие субмикронные дымы, могут откладываться главным образом в следующих слоях катализатора с более низкой температурой. Часто так ведут себя мышьяк и свинец. [c.267]


    Как уже указывалось выше, сырьем для полимеризации служит пропан-пропиленовая фракция газов крекинга. Содержание серы и азотистых оснований в сырье должно быть минимальным, так как они отравляют катализатор при наличии серы в продуктах полимеризации образуются сернистые соединения, что весьма нежелательно. Для устранения указанных загрязнений сырье подвергают тщательной очистке. [c.405]

    Как следует из таблицы, гидрирование непредельных углеводородов в интервале 300—400 °С практически может протекать нацело. Такие же благоприятные термодинамические условия имеются и для гидрокрекинга предельных углеводородов, однако гидрокрекинг предельных углеводородов Сз—Св не идет на катализаторах, содержащих серу, и при наличии сернистых соединений в газе. Этот процесс осуществляют на никелевых катализаторах после предварительной тонкой очистки газа от сернистых соединений. [c.63]

    Прямая перегонка и деструктивные процессы переработки нефти сопровождаются образованием газа, в котором в зависимости от содержания и природы сернистых соединений в сырье присутствуют в различных концентрациях сероводород и другие соединения серы (табл. 5.1). При наличии сероводорода в газе создаются условия для коррозии металлов, снижается эффективность каталитических процессов из-за отравления катализаторов. Прежде чем направить заводские газы на разделение, их как правило, подвергают очистке. Проведение очистки всегда повышает стоимость газов, однако возросший во всем мире спрос на серу в корне изменил экономические показатели процессов очистки газа. К прибыли, получаемой от реализации очищенного газа, прибавилась стоимость извлекаемой из него серы. В Канаде, например, сера при различном содержании в газе. сероводорода рассматривается как основной, сопутствующий или побочный продукт, и в зависимости от этого распределяются затраты на очистку газа и производство серы [70]. [c.280]

    В химической технологии адсорбцию используют для очистки нефтепродуктов от малых содержаний воды, соединений серы, селена, мышьяка, фосфора и т. п. для разделения смесей на составляющие их компоненты для очистки газов и т. д. Благодаря трудам. Н. Д. Зелинского и его ученика А. А. Баландина (1898— 1967) особое место в химической технологии заняла адсорбция на катализаторах (подробней см. разд. III.9). [c.129]

    При выборе способа очистки газов необходимо иметь в виду также то, что наряду с H2S регламентируется также концентрация углеводородов в газе, подаваемом на установку Клауса. Содержание углеводородов в газах регенерации более 2—4% приводит к снижению активности катализатора установок Клауса и ухудшению качества серы. [c.34]

    Волокнистое углеродное вещество в активированных формах широко применяется в качестве адсорбента и катализатора для адсорбционной очистки газов и жидкостей от органических веществ и тяжелых металлов. Применение данного материала позволяет также резко снижать выбросы диоксида серы и оксидов азота с дымовыми газами. [c.102]

    В случае двухступенчатой схемы после первой ступени осуществляют отделение газов и гидрогенизат после нагрева в печи поступает в реактор второй ступени. После этого из продуктового потока выделяют светлые фракции (бензин, реактивное и дизельное топливо), а непревращенный остаток направляют на рециркуляцию в реактор первой либо второй ступени или отдельный реактор. В последних случаях реакторы могут содержать катализаторы с разными свойствами. В первом по ходу сырья реакторе может происходить облагораживание сырья (очистка от серы, азота и частично арома-тики) на катализаторах, стойких к азоту и сере, во втором реакторе — гидрокрекинг облагороженного сырья. Двухступенчатую схему используют в том случае, когда путем глубокого превращения необходимо получить большое количество светлых легких топливных фракций. При менее глубоком процессе используют одноступенчатую схему. [c.38]

    Очистка газа. Каталитические процессы производства аммиака необходимо осуществлять при высокой чистоте поступаюп1его па катализаторы газа. Так, в природном газе, подаваемом на катализатор конверсии метана, содержание серы не должно превышать [c.85]

