Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализ гетерогенный ионный

    Природа каталитического влияния в гомогенных, гетерогенных и ферментативных каталитических реакциях определяется природой химической связи. Однако каждый из этих процессов характеризуется некоторыми специфическими особенностями, обусловленными главным образом строением катализатора — молекулы, иона в гомогенном катализе атома, молекулы, фазы в гетерогенном катализе молекулы белкового происхождения в ферментативном катализе. Существенную роль играют также особенности взаимодействия реагентов и катализатора с окружающей средой. Как и обычные хими- [c.622]


    Мультиплетная теория гетерогенного катализа, разработанная (1929) A.A. Баландиным, исходит из принципа структурного соответствия между расположением атомов в поверхности катализатора и в реагирующей молекуле, а также энергетического соответствия связей. Теория рассматривает, таким образом, не просто взаимодействие молекулы в целом с поверхностью катализатора, а взаимодействие отдельных атомов или атомных групп, содержащихся в молекулах реагирующих веществ, с атомами или ионами поверхностного слоя катализатора. [c.497]

    Вторая стадия — окисление метакролеина в метакриловую кислоту— встречает больше трудностей по сравнению с окислением акролеина. В обоих случаях не применимы радикально-цепные процессы из-за полимеризации ненасыщенных альдегидов. Пытались использовать катализ медью и серебром при жидкофазном процессе, окисление надкислотами и другие методы, но наибольшие усилия сосредоточены на разработке достаточно селективных гетерогенных катализаторов окисления в газовой фазе. Одним из них является оксидный фосфор-молибденовый катализатор с добавками оксидов Те и Sb, ионов NHt, щелочных и щелочноземельных металлов. При 250—350 °С, атмосферном давлении и степени конверсии метакролеина 80—90% достигается селективность по мет-акриловой кислоте 70—80%. [c.422]

    На поверхности гетерогенных катализаторов могут протекать ионные реакции, аналогично тому, как они протекают в среде жидкого диэлектрика. Это указывает на существование особой, весьма значительной группы гетерогенно-каталитических реакций, объединяемых понятием гетерогенного ионного катализа . Механизм этой группы процессов в основном может быть объяснен па основе тех в достаточной мере разработанных положений, которыми оперируют в области гомогенного ионного катализа [40, 41 ]. Наиболее хорошо изучены гетерогенные каталитические реакции, катализируемые твердыми протонными и апротонными кислотами или соответственно основаниями. Гетерогенный ионный (но не кислотно-основной) катализ изучен гораздо меньше. [c.33]

    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]


    Это позволяет переносить представления о механизме гомогенного кислотного катализа на гетерогенный катализ. Однако при гетерогенном катализе промежуточные ионы карбения, не входя в объем, остаются сорбированными на поверхности, где и завершается гетерогенно-каталитический процесс. [c.724]

    Отщепление гидрид-иона является необходимой стадией адсорбции изобутана, и следует отметить совместное действие льюисовских и бренстедовских центров, а также близкое сходство случаев гомогенного и гетерогенного катализа. [c.57]

    Технологический процесс окисления алканов до спиртов осуществляют кислородом каталитически в присутствии оксидов металлов (МпОг и др) Механизм таких реакций до конца не выяснен, но не исключен гетерогенный катализ по ионному типу [c.236]

    ГЕТЕРОГЕННЫЙ ИОННО-КИСЛОТНЫЙ КАТАЛИЗ И ЕГО СВЯЗЬ С ПОЛИМОЛЕКУЛЯРНОЙ АДСОРБЦИЕЙ И ПОВЕРХНОСТНОЙ ЭЛЕКТРОПРОВОДНОСТЬЮ [c.332]

    Для реакции деполимеризации паральдегида получены результаты, позволяющие констатировать чисто гетерогенный ионно-кислотный катализ в мономолекулярных адсорбционных слоях. [c.353]

    Существование особого вида гетерогенного катализа, так называемого гетерогенного ионного катализа, было открыто Н. Н. Семеновым, Н. М. Чирковым и В. И. Гольданским 31. Это явление связано с наличием на поверхности твердого тела многослойной адсорбционной пленки реагентов в случае, когда их парциальные давления сравнимы с давлением насыщенных паров. Если в указанную много- [c.813]

