Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции гетерогенные удельная

    Методы изучения свойств адсорбентов [1, 2, 7, 8, 13, 14]. Процессы, происходящие на границе раздела газ — твердое тело, имеют огромное практическое значение в промышленности и в лабораторной технике. Наиболее важные из них очистка газов, их рекуперация, разделение смеси газов в препаративных и аналитических целях, газовая хроматография, изучение свойств гетерогенных химических реакций, в частности каталитических. Чтобы правильно выбрать и применить адсорбенты для указанных целей, необходимо знать такие их свойства, как удельную поверхность, пористость, структуру пор, адсорбционную способность. [c.111]


    Особого внимания заслуживают выдающиеся работы Н. И. Кобозева по изучению процесса формирования активных центров из разрозненных молекул или атомов катализатора. В этих исследованиях для некоторых химических реакций получены сведения о минимальном числе атомов в агрегате, необходимых для появления у формирующейся частицы вещества каталитической активное Элементарная группа атомов, проявляющая каталитическую актив-ность Швана активным ансамблем . Молекулы, атомы или ионы вещества могут двигаться по поверхности носителя и группироваться в ансамбли, однако эти движения ограничены определенными и весьма небольшими областями миграции . Н. И. Кобозев (1939 г.) показал, что по изменению удельной активности в зависимости от заполнения поверхности носителя катализатором можно рассчитать величину ансамбля, т. е. число атомов в ансамбле и среднюю величину области миграции. Весьма интересна связь, устанавливаемая этой теорией между типичным гетерогенным катализом и действием сложных ферментных катализаторов. Теория ансамблей является одной из важных частей общей теории приготовления катализаторов. [c.8]

    Определение оптимального химического состава — еще пе окончательное решение задачи создания эффективного промышленного катализатора. Удельная активность, характеризующая активность единицы поверхности катализатора, —величина специфичная для данного химического состава — пе единственный фактор, определяющий производительность катализатора. Большинство катализаторов гетерогенно-каталитических процессов обладают высокоразвитой пористой структурой. Чтобы достичь активной поверхности внутри зерна, реагенты должны продиффундировать в поры катализатора. Поэтому диффузия реагентов и продуктов реакции внутри зерна катализатора является одной из стадий гетерогенно-каталити-ческих реакций. В работах [1, 2] было показано, что скорость гетерогенно-каталитической реакции в общем случае — результат взаимодействия диффузии реагентов внутри зерна катализатора и химической реакции на поверхности катализатора. Величина внутренней поверхности и скорость диффузии реагентов внутри зерна катализатора зависят от строения пористой структуры. Недостаточная скорость диффузии приводит к неполному использованию внутренней поверхности катализатора и, в конце концов, к снижению эффективности катализатора. Очевидно, регулируя пористую структуру, можно создать условия наиболее полного использования внутренней поверхности катализатора и обеспечить максимальную его производительность. [c.153]


    Окисление кокса представляет собой гетерогенную химическую реакцию, в которой участвуют газообразный кислород, твердый углерод и обедненные водородом высокомолекулярные углеводороды, расположенные на поверхности внутренних пор и на внешней поверхности частиц катализатора. Скорость реакции окисления кокса зависит от условий регенерации температуры, удельного расхода воздуха, количества отложенного кокса, концентрации кислорода в газовом потоке, скорости его подвода к зоне горения, отвода продуктов сгорания в реакционный объем, поровой структуры катализатора, содержания металлов на поверхности катализатора и др. В зависимости от условий окисление кокса может протекать в следующих трех основных областях в кинетической области, во внутренней диффузионной области, во внешней диффузионной области. [c.39]