    Процесс сухой очнстки от сероводорода активным углем основан на окислении сероводорода до элементарной серы кислородом на поверхности активного угля. Образующаяся при очистке элементарная сера отлагается в порах угля по мере заполнения поверхности угля серой процесс очистки замедляется и прекращается. Для восстановления поглотительной способности угля его промывают раствором сернистого аммония. После промывки и пропарки активный уголь вновь пригоден для очистки газа. Каталитическая очистка газа протекает в две ступени на первой ступени на катализаторе при подаче пара или водорода органические соединения серы превращаются в сероводород, а на второй ступени сероводород удаляют из газа. [c.47]

    На первой ступени очистки отходящих газов использовёЬся генера-тор-газовосстановитель для газа, получаемого при сгорании топливного газа с воздухом, подаваемом в количестве ниже стехиометричес-кого. Промышленный опыт работы многих установок позволил проводить процесс сгорания без образования сажи в продуктах сгорания. Смесь продуктов неполного сгорания с отходящими газами проходит через слой кобальтмолибденового катализатора БСР, где сера и SOj гидрируются, а OS и Sj гидролизуются до H S. Отмечается, что после восстановления газ можно охлаждать, не опасаясь забивки оборудования твердой серой. На первой ступени двухступенчатого охлаждения газа генерируется водяной пар, затем в конденсаторе смешения газ охлаждается до температуры окружающего воздуха с конденсацией и отделением воды. После этого получают охлажденный и частично осушенный газ, содержащий 1...2% об. сероводорода и примерно столько же непрореагировавшего водорода. Контроль и управление процессом осуществляется с помощью поточного анализатора водорода и сероводорода. По концентрации водорода регулируют подачу воздуха в генератор газа-восстановителя, по сероводороду - в реактор прямого окисления. [c.175]

    Оксидные цинк-хромовые катализаторы для синтеза при высоком давлении проявляют относительно высокую устойчивость к каталитическим ядам, в частности к сере допустимое содержание НгЗ в сырье иревышает 30 млн . А для медного катализатора содержание НгЗ в сырье должно быть меньше 1 млн . И только разработка новых процессов очистки газов позволила снизить содержание соединений серы до уровня 0,1 млн . Это увеличило срок службы катализатора более чем до 3 лет. [c.219]

    Перед проведением окислительной регенерации установку следует прогревать водородсодержаш,им циркулирующим газом с целью тщательной очистки от серы. В противном случае образующийся при регенерации катализатора серный ангидрид будет реагировать с активной окисью алюминия, давая основной сульфат алюминия и вызывая существенные изменения катализатора. [c.165]

    Для наиболее распространенного вида сырья — лигроинов прямой перегонки нефти, подвергаемых каталитичеакаму риформингу, основной задачей является глубокая очистка от серы и азота, небольшое дегидрирование парафинов и циклопарафинов и гидрокрекинг значения не имеют. Чтобы обеопечить максимальную скорость очистки, можно применять м аксимальные температуры 400—420 °С. При очистке авиационных керосинов недопустимо образование олефиновых и ароматических углеводородов, а иногда необходимо и неглубокое гидрирование последних (нафталинов). При применяемых обычно парциальных давлениях водорода термодинамически возможный выход нафталина при дегидрировании декалина и тетралина резко возрастает при температурах выше 370 °С, и очистку обычно проводят при 350—360 °С. Фракции, используемые в качестве дизельного топлива, можно очищать при температурах до 400—420 °С, при дальнейшем повышении температуры в результате дегидрирования би- и полициклических нафтенов снижается цетановое число, растет выход продуктов гидрокрекинга — газа и бензина и в результате реакций гидрокрекинга резко возрастает расход водорода. Нижний предел температуры очистки определяется в этом случае возможностью конденсации тяжелых фракций сырья появление жидкой фазы резко замедляет гидрирование из-за ограничения скорости транспортирования водорода к поверхности катализатора скоростью диффузии через пленку жидкости. [c.269]

    Контактным способом производится большое количество сортов серной кислоты, в том числе олеум, содержащий 20% свободного 50з, купоросное масло (92,5% Н2504 и 7,5% НзО), аккумуляторная кислота примерно такой же концентрации, как и купоросное масло, но более чистая. Контактный способ производства серной кислоты включает три стадии 1) очистку газа от вредных для катализатора примесей 2) контактное окисление диоксида серы в триог сид 3) абсорбцию триоксида серы серной кислотой. Главной стадией является контактное окисление ЗОа в 50з по названию этой операции именуется и весь способ. [c.126]

