Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен механизм действия

    Многие годы механизм действия окиснохромовых катализаторов был неясен. Эрих и Марк [171] предполагали катионный механизм, исходя из структуры полимера. Отличие окиснохромовых катализаторов от классических катализаторов Циглера— Натта состоит в том, что они полимеризуют этилен в отсутствие активаторов, в частности АОС. При нанесении на алюмосиликат или силикагель хрома в количестве, отвечающем оптимальной активности катализатора, после активации были обнаружены соединения хрома, в которых хром имел различную степень окисленности Сг +, Сг +, Сг +, Сг +. Неясным оставалось, [c.161]


    Для регулирования молекулярной массы и структуры полиэтилена в этилен, поступающий на полимеризацию, вводят модификаторы -агенты передачи цепи. Механизм действия модификаторов рассматривается в гл. 4. В качестве модификаторов чаще всего используют пропан, пропилен, изопропиловый спирт, а также другие вещества, имеющие подвижные атомы водорода и высокое значение константы передачи цепи. [c.37]

    Действие элементарной серы на процесс вулкани- нации с перекисными соединениями является сложным процессом. По мнению Натта с сотрудниками, роль серы в процессе вулканизации заключается в защите этилен-пропиленового сополимера от деструкции. Более подробное исследование механизма действия серы совместно с перекисными соединениями в модельных реакциях показало, что роль серы в процессе вулканизации более сложная. [c.62]

    Были рассчитаны энергии активации и для реакций присоединения хлора к этилену при расчетах также предполагали два возможных механизма — радикальный или бимолекулярный. Их значения оказались близки (28,5 и 25,2 ккал/моль соответственно), однако меньше (при одинаковых условиях), чем для реакций замещения. Ингибирующее действие кислорода и в этом случае говорит в пользу радикального механизма. [c.265]

    Хлорирование. Реакционная способность углеводородов возрастает с увеличением протяженности углеродных цепей. Фотохимическое хлорирование при умеренных температурах более эффективно действует на атомы водорода, связанные с третичным углеродом, так как связи первичного углерода с водородом более стабильны. При 500—600 °С все углеродно-водородные связи достигают примерно одинакового уровня реакционной способности. Ненасыщенные углеводороды в отличие от насыщенных реагируют в жидкой фазе при низких температурах, отсутствии света и катализатора. Пропилен хлорируется значительно быстрее, чем этилен 2-бутен — с такой же скоростью, что и изобутан, но гораздо быстрее, чем 1-бутен и пропилен. Бутан может быть хлорирован при комнатной температуре в темноте, если в нем содержится несколько процентов бутенов, которые облегчают хлору разрушение механизма цепей. [c.41]

    Диамагнитные локальные электронные токи создают изотропное магнитное поле, величина которого не зависит от ориентации молекулы относительно приложенного магнитного поля. Поэтому если бы механизм экранирования включал в себя только действие локальных токов, то в соответствии с электроотрицательностями групп, к которым присоединены протоны, следовало бы ожидать закономерного убывания величины химического сдвига в ряду этан — этилен — ацетилен. Однако в спектрах этих соединений резонансные сигналы протонов наблюдаются в жидком состоянии соответственно при 0,96, 5,84 и 2,88 б. Следовательно, в молекулах этих соединений экранирование зависит не только от диамагнитного эффекта локальных электронных токов, но и от других причин. Аналогичные выводы следуют из спектров ЯМР многих других ненасыщенных и особенно ароматических соединений. [c.68]


    Показано, что расщепление диэтилового эфира в присутствии литийорганического соединения приводит к образованию этилена и этилата лития, а расщепление ТГФ дает енолят ацетальдегида и этилен. Интенсивное изучение механизма разрыва связей простых эфиров показало, что он меняется в зависимости от природы реагирующих соединений и даже для одного и того же эфира возможна реализация альтернативных механизмов. Так, например, для расщепления диэтилового эфира под действием литийорганического соединения постулированы механизмы, включающие и даже а ф -элиминирование  [c.255]

    Полимеризация этилена при низких давлениях . К. Циглер установил, что этилен полимеризуется в присутствии комплекса, образующегося в результате взаимодействия алкилалюминия, например А1(С2Ни).,, и хлорида металла переменной валентности, например Т1С14. Механизм действия этого комплексного катализатора на этилен до сих пор еще не исследован с достаточной полнотой, но есть основания предполагать, что в присутствии такого комплекса этилен полимеризуется по механизму анионного процесса (стр. 139 и сл.). Комплекс катализатора легко разрушается под влиянием кислорода воздуха или влаги и активирующее действие его при этом прекращается. Поэтому полимеризацию этилена проводят в атмосфере азота и в среде раство- [c.195]