    Влияние удельной поверхности катализатора на скорость реакции. Выше указывалось, что реакция гидрогенизации протекает на поверхности катализатора. Молекулы и атомы, адсорбированные на нем, способны перемещаться по его поверхности. В результате столкновений активированных атомов и молекул происходит химическая реакция. Таким образом, чем выше концентрация адсорбированных молекул на катализаторе, тем вероятнее их столкновение и тем выше скорость реакции. С другой стороны, чем больше поверхность катализатора, тем больше на нем адсорбируется вещества и тем большее количество вещества прореагирует. Следовательно, скорость гетерогенной каталитической реакции зависит от величины поверхности катализатора и концентрации реагирующих веществ на его поверхности. Поэтому стремятся создать и применять такие катализаторы, у которых имеется наибольшая удельная поверхность. Так, например, у промышленного никелевого катализатора, осажденного на кизельгуре, удельная поверхность составляет примерно 100 м на 1 г никеля. Существуют катализаторы, у которых удельная поверхность еще больше. [c.187]

    В заключение отметим некоторые характерные особенности внутрикинетической области гетерогенного катализа, отличные от других. Реакция имеет наиболее высокую наблюдаемую энергию активации, так как наложение диффузионных влияний из-за их малой зависимости от температуры всегда ведет к снижению энергетического барьера- В этой области работают все поры катализатора, и так как их поверхность преобладает по сравнению с внешней, скорость процесса не зависит от размера зерен катализатора, но сильно увеличивается при росте его удельной поверхности. Следовательно, для протекания реакции во внутрикинетической области наиболее подходят катализаторы со сравнительно крупными зернами (что снижает сопротивление слоя катализатора) и развитой поверхностью микропор. Внутрикинетическая область характеризуется самой высокой производительностью катализатора. Последний при этом работает в умеренном температурном режиме, без перегрева поверхности зерен, так как при нелимитирующей скорости диффузии теплопередача, имеющая тот же диффузионный механизм, происходит быстрее химической реакции. Таким образом, внутрикинетическая область со всех точек зрения предпочтительна при гетерогенном катализе. [c.297]

    Основные приемы интенсификации основаны на правильном выборе температуры, давления, соотношения концентраций реагентов и других параметров, анализ влияния которых на скорость химических реакций выполнен в главе 4. Эти приемы направлены на увеличение константы скорости реакции и движущей силы процесса. В отличие от гомогенных процессов, дополнительным средством интенсификации гетерогенных процессов, протекающих в кинетической области, является развитие удельной поверхности контакта фаз. [c.79]

    Итак, общая скорость необратимой гетерогенной химической реакции зависит, а удельная скорость реакции не зависит от площади реакционной поверхности. На скорость гетерогенной химической реакции влияют процессы переноса реагентов в зону реакции. Скорость обратимой реакции определяется разностью скоростей прямой и обратных реакций. [c.177]

    Рассчитайте константу скорости гетерогенной химической реакции первого порядка, принимая скорость реакции 1 моль/с, концентрацию реагента 1 моль/л (10 моль/м ) и площадь поверхности 100 м . Рассчитайте удельную скорость реакции. [c.177]

    Более сложны кинетические характеристики факельного процесса, протекающего с участием твердых частиц (например, взаимодействие тетрафторида урана со фтором или сжигание пылевидного топлива). Из-за высокой интенсивности химической реакции процесс происходит во внешнедиффузионной области гетерогенного реагирования, и скорость его зависит исключительно от степени турбулентности потока и удельной поверхности твердых частиц. Диффузионный характер присущ, по-видимому, всем без исключения гетерогенным процессам в пламени, используемым в технологии урана. Поэтому при подаче расплавов и растворов важным условием является хорошее диспергирование питания в реакционной зоне. [c.324]


    При дальнейшем повышении температуры реагирования более быстрое увеличение удельной скорости химической реакции по сравнению с ростом удельной скорости подвода реагирующего газа к реакционной поверхности приводит к значительному изменению концентрационных напоров, которое начинает постепенно создавать заметную разность между концентрацией реагирующего газа в газовом объеме и на контурной поверхности слоя. В этих условиях гетерогенный процесс смещается во вторую (внешнюю) переходную область, когда [c.303]