    В. И. Гольданским был открыт и исследован новый тип катализа — гетерогенный катализ в полимолекулярных адсорбционных слоях [262, 263]. Сопоставлены характеристики гетерогенного ионно-кислотного [c.56]

    Гомолитические реакции протекают как в гомогенной газовой фазе (реакции без участия стенок сосуда и твердых или жидких катализаторов), так и в жидкой фазе, предпочтительно в неионизирующих растворителях с малой диэлектрической постоянной. Гетеролитические реакции в гомогенной газовой фазе никогда не наблюдались. Невозможность протекания гетеролитических реакций в газовой фазе обусловлена причинами энергетического характера энергия, необходимая для разрыва ковалентной связи с образованием положительного и отрицательного ионов, намного больше энергии, расходующейся при разрыве той ке связи на два свободных радикала. В случае многих газовых реакций нам только кажется, что они протекают в газовой фазе действительно они происходят на стенке сосуда, т.е. в условиях гетерогенного катализа. Гетерогенное протекание реакции легко установить, изменяя либо соотношение между объемом и поверхностью реакционного сосуда (нанример, введением стеклянных осколков и т.д.), либо химическую природу стенки. В обоих случаях наблюдается иногда значительное изменение скорости реакции. [c.185]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]

    ЭЛЕКТРОХИМИЧЕСКИЙ МЕХАНИЗМ ГЕТЕРОГЕННОГО КАТАЛИЗА НЕКОТОРЫХ ИОННЫХ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ РЕАКЦИИ [c.212]

    Гетерогенный катализ применяется главным образом при газофазном хлорировании, при котором в качестве переносчиков хлора используются каталитически активные вещества. Согласно теории Тэйлора действие их объясняется наличием активных центров, на которых протекает образование хлор-ионов. [c.153]


    При более высоких температурах, при проведении изомеризации в условиях гетерогенного катализа чаще доминирует уже согласованный механизм типа II и III [36]. Причины этого заключены, на наш взгляд, в более быстром превращении ионов и затруднении их промежуточной стабилизации. Правда, при этом нередко происходит не прямое образование наиболее термодинамически устойчивых углеводородов, а лишь промежуточное образование углеводородов, характерных для одного из этапов консекутивного процесса (механизм типа III), т. е. и в данном случае имеет место кинетический контроль реакции. Эти реакции требуют, однако, более подробного, специального рассмотрения. [c.248]

    Многие химические процессы, применяемые в промышленности, и главным образом в основном химическом синтезе, основаны на реакциях твердой фазы с газом. К таким процессам относятся, например, получение металлов восстановлением газами, обжиг сульфидных руд, получение основных полупродуктов неорганического синтеза — аммиака, серной кислоты и многих органических соединений методами гетерогенного катализа, а также очистка веществ и выращивание монокристаллов (полупроводниковая промышленность). Очень важно здесь то, что в таких гетерогенных системах концентрация дефектов зависит не только от температуры, но и от равновесия между соответствующими компонентами твердой и газовой фаз. Так, например , состав решетки NiO меняется при увеличении парциального давления кислорода, причем в результате окислительно-восстановительной реакции увеличивается количество ионов О - в решетке и одновременно образуется эквивалентное количество ионов Ni +. В соответствии с требованиями об электронейтральности системы в целом, в решетке появляются катионные вакансии  [c.435]

    Исходной стадией гетерогенного катализа обычно является адсорбция реагентов. Как уже отмечалось в гл. 2, адсорбцию следует отличать от абсорбции. Адсорбция-это связывание молекул с поверхностью, тогда как абсорбция означает поглощение молекул в объеме другого вещества. Адсорбция происходит вследствие чрезвычайно высокой реакционной способности атомов или ионов на поверхности твердого вещества. В отличие от таких же частиц в объеме твердого вещества они имеют ненасыщенные валентные возможности. Благодаря способности поверхностных атомов или ионов к образованию связей молекулы из газовой фазы или раствора могут связываться с поверхностью твердого вещества. В действительности не все атомы или ионы поверхности обладают реакционной способностью, так как на поверхности могут быть адсорбированы различные примеси (загрязнения), которые занимают многие потенциально реакционноспособные центры и блокируют дальнейшую реакцию. Места поверхности, на которых могут адсорбироваться реагирующие молекулы, называются активными центрами. Число активных центров, приходящееся на единицу массы катализатора, зависит от природы катализатора, от способа его приготовления и обработки непосредственно перед использованием. [c.28]