    В 1960 г. американские исследователи показали, что нитрогена-за сохраняет свою активность в бесклеточных экстрактах lostridium pasteurianum. Это послужило толчком для начала активных исследований биохимии азотфиксации, структуры и механизма действия нитрогеназы. К 1981 г. нитрогеназа была выделена из 36 видов микроорганизмов. Она считается одним из наиболее сложных ферментов, использующих простые субстраты. Кроме азота нитрогеназа может восстанавливать ацетилен, цианистый водород, закись азота и некоторые другие соединения. Восстановление ацетилена в этилен позволило разработать надежный тест для обнаружения азотфиксирующей активности. Непременное условие работы нитрогеназы — ее защита от кислорода, который ингибирует не только активность нитрогеназы, но и ее биосинтез. [c.151]

    Данные об изменениях работы выхода электронов, о механизме проводимости и о наличии заряда на поверхности позволяют рассмотреть возможный механизм действия примесей в катализаторе. При этом следует учитывать взаимодействие диполей на поверхности катализатора , протекаюш,ее аналогично взаимодействию заряженных частиц в адсорбционном слое . В присутствии электроотрицательных добавок (кислород, хлор) при электростатическом взаимодействии диполей кислорода и этилена с диполем металлоида уменьшается степень заполнения поверхности серебра кислородом и увеличивается степень ее заполнения этиленом. В результате возрастает вероятность образования окиси этилена на серебре. При введении электроположительных добавок, спо-собствуюш,их уменьшению работы выхода электронов, возможно глубокое окисление этилена, так как увеличивается степень заполнения поверхности кислородом..  [c.221]

    По мнению большинства исследователей, механизм действия производных этилен-Л ,Л -бис(дитиокарбаминовой) кислоты отличается от действия производных Л ,Л -днметилдитиокар-баминовой кислоты. Это обусловлено прежде всего более высокой [c.299]

    Среди такого рода растительных биорегуляторов различают фитогормоны, природные стимуляторы и ингибиторы. К растительным гормонам, или фитогормонам, относятся ауксины, гибберел-лины, цитокиннны, абсцизовая кислота и этилен. В отличие от многих других биологически активных соединений, фитогормоны общие для всех растений биорегуляторы, которые синтезируются в активно делящихся клетках меристемы (верхушке побега, кончике корня, молодых листьях, семенах) и затем транспортируются в другие органы и ткани, где при низких концентрациях (10 10 М) осуществляют химический запуск физиологических программ. Существует четкая сбалансированность действия этих соединений а растительном организме, схематически показанная на рисунке 360. Молекулярные механизмы действия фитогормонов [c.715]

    В последние годы начато промышленное осуществление ряда радиационных химико-технологических процессов. К таким процессам относятся в первую очередь реакции органического синтеза, протекающие по цепному (или близкому к цепному) механизму и инициируемые излучением хлорирование, сульфирование, окисление, присоединение по двойной связи и т. п. Освоенным в промышленности процессом является, например, синтез бромистого этила прямым присоединением НВг к этилену при действии у-лучей. Особо важной отраслью промышленной радиационной химии являются разнообразные превращения полимеров, в особенности Е /лканизация каучуков. Промышленностью освоена радиационная полимеризация этилена и прямое получение полиэтиленовых пленок и изделий сшиванием макролюлекул, т. е. образованием химических связей между ними при действии излучений. Радиационно-терми-ческая вулканизация изделий из каучука, в частности шин, является перспективным процессом, так как улучшается качество продукции. При радиационно-химических превращениях изменяются свойства и структура полимеров, что используется техникой для улучшения технологических показателей. [c.281]


    Были предложены многие гипотетические механизмы действия этилена. В гл. 25 мы обсуждали гипотезу Дженсена относительно связи между ауксинами и этиленом. Ни одно из всех многочисленных изменений, которые происходят в созревающем плоде, не удалось пока связать непосредственно с действием этилена. Высказывались предположения, что этилен действует непосредственно па ферменты, что он является коферментом или что он играет роль разобщающего агента, нарушающего сопряженность процессов окисления и фосфорилирования. Однако пока все это не более как догадки. Ван Флит [86] полагает, что этилен, подобно системе эфир — вода, действует как липотроп-пый агент, вызывая перераспределение кле- [c.501]

    Механизм действия этой системы неясен. В работе [56S] объясняют такое действие тем, что соли органических кислот способствуют выделению эффективно действующего пентаэритрита на поверхность. Термостабилизация устойчивых к действию высоких температур бутил- и этилен-пропиленового каучуков описана в работе [539а.  [c.409]