    Если применять на первой ступени контактирования контакт-Р1ЫЙ аппарат с кипящим слоем катализатора, для которого отпадает необходимость тонкой очистки газа от пыли, то получается короткая система производства. При этом в контактный аппарат поступает из электрофильтров горячий газ и появляется возможность частичного использования теплоты окисления 50г для получения товарного пара. В этой системе триоксид серы после первой ступени конденсируется вместе с парами воды, содержащимися в газовой смеси (влага колчедана и воздуха). [c.137]

    Смешанный газ сначала подвергается грубой очистке от серы, а затем тонкому обессериванию (последнее осуществляют при 100° пропусканием газа над сухим бурым углем). Катализатор просеивается на зерна размером 2—4 мм и восстанавливается водородом. Последний процесс производится при 450° большим избытком водорода (2000 л водорода на 1 л катализатора и час). Водород находится в циркуляционной системе. Образующаяся при восстановлении вода осаждается при помощи холодильника, после чего водород высушивается силикагелем. Время восстановления — 50 час. Контакт охлаждается в токе водорода и сохраняется под водородом. Перед включением печи водород над катализаторной емкостью заменяется СОз как запц1тным газом углекислотой заполняются также печь и все коммуникации в целях полного удаления кислорода воздуха. Заполнение это должно производиться с большой осторожностью, чтобы не повредить и пе вывести из строя контакт. В случае повреждения катализатор делается непригодным к работе при желаемых низких температурах. Прп правильном восстановлении и подготовке катализатора синтез начинается при 170° и достаточно удовлетворительно идет при 180°. Превра-гцение исходной газовой смеси определяется как температурой г.интеза, так и скоростью газового потока. Чем ниже рабочая температура и выше скорость потока, тем больше образуется воды вместо углекислоты в продукте реакции. Заводские опыты ироводились лишь в условиях однократного пропуска (опыты в циркуляционной аппаратуре еще не были осуществлены). Длительность жизни катализатора более 3 мес. Для удаления высококипящей парафиновой части продукта с поверхности катализатора целесообразно проводить экстракцию парафина бензином. [c.201]

    Между сернистыми соединениями на катализаторе и сернистыми соединениями и водородом, находящимися в газе, устанавливается равновесие. При изменении содержания серы или водорода в газе равновесие нарушается и возможпо выделение серы из катализатора или поглощение им серы из газа. В условиях очистки газа или бензина от сернистых соединений по двухступенчатой схеме переход части серы, содержащейся в катализаторе, в газ не отражается на общем эффекте очистки, поскольку за катализатором гидрирования следует поглотитель сернистых соединений на основе окиси цинка. Взаимодействие сероводорода с окисью цинка при 350—400 °С и избытке водорода проходит до конца. [c.62]

    Для тонкой очистки газов служит поглотитель ГИАП-10-2 на основе окиси цинка с акшвируощей добавкой сижса меди. Предварительно катализатор должен быть восстановлен водородом или окисью углерода до металлической меди. Кроме реакции (4.13) на этом катализаторе происходит также необратимое связывание серы медью  [c.91]

    Глубокая очистка от серы тяжёлой и лёгкой нафты, фракции Сз-С4 и лёгких углеводородов (в т.ч. природного газа). Защита катализаторов каталитическог риформинга, парового риформинга и предриформинга. [c.26]

    Активность катализаторов зависит от наличия в 1шх сульфидов и растворенной серы. Поэтому при очень низком содержании серы в очищаемом газе необходимо специальное сульфидирование катализаторов, в первый период очистки не полностью суль идированные катализаторы поглощают почти всю содержащуюся в газе серу. Процесс сульфадирова-ния обратим, и состав катализатора определяется условиями равновесия систем Ме -S- или МеО s - //2 Активный катализатор должен содержать 1-4 и 31акой катализатор осуществляет гидрирование соединений серы путем реакции преимущественно на двух типах кислотных точек, одни из которых сильнокислотные,другие -очень слабокислотные /53/. Сероводород и сероорганические соединения прочно адсорбируются на сильнокислотных точках, обладающих некоторой активностью гидрогенолиза. Но главную роль играют слабо-кислотные точки. Они могут отравляться сильными основаниями,в том числе аммиаком, часто присутствующим в водородной фракции.Поэтому концентрация аммиака должна контролироваться. [c.98]