    Следствие неизбежной адаптации катализатора к реакционной среде было сформулировано Г.К. Боресковым в виде особого правила, согласно которому в стационарных условиях удельная каталитическая активность гетерогенного катализатора (т.е. скорость каталитической реакции, отнесенная к единице доступной поверхности каталитически активной фазы) является для заданных температуры и состава реакционной среды величиной примерно постоянной, зависящей только от химического состава активной фазы. [c.380]

    Независимо от характера движения жидкости у границы раздела фаз всегда существует диффузионный слой жидкости. Он представляет собой некоторое сопротивление диффузии частиц растворяемого вещества в массу раствора, а в случае химического растворения — диффузии химически активного растворителя к поверхности растворяющегося вещества и диффузии в раствор образующегося на этой поверхности продукта реакции. Поэтому скорость растворения кристаллических тел в жидкостях определяется главным образом законами диффузии. Интенсивность растворения, как интенсивность всякого гетерогенного процесса, зависит от величины поверхности контакта фаз — чем мельче кристаллы, тем больше их удельная поверхность и тем быстрее они растворяются. Мелкие кристаллы растворяются быстрее также и потому, что в них относительная доля материала (ионов, молекул), находящаяся у вершин трехгранных углов и ребер, значительно больше, чем в крупных. Затрата же энергии на разрушение вершин и ребер кристалла, отнесенная к единице массы, меньше, чем на разрушение граней. С наименьшей скоростью растворяются наиболее развитые грани кристалла. Различной скоростью растворения отдельных элементов кристалла, в том числе разных его граней, объясняется и изменение его формы при частичном растворении — грани и ребра искривляются. Существенную роль при этом играют также неравномерно распределенные в кристалле примеси, делающие его неоднородным. [c.36]

    Эти наблюдения дали возможность Смиту и Полли [7] провести экспериментальное исследование химической активности однородной и неоднородной поверхностей, о котором 30 лет назад можно было только мечтать. Эти авторы сравнили скорости реакции кислорода с исходной неоднородной сажей и с прокаленным при 2700° гомогенным графитным углем. Теперь имеется возможность провести подобный эксперимент при полностью контролируемых условиях, пользуясь веществами со сравнимой удельной поверхностью. Результаты оказываются действительно поразительными. Они показывают, что гомогенная поверхность окисляется со скоростью, сравнимой со скоростью окисления гетерогенной, только в температурном интервале на 200—300° выше. В то время как гетерогенный материал становится при окислении заметно пористым, у гомогенного материала окислением медленно снимаются поверхностные слои. Авторы сделали вывод, что кислородная атака на стандартной угольной саже направлена прежде всего на участки поверхности с особенно высокой энергией . За подобные участки они приняли ато.мы на гранях в слоях решетки, и электронномикроскопическое исследование показало некоторую степень шероховатости (и, следовательно, пористости), величина которой измерялась. Авторы указали, что на основании изменения природы поверхности при физической адсорбции можно предсказать и подтвердить поведение поверхности в ходе истинного химического процесса . В этой тридцатилетней истории осталось сделать один шаг. Необходимо, чтобы кто-нибудь сравнил каталитическую активность этих саж с равной удельной поверхностью, но столь сильно отличающихся одна от другой. [c.14]

    Основой математического моделирования промышленных процессов гетерогенного катализа является математическое описание гетерогенного каталитического процесса на отдельном зерне катализатора. Анализ процессов тепло- и массопереноса в единичном зерне катализатора важен еще и потому, что позволяет наметить пути выбора или синтеза оптимальных промышленных катализаторов, поскольку от интенсивности процесса переноса в зерне катализатора зависит не только удельная каталитическая активность катализатора, но и такая важная характеристика катализатора, как избирательность. Объемная активность катализатора — функция удельной каталитической активности. активной поверхности и, кроме того, средней скорости внутреннего массопереноса. Если процесс химических превращений на катализаторе складывается из последовательных реакций, а полезный продукт промежуточный, то уменьшение скорости внутреннего массопереноса всегда приводит к снижению избирательности. В том случае, когда выход полезного продукта определяется интенсивностью побочной реакции, избирательность катализатора зависит как от соотношения между константами и порядками основной и побочной реакций, так и от скорости массопереноса. Интенсивность процесса переноса теплоты в катализаторе может существенно влиять на его промышленную эффективность. Для катализаторов, используемых для проведения простых экзотермических реакций, выгодна малая величина эффективной теплопроводности, так как перегрев увеличивает скорость процесса. Простые эндотермические реакции и сложные реакции, для которых энергия активации основной реакции меньше энергии активации побочных реакций, целесообразно проводить на катализаторах с увеличенной эффективной теплопроводностью. Таким образом, качественный и количественный анализ процесса связанного тепло- и массопереноса в единичном зерне катализатора является не только основой расчета промышленного процесса, но и служит необходимым условием выбора оптимального катализатора. [c.67]