    На основе изложенного материала предлагается следующее представление о механизме действия дефолиантов. Основой дефолиирующего действия различных химических соединений является смещение равновесия в гормональной системе ауксин-этилен в сторону этилена. Способы воздействия различных дефолиантов на эту систему могут быть разными. На примере бутифоса и хлората магния показано, что возможными промежуточными звеньями в действии дефолиантов могут быть подавление синтеза белка и накопление свободных аминокислот. [c.124]

    По мнению большинства исследователей, механизм действия производных этилен-бис-(дитиокарбаминовой) кислоты отличается от действия производных диметилдитиокарбаминовой кислоты. Это связано прежде всего с их реакционной способностью, которая в случае этилен-бис-(дитиокарбаматов) значительно выше, чем у производных диметилдитиокарбаминовой кислоты. Полагают, что действие этилен-бис-(дитиокарбаматов) помимо влияния на окислительно-восстановительные системы грибов связано с легким образованием соответствующих изотиоцианатов, которые могут вступать во взаимодействие с различными активными группами в молекуле белков. Это подтверждается и более высокой фунгицидной активностью соответствующих алкилен-бис-(изотиоцианатов). [c.356]

    Представляет интерес осуществление полимеризации этилена на галогенидах Т1, V, Сг, Ре, Со, 7г и других металлов, когда роль сокатализатора выполняет ионизирующее излучение. Раствор галогенида (например, ПСЦ в гептане) при низкой температуре подвергают облучению, в ходе которого происходит восстановление галогенида (например, в Т1С1з). Затем в этот раствор продувают газообразный этилен, который полимеризуется. Такого рода исследования направлены на выяснение роли компонентов и механизма действия катализатора Циглера — Натта [33—36]. [c.120]

    Можно найти различные точки зрения относительно механизма действия хлора. Например, Лансфорд и соавт. [455] наблюдали на 65% Li l/MgO селективность в превращении СН4 в этан 40,9%, а в превращении этана в этилен 70,2% при 75-79%-ной конверсии, но активность постепенно уменьшалась из-за удаления хлора по реакции [c.311]

    Скорость полимеризации и свойства получаемого ПЭНД зависит от температуры, давления и активности катализатора, которая определяется мольным соотношением диалкилалюми-ния и тетрахлорида титана. При повышении содержания последнего в контактной массе возрастает скорость процесса и выход ПЭ, но снижается его молекулярная масса. Для регулирования молекулярной массы полимера в этилен вводится водород, который играет роль передатчика цепи. Катализаторный комплекс легко разрушается под воздействием кислорода воздуха и влаги. Поэтому процесс полимеризации проводится в атмосфере азота и в среде обезвоженного бензина. Метод приготовления катализаторного комплекса и механизм его действия рассматривается в главе XX. К недостаткам метода ионной полимеризации относятся огнеопасность, невозможность регенерации катализатора и сложность процессов его отмывки и очистки бензина. [c.391]

    Бисульфиты медленно присоединяются к олефинам в холодном разбавленном растворе [12]. Существенное значение для реакции имеет присутствие окисляющего агента, например кислорода или нитрита. Это обстоятельство позволило предположить, что можно дать лучшее объяснение механизму реакции, применяя теорию свободных радикалов [12г], так как бисульфит можно превратить в свободный радикал действием окисляющего агента. Скорость присоединения в значительной степени зависит от концентрации водородных ионов. Этилен не реагирует с бисульфитом аммония при значении pH раствора, равнОм 4,8, тогда как для значения pH 5,9 реакция протекает с заметной скоростью. При взаимодействии бисульфита с пропиленом максимум скорости достиг ается в интервале значений pH от 5,1 до 6,1. Бисульфит присоединяется также к изобутилену, триметилэтилену, циклогексену, пинену, дипентену и стиролу. В тех случаях, когда установлено строение продуктов реакции, присоединение происходит не по правилу Марковникова. Так, из пропилена, изобутилепа и стирола получены соответственно соли пропан-1-сульфокислоты, 2-метилпро-пан-1-сульфокислоты и 1-фенилэтан-2-сульфокислоты [12г, е], В последнем примере основным продуктом реакции является 1-фенил-1-оксиэтан-2-сульфокислота в присутствии кислорода, но не других окисляющих агентов, образуется также некоторое количество 1-фенилэтилен-2-сульфокислоты [12е]. [c.107]