    Раствор МЭА, насыщенный сероводородом, из абсорберов для очистки газов М поступает в дегазатор J3, где при снижении давления из раствора МЭА выделяются растворенные газообразные углеводороды и бензин. Выделившийся бензин направляется в, стабилизационную колонну 8. Дегазированный насыщенный раствор МЭА, предварительно нагретый в теплообменниках 3, поступает в отгонную колонну 10, температурный режим в которой поддерживается циркулирующим через термосифонный паровой рибойлер И раствором МЭА. Пары воды и сероводорода, выходящие из колонны 10, охлаждаются в воздушном конденсаторе-холодильнике 4, доохлаждаются в водяном холодильнике 5, после чего разделяются в сепараторе 9, где также предусмотрены отстой бензина и его г, вывод в стабилизационную колонну 8. Сероводород VII] из сепаратора 9 направляется на производство серной кислоты или элементной серы. Из нижней части колонны 10 выводится регенерированный раствор МЭА, который после последовательного охлаждения в теплообменниках, воздушном и водяном холодильниках вновь возвращается в цикл. Для удаления механических примесей из насыщенного раствора МЭА предусмотрено фильтрование части раствора. При потере активности катализатора проводится его паровоздушная регенерация. [c.239]

    Ужесточение норм на выбросы в атмосферу создает проблему снижения сернистых соединений в газах регенерации катализаторов крекинга.) На рис. 4.26 показаны кривые зависимости содержания оксидов серы в газа регенерации катализатора от содержания серы в исходном скрье крекинга [91] (отношение воздух катализатор равно 11 1, отношение СОа/СО равио 1,3, содержание кислерода в газе на выходе из регенератора 2,0% об,). Как видно из рисунка, за рубежом санитарные нормы на содержание оксидов серы в газах регенерации будут выполняться при концентрации серы в сырье на действующих установках не более 0,25—1,0% (масс.), а на новых установках — пе более 0,1—0,2% (масс.), что может быть обеспечено для сернистых дистиллятов в процессе предварительной гидроочнсткн.,Св нашей стране выбросы сернистых соединений в атмосферу нормируются в целом по НПЗ и, по данным [90], выполнение требований санитарных норм в большинстве случаев обеспечивается при гидро-очистке сырья до. 0,2—0,3% [масс.)  [c.127]

    PURASPE 65хх катализаторы для тонкой очистки от серы сжиженного газа, предназначенного для использования в бытовых аэрозолях [c.29]

    Первая промышленная установка была построена фирмой Лурги в Нюрнберге (ФРГ) здесь гидрирование сырого бензола, получаемого перегонкой каменноугольного дегтя, осуществляют коксовым газом под давлением около 37 ат. Несколько иные условия гидроочистки используются на установках фирмы Шольвен (производительность 720 м /сутки) и Гарпенер Бергбау (производительность 201 м сутки) [52]. На этих установках очистку сырого бензола проводят водородом вместо коксового газа при 350° С и давлении 52—63 ат. Хотя применяемый катализатор точно не указан, очевидно, используется окисный металлический катализатор типа кобальт-молибденового на окиси алюминия, аналогичный применяемому при гидроочистке бензинов. В некоторых случаях сырой бензол коксования нагревают при 37 ат до 200° С в присутствии коксового газа. Пос.ле этой обработки, ведущей к удалению полимерных продуктов, сырой бензол нагревают до 350° С и пропускают через слой катализатора для превращения серы и азота соответственно в сероводород и аммиак, удаляемые последующей промывкой продукта. Затем бензол, толуол и ксилол отделяют от алканов четкой ректификацией. [c.156]

    Прнсутствуюш,ие в технологических газах серосодержаш,пе соединения считаются вредными примесями, вызываюш ими коррозию трубопроводов и аппаратуры, отравление катализаторов, ухудшение качества продукции и загрязнение атмосферы. Поэтому очистку газа от серы необходимо проводить на самой ранней стадии его переработки. [c.287]