    Повышение температуры реагирования или увеличение толщины слоя тетрафторнда урана выше некоторого предела приводит к нарушению приближенного равенства, представленного приведенным выше уравнением. В этом случае удельная скорость диффузии фтора в глубину реагирующего слоя оказывается недостаточной при небольшом перепаде концентрации для обеспечения подвода фтора, необходимого для реакции. В связи с этим концентрация фтора в глубине слоя (хр) начинает заметно снижаться в результате создаются условия, отвечающие соотношению X Ха Ф Ху. Процесс, который отвечает этому соотношению, характеризуется кинетическим режимом иа контурной поверхности F , но усложнен процессом внутренней диффузии в поры слоя. Здесь экспериментальное исследование кинетики химического процесса в чистом виде невозможно. Область (режим) гетерогенного реагирования, подчиняющегося этому уравнению, называется первой (внутренней) переходной областью. [c.302]

    Удельную скорость химической реакции определяют как количество вещества, реагирующее (или образующееся) в единицу времени в динице реакционного пространства п единице объема фи гомогенной или на единице поверхности раздела фаз при гетерогенной реакции. Размерность удельной скорости гомогенной реакции v моль/л-с, г/л-с, а удельной скорости гетерогенной реакции — моль/см -с, г/ м . При реагировании веществ, находя[цихся в од1 ой фазе (газовой или жидкой), среднюю скорость хим 1ческой реакции определяют как изменение концентрации с] одного из веществ во времени t u = A Mt (Дт — приращение времени, которому отвечает изменеше концентрации Дс). [c.86]

    Н. И. С. еменов выдвинул плодотворную идею о возможности су1цествоваппя ионного гетерогенного катализа, которая находит экспериментальное подтверждение в работах Н. М. Чиркова и других ргсследователей. В этом случае катализ обусловливается ионами, адсорбированными на поверхности носителя с высокой удельной поверхностью, что характерно для реакций полимеризации олефинов в присутствии фосфорной кислоты на носителях и силикатных катализаторах, активированных кислотами. Разработанная Н. Н. Семеновым цепная теория химических реакций способствовала пониманию процессов полимеризации, протекающих по цепному механизму. [c.8]

    Влияние размеров частиц уранового сырья. При уменьшении размеров частиц дисперсного уранового сырья (при этом увеличивается его удельная поверхность) происходит возрастание удельной скорости гетерогенной химической реакции, т. е. увеличивается интенсивность тепловыделения. Па рис. 8.39 это выражается в сдвиге тепловых функций (при Dp = onst) при dl > 2 > ds- Следовательно, при изменении дисперсности сырья можно вводить пламенный реактор в режим стабильного горения сырья (кривая 3) или выводить из него (кривая 1). [c.460]

    Скорость химической реакции в гетерогенных системах принято относить не к объему реакционной зоны, а к единице поверхности раздела фаз, т. е. к площади поверхности твердого тела. [34]. Поэтому для получения корректных данных сравнительной эффективности различных катализаторов введем обозначение удельной константы скорости каталитического разложения аюлвного хлора (/гуд )  [c.147]