    Если проводить окисление в растворителе при —15°, то гидроперекись ацетила (перуксусную кислоту) можно сделать основным продуктом реакции. Этот процесс в настоящее время осваивается в промышленном масштабе. Перуксусную кислоту намерены использовать для производства окисей замещенных этиленов, действуя ею на этиленовые соединения [10]. Риче [11 ] и Хитли [12] предложили механизм реакции, поясняющий образование уксусного ангидрида. [c.336]

    Полиэтилен низкого давления (мол. вес до —3-10 ) получают, по Циглеру, с помощью смещанных катализаторов [напрнмер, Ti U + -f АЦСзНбЬ ср. стр. 188] при этом Ti + переходит в низшую валентность. Натта предложил для этой реакции анионный механизм. Полагают, что получающиеся макромолекулы не разветвлены. В противоположность этому под действием хлористого алюминия (катионная полимеризация) этилен полимеризуется с образованием сильно разветвленных, сравнительно низкомолекулярных веществ (смазочные масла). [c.937]

    Реакции нуклеофильного замещения часто сопровождаются отщеплением. При взаимодействии со щелочами галоидные алкилы образуют не только спирты, но и непредельные соединения. Последние возникают так н<е как побочный продукт действия минеральных кислот на спирты. Разложение четвертичных аммониевых оснований также дает в качестве побочного продукта замещенный этилен. Все это подтверждает предположение о существовании общего механизма замещения и отщепления. Реакция замещения обозначается символом Е (elimination)..Так же как и для нуклеофильного замещения, здесь возможны два механизма бимолекулярный ( 2) и мономолекулярный [c.200]

    Даже если в реакции участвуют одна или две частицы реагентов, в большом числе случаев реакция оказывается сложной, т. е. также проходит через ряд элементарных стадий. В качестве примера можно рассмотреть реакцию присоединения молекулярного хлора к этилену. Прямое взаимодействие между этиленом и С1г запрещено по орбитальной симметрии и скорость его чрезвычайно мала. Если же в системе тем или иным путем (например, при действии света на С ) образуются атомы С1, то процесс может пойти по цепному механизму. Атом С1 легко присоединяется по двойной связи С2Н4 с образованием свободного радикала С2Н4С1. Этот свободный радикал может легко оторвать атом С1 от молекулы С1з с образованием конечного продукта — С2Н4С1.,, в результате чего регенерируется свободный атом С1. [c.226]

    Интересным примером применения изотопной индикации для изучения механизма реакций нуклеофильного замещения может служить обмен брома между бромистым этилом и бромистым этиленом (либо бромистым изоамилом и бромоформом), протекающий в присутствии бромистого алюминия и не идущий в отсутствие этого катализатора. Каталитическое действие бромистого алюминия объясняется протеканием следующих последовательно идущих реакций  [c.148]

    Согласно второй точке зрения, происходит одновременная хемосорбция кислорода и этилена на поверхности катализатора, поэтому кислород и этилен должны конкурировать между собой в борьбе за поверхность катализатора. Это представление согласуется с кинетическими данными об адсорбции этилена и о его тормозящем действии и подтверждается специально поставленными экспериментами Так, например, этилен даже при тех температурах, когда его окисление не происходит, адсорбируется на катализаторе и снижает работу выхода электронов серебра - Уменьшение работы выхода не удается объяснить уменьшением количества хемосорбированного кислорода при его реакции с этиленом. Можно допустить, что электроны смещаются от этилена к серебру или к хемосорбированному на его поверхности кислороду, вследствие чего сам этилен приобретает положительный заряд. Работа выхода электронов серебра снижается тем больше, чем выше парциальное давление этилена в газовой смеси и чем выше температура. Все это указывает на то, что одновременная адсорбция этплена и кислорода на серебре существенно отличается от адсорбции этих же веществ в отдельности. Механизм этого процесса подтверждается также методом конкурирующих реакций . [c.288]

    Как указывалось в главе 17, З-замещенные этил-арсины при действии щелочи также отщепляют непредельный углеводород, именно — этилен. Подобное совпадение свойств -замещенных вииил-арсинов и 3-замещенных этил-арсинов заставляет принять-общий механизм реакции в обоих случаях. Первой фазой действия щелочи на всякий хлорарсин является, конечно, образование соответствующей окиси или ее гидратной формы. Этот процесс легче всего представить, как присоединение элементов едкой щелочи к трехвялентному атому мышьяка, с последующим отщеплением хлористого металла. В случае, например, первичного хлор-арсина, реакция гидролиза будет выражаться следующими схемами  [c.171]