    В соответствии с механизмом протекающих реакций гетерогенные катализаторы подразделяют на следующие три группы 1) ионные, под влиянием которых протекают реакции с ионным механизмом 2) электронные, катализирующие гомолитические реакции 3) бифункциональные, совмещающие ионный и электронный катализ. [c.440]

    Каталитические процессы имеют большое значение в аналитической химии, потому что их легко можно осуществить в виде избирательных, а иногда и специфичных реакций. Особенно это относится к гомогенным каталитическим реакциям в жидкой фазе. Так, простые ионы многовалентных металлов могут ускорять процессы перехода электронов. Каталитическими свойствами часто обладают также протолиты. Гетерогенный катализ, в котором катализатор составляет отдельную фазу, имеет в химическом анализе второстепенное значение. [c.47]

    Различают катализ гомогенный и гетерогенный. Гомогенным называется катализ, когда катализатор образует одну фазу с реагирующей гомогенной системой, например, горение окиси углерода ускоряется присутствием следов влаги. Реакции инверсии сахара, гидролиза крахмала в воде ускоряются ионами водород. Гетерогенным называется катализ, когда катализатор образуй обособленную фазу, например, гидрирование углеводородов на никеле, синтез аммиака на железе и др. [c.234]

    Центральной задачей в большинстве исследований катализа было и остается изучение природы промежуточных стадий, через которые проходит процесс. Далеко не во всех случаях удается идентифицировать неустойчивые промежуточные продукты. В области гетерогенного катализа исследователь встречается с поверхностными соединениями, адсорбированными атомами и молекулами, так что речь скорее может идти о промежуточных состояниях систем, чем о возникновении определенных соединений. Взаимоотношения катализатора и субстрата имеют различный характер. В простейшем случае катализатором является просто ион водорода (фактически ион гидроксония), присоединение которого к молекуле субстрата вызывает в ней перераспределение связей с последующим отщеплением протона в другой части молекулы примером может служить реакция енолизации ацетона  [c.321]

    Н. И. С. еменов выдвинул плодотворную идею о возможности су1цествоваппя ионного гетерогенного катализа, которая находит экспериментальное подтверждение в работах Н. М. Чиркова и других ргсследователей. В этом случае катализ обусловливается ионами, адсорбированными на поверхности носителя с высокой удельной поверхностью, что характерно для реакций полимеризации олефинов в присутствии фосфорной кислоты на носителях и силикатных катализаторах, активированных кислотами. Разработанная Н. Н. Семеновым цепная теория химических реакций способствовала пониманию процессов полимеризации, протекающих по цепному механизму. [c.8]

    Дальнейшее развитие работ В. В. Воеводского в области гетерогенного катализа связано с широким применением метода ЭПР, который первоначально был использован для изучения адсорбированных свободных радикалов. Эти исследования проводились в двух ясно выраженных направлениях в направлении изучения адсорбированных свободных радикалов, с одной стороны, и активных центров окисных катализаторов, содержащих ионы переходных металлов, с другой стороны. Хотя формально в последнем случае также можно говорить о свойстве валентности, ненасыщенности и рассматривать активные центры в окисных катализаторах (в связи с их царамагнетизмом) как свободные радикалы поверхности, эти работы как по замыслу (катализ изолированным ионом на поверхности носителя), так и по методам интерпретации (анализ спектров ЭПР в приближении теории кристаллического поля) гораздо ближе к катализу растворимыми комплексами металлов переходной [c.384]

    Промежуточные соединения. Как указывалось выше, ряд затруднений при объяснении явлений гетерогенного катализа с точки зрения коллективных свойств электронов твердого тела, а также успехи в идентификации поверхностных адсорбированных соединений привели к возрождению чисто химических концепций в теории катализа, в обш,ем аналогичных первоначальной теории промежуточных соединений. Особое значение приобретают при этом индивидуальные свойства атомов и ионов в твердом теле, т. е. свойства, опредоляемые положением элемента в периодической системе элементов. Соответственно, как и в обш,ей теории химических реакций в.елика роль энергетических параметров самого превраш,ения.  [c.30]