    Растворенная сера играет важную роль в каталитическом про цессе. Установлено, что активность катализаторов зависит от наличия в них сульфидов или растворенной серы. Поэтому для получения высокоактивных катализаторов при отсутствии в газе сероводорода или сероуглерода рекомендуется специально (хотя бы частично) сульфидировать катализаторы этими газами при температуре 300—450 °С [1, 76—79]. Особенно большое значение имеет операция предварительном сульфидирования катализаторов, которые используют при гидрировании тиофенов. В ряде случаев промышленностью выпускаются сульфидированные или частично суль-фидированные катализаторы. При протекании реакции гидрирования на сульфидах в газе образуется сероводород, в присутствии которого полностью завершается сульфидирование катализатора. В связи с этим в первый период очистки катализаторы гидрирования поглощают практически всю содержащуюся в очищаемом газе серу. [c.305]

    Метод основан на каталитическом взаимодействии сероорганиче-ских соединений с кислородом и образовании легкоудаляемых кислородных соединений серы. Применение этого способа в азотной промышленности осложняется необходимостью дозировки кислорода и отсутствием высокоселективных катализаторов для очистки газов в присутствии водорода. Последнее связано с тем, что водород реагирует с кислородом с высокой скоростью на большинстве катализаторов [2, 93—95]. В азотной промышленности этот метод пока не нашел применения. [c.309]

    На старых установках исиользуется содовый раствор с добавками соединений мышьяка, в качестве катализатора окисления иоглощеппого сероводорода. Сера выделяется из раствора на стадии регенерации поглотителя кислородом воздуха, затем отделяется на центрифуге или на фильтре. На новых установках мышьяк заменяется на глицин, в этом случае абсорбент становится активированным поташом и регенерация раствора осуществляется ири помощи теила, с иолучепием кислого газа, который требует дальнейшей утилизации. Химические реакции, происходящие ири очистке газа, следующие  [c.439]

    Водород для гидрирования в виде азотоводородной смеси имеется в производстве аммиака. Его добавляют до 15%. Ко-бальт-молибденовый катализатор активен в этих реакциях при 670 К. Выходящий из реактора гидрирования газ содержит серу только в виде H2S и направляется в абсорбер, в котором и происходит собственно очистка газа. Технологическая схема очист- [c.437]

    После второй мировой войны установка Баттерси была реконструирована. Горизонтальная камера была заменена более эффективными про-тивоточными вертикальными скрубберами, расположенными непосредственно под четырьмя дымовыми трубами станции (рис. 7.14) мел добавляется ко всему потоку промывной воды, которая подается на верх скрубберов. К раствору, отходящему с низа скрубберов, добавляется катализатор окисления (неочищенный сульфат марганца). Окисление необходимо для возможности сброса отходящего раствора в реку. Протекание окисления в самом скруббере нежелательно, так как оно может снизить растворяющую способность воды при очистке газа с низким содернганием SOg (см. рис. 7.13). Типичные показатели установки, работающей на силовой станции Баттерси и предназначенной для очистки дымовых газов станции мощностью 120 Мет, работающей на угле, содержащем 1,5% серы, приводятся ниже [41, 42]. [c.161]

    Одним из наиболее широко применяемых процессов очистки сннтез-газа от органических сернистых соединений является опубликованный в 1934 г. железо-содовый процесс, который можно рассматривать как дальнейшее усовершенствование классического процесса сухой очистки газа гидратом окиси железа. В основе его лежит окисление оргапнческих сернистых соединений в кислородные производные серы (главным образом ЗОу) нри повышенных температурах на катализаторе, состоящем из гидратированной окисп железа и карбоната натрия. Окислы серы взаимодействуют с карбонатом натрия и удерживаются на катализаторе в виде сульфата натрия. Кислород для окисления органических сернистых соединений подводят, добавляя небольшие количества воздуха перед каталитическими реакторами или камерами. Железо-содовый процесс успешно применялся на многочисленных установках синтеза жидкого топлива в Германии для получения газа с достаточно нпз]сим содержанием органической серы. [c.195]


Смотреть страницы где упоминается термин Катализаторы очистки газов от серы: [c.179]    [c.212]    [c.85]    [c.99]    [c.137]    [c.419]   
Технология связанного азота (1966) -- [ c.206 ]




ПОИСК





Смотрите так же термины и статьи:

Катализатор газов

Катализаторы от серы

Катализаторы очистка газа

Очистка катализаторов

Сера газов



© 2025 chem21.info Реклама на сайте