    Характерно, что всеми свойствами истинных фитогормонов обладает этилен. Он образуется главным образом во фруктах иэ 8-аденозилметионина, причем зтот процесс протекает через промежуточное образование 1-аминоциклопропан-1-карбоновой кислоты и индуцируется индолилуксусной кислотой. Этилен регулирует старение различных органов растений, ускоряет Ъпадение листьев, дозревание плодов, тормозит рост корней, побегоа и потому используется на практике для ускорения дозревания фруктов и увеличения их сахаристости. Помимо этилена широко применяется также ряд синтетических соединений, способных разлагаться в растительных тканях с выделением зтилена наиболее известным среди них является хлорэтилфосфоновая кислота, или зтрел. Механизм биологического действия этилена. по видимому, состоит во взаимодействии со специфическими белками клеточных мембран и в торможении биосинтеза индолилуксусной кислоты. [c.719]

    При хлорировании в жидкой фазе классический ион карбония, очевидно, не образуется положительный заряд рассредоточивается по молекуле. Механизм процесса следующий происходит эле-ктрофильное присоединение с промежуточным образованием п- и ст-комплексов. Определяющей скорость процесса, по-видимо-му, является стадия превращения я-комплекса. Протеканию процесса аддитивного хлорирования в малополярных средах благоприятствуют кислоты Льюиса. 1Сак уже отмечалось, в данном случае наиболее часто используется хлорид железа. Механизм его действия включает предварительное образование комплекса с хлором и этиленом по следующей схеме  [c.501]

    Хорощо известно, что галоидопроизводные (за исключением фторидов) обладают высокой чувствительностью к действию ионизирующих излучений. В табл. 4 (стр. 58) приведено число свободных радикалов, образующихся при действии -излучения на каждые 100 эв поглощенной энергии, для ряда галоидосодержащих органических соединений. Эти значения высоки для хлороформа, бромоформа и четыреххлористого углерода они выще, чем для любого другого из изученных ранее органических соединений. К подобному же заключению пришли также Зайтцер и Тобольский [1]. Чистый хлороформ в отсутствие кислорода воздуха при облучении дает гексахлорэтан и не образует хлористого водорода, в присутствии же кислорода образуется перекись, разлагающаяся с образованием фосгена [2]. Подобным же образом реагирует метиленхлорид четыреххлористый углерод и четыреххлористый этилен не образуют перекисей, но тем не менее дают фосген и хлор [2], Алифатические бромиды дают бромистый водород и бром механизм этих реакций точно не установлен [3]. При изучении радиолиза и [c.163]

    Щелочные металлы обычно используются в реакциях изомеризации, полимеризации, присоединения, замещения и разложения. Более 40 лет назад в работе [133] исследовалась гидрирующая способность щелочных металлов и была сделана попытка объяснить механизм их действия с точки зрения теории промежуточных соединений. Отмечалась слабая гидрирующая способность металлического цезия по отношению к этилену при комнатной температуре и давлении 1 бар. При этом легко образовывался S2 2H4, который не являлся промежуточным соединением, а тормозил реакцию, блокируя активную поверхность. При повышении температуры гидрирование ускорялось. Высокодисперсный цезий в этом же температурном интервале, согласно [134], являлся катализатором средней активности. Окись углерода и водород реагируют на s при комнатной температуре [133]. [c.68]

    Развивая представления о радикальном механизме превращения метана в электрическом разряде, Петерс и Вагнер [1351] главную роль в этой реакции приписывают атомам водорода. При этом они в значительной мере опираются на результаты работы Бонхеффера и Хартека, изучавших взаимодействие атомов Н с различными углеводородами. В работе [1351], в частности, было показано, что атомы Н действуют дегидрирующим образом на этан и этилен, превращая их в ацетилен, и почти не действуют на последний. Таким образом, ацетилену нужно приписать особую устойчивость, чем и объясняется возможность почти полного (при определенных условиях), превращения метана в ацетилен. Исходя из этих данных, Петерс и Вагнер заключают, что при малых плотностях тока ацетилен образуется в основном в результате дегидрирующего действия атомов Н, превращающих метан и радикалы СНз в СНз и далее в С2Н4 и С2Н2. При больших плотностях разряда, по Петерсу и Вагнеру, ацетилен образуется преимущественно в результате рекомбинации радикалов СН и гидрирования радикалов Сз. [c.358]


Смотреть страницы где упоминается термин Этилен механизм действия: [c.229]    [c.43]    [c.174]    [c.248]    [c.221]    [c.465]    [c.173]    [c.225]    [c.140]    [c.140]   
Рост растений и дифференцировка (1984) -- [ c.128 , c.129 , c.131 ]




ПОИСК





Смотрите так же термины и статьи:

Механизм действия



© 2025 chem21.info Реклама на сайте