    Деактиваторы металлов, взаимодействуя с ионами металлов и образуя с ними растворимые комплексные соединения, выводят из сферы действия основную часть катализатора. При этом гетерогенный катализ окисления ювенильными поверхностями металлов не подавляется деактиваторами металлов. К де= активаторам металлов относятся салицилидены, аминофенолы и др. С антиокислительными присадками они ооразуют ШнёрпГ-ческие пары [206]. Эффективность деактиваторов металла при окислении в присутствии медной пластинки при 100 °С приведена в табл. 6.7. За рубежом для реактивных топлив разрешен к применению К,Ы -дисалицилиден-1,2-пропилендиамин (см. табл. 6.4), но добавление его не является обязательным. [c.197]

    Первоначальное понятие о комплексных соединениях, образованных центральным атомом или ионом металла и совокупностью ( luster) ионов или молекул, именуемых лигандами (число которых называют координационным числом), в последнее время было расширено, и теперь оно охватывает большую часть неорганических соединений в молекулярном (растворы) или кристаллическом (твердые тела) состоянии. Нихолм [4] указывает, что химию комплексных соединений следует рассматривать как некоторый подход к неорганической химии, а не просто как один из ее разделов и что в связи с этим она должна быть полезной для понимания как гомогенного, так и гетерогенного катализа. Нас интересует динамика обратимых изменений координационного числа и степени окисления центрального атома, и мы [c.15]

    В настоящее время можно статать общепринятым, что существует несколько типов гетерогенно-каталитических превращений. Рогин-ский показал целесообразность выделения в катализе вообще и в гетерогенном в частности двух больших классов окислительно-восстановительного, или катализа с электронными переходами, и кислотноосновного, или ионного катализа. [c.13]

    В главных чертах механизм действия твердых кислот и оснований должен быть аналогичен механизму действия кислот и оснований в гомогенных жидкофазных системах. Для частного случая минеральных кислот, адсорбированных на твердой поверхности, это было показано Гольданским, Семеновым и Чирковым [48]. Для свбственно твердых кислот, как показано рядом авторов [49— 51] на примере реакции крекинга на алюмосиликатных катализаторах, каталитическая активность находится в прямой зависимости от количества, находящегося в катализаторах обменивающегося водорода. Аналогия в строеппи и действии гомогенных и гетерогенных кислых катализаторов указывает на возможность протекания реакций по ионному механизму с ионом протона в качестве катализа- [c.36]

    Все эти результаты указывают, что перед реакцией с этиленом активный центр содержит один ион хрома в виде силилхромата. В гетерогенном катализе редко удается идентифицировать активные центры [65], но в данном случае это, по-вндимому, достигнуто. [c.184]

    Таким образом, варьируя химический состав, изменяя химический потенциал катализатора можно попытаться осуществлять переход от раздельного механизма к высококомпенсационному слитному механизму кроме того, возможно предвидение каталитической активности на основе значений энергии связи реагентов с катализатором [19, с. 495]. Это трудный путь, однако определенные успехи в его реализации имеются, особенно в металлкомплексном гомогенном катализе. В этом случае реагенты входят в координационную сферу иона металла (т. е. становятся дополнительными лигандами), благодаря чему существенно облегчаются их взаимная ориентация, поляризация реагента в поле центрального иона металла и лигандов, электронные переходы в комплексе наконец, такое комплексообразование легко контролировать, варьируя природу исходных лигандов и центрального иона металла. Отметим, что в последнее время возникла и успешно реализуется идея ге-терогенизации катализа металлкомплексными соединениями, закрепленными (иммобилизованными) на полимерных гелях при этом остается возможность перехода к слитному механизму, а также удается использовать в качестве катализаторов соединения, нерастворимые в реакционной среде (основное преимущество классического гетерогенного катализа). [c.99]


Смотреть страницы где упоминается термин Катализ гетерогенный ионный: [c.61]    [c.51]    [c.15]    [c.207]    [c.54]    [c.255]    [c.344]   
Инженерная химия гетерогенного катализа (1965) -- [ c.19 , c.51 , c.57 ]

Инженерная химия гетерогенного катализа (1971) -- [ c.33 , c.38 , c.53 ]




ПОИСК





Смотрите так же термины и статьи:

Гетерогенные ионные

Гетерогенный катализ Катализ

Гетерогенный катализ Катализ гетерогенный

Катализ гетерогенный

Катализ ионитами

Ф а е р м а н и Е. Д. Воейкова. Электрохимический механизм гетерогенного катализа некоторых ионных окислительно-восстановительных реакций



© 2025 chem21.info Реклама на сайте