    Известно, что чем меньше радиус частицы, тем выше химический потенциал ее атомов и, следовательно, выше растворимость, подчиняющаяся уравнению Томсона—Фрейндлиха [104 ]. Однако этот эффект, обусловленный свободной энергией на поверхности раздела, имеет значение только для тел с большой удельной поверхностью. Расчет по указанному уравнению для типичного материала с. атомной массой 50, плотностью 10 г/см и свободной поверхностной энергией 5(10 Дж/см показывает, что влияние размера частиц на растворимость начинает существенно проявляться только при радиусах кривизны менее 5 А. Сказанное полностью относится к растворению микровыступов на поверхности металла преимущественное растворение их относительно гладкой поверхности возможно только в случае очень острых микронеровностей, радиус закругления которых не превышает 5 А. Очевидно, в общий баланс гетерогенной реакции такие субмикровыступы не внесут заметного вклада, так как растворятся в первую очередь при очень малом материальном выходе. [c.171]

    Современное изучение адсорбционных и каталитических свойств твердых пористых тел немыслимо без знания площади их поверхности и внутренней структуры. Эти показатели с точки зрения физической адсорбции и каталитических процессов наряду с химической природой поверхности являются наиболее важными характеристиками адсорбентов и катализаторов. Во-первых, величина удельной поверхности определяет количество вещества, адсорбируемого единицей массы адсорбента, дает необходимые сведения о характере адсорбционного процесса, о наличии моно- или полимолекулярно-адсорбцион-иых слоев, позволяет сравнить результаты теоретических вычислений адсорбции, поверхностной энергии, работы и теплоты адсорбции с экспериментальными данными и целым рядом других факторов, тесно связанных с применением адсорбентов (катализаторов) в различных отраслях промышленности и народного хозяйства. Во-вторых, удельная поверхность и структура адсорбентов дают возможность глубже понять механизм адсорбции и гетерогенных каталитических реакций, протекающих на поверхности и в объеме адсорбента (катализатора), позволяют судить о количестве и протяжспности активных центров, а также о кинетике и избирательности сорбционного и каталитического процессов. [c.102]

    Для газофазных процессов обычно требуются высокие температуры, что ведет к увеличению удельного веса побочных реакций. Снижение температуры и повышение избирательности процесса достигаются применением катализатора, Поэтому большинство газофазных процессов ведется на твердых катализаторах, за исключением процессов термческого разложения органических соединений (крекинг, пиролиз). Иногда применяются также гомогенные катализаторы. Химические реакторы для газовых гетерогенных каталитических реакций в химической литературе часто носят традиционное название контактных аппаратов . [c.65]

    Гетерогенные каталитические реакции протекают на поверхности твердых тел, поэтому ее химический состав и структура играют решающую роль в химических превращеппях. Мерой каталитического процесса, или, как говорят, каталитической активностью, является удельная скоро сть реакции, т. е. скорость реакции, отнесенная к единице иоверхност) . Ясно, что чем больше поверх ность, тем выше скорость реакции. Поэтому обычно каталплато-ры — пористые тела. Внутренняя поверхность таких тел [c.26]

    Очевидно, существует однозначная связь между химическим составом и строением катализатора и его каталитическими свойствами- Эту мысль наиболее последовательно выражает Боресков [32, 44], связывая различия в удельноц каталитической активности гетерогенных катализаторов только с различиями в их составе и строении. Если же наблюдаются различия в удельной каталитической активности образцов катализатора, приготовленных различными методами, то это oбъя няeт i лишь малой скоростью достижения стационарного состояния гетерогенного катализатора в ходе реакции. Известны многочисленные примеры изменений активности гетерогенных катализаторов в ходе катализа. Например, активный в процессе окисления ЗОг ванадиевый катализатор, являющийся кислым сульфованадатом Ыа, К, или других металлов, переходит в условиях реакции при понижении температуры в неактив- [c.16]


Смотреть страницы где упоминается термин Химические реакции гетерогенные удельная: [c.812]    [c.216]    [c.182]    [c.46]    [c.6]    [c.161]    [c.71]   
Теплопередача Издание 3 (1975) -- [ c.351 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенная химическая реакция

Реакции гетерогенные

Химический ая гетерогенное



© 2025 chem21.info Реклама на сайте