Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цепной механизм катализа

    ЦЕПНОЙ. МЕХАНИЗМ КАТАЛИЗА 103 [c.163]

    Цепной механизм катализа [c.163]

    ЦЕПНОЙ МЕХАНИЗМ КАТАЛИЗА 165 [c.165]

    Введение представления о цепном механизме катализа дает новое объяснение причины ускоряющего действия катализатора на реакцию. Из изложенного следует, что это ускорение может быть связано с облегчением образования свободных валентностей это -приводит к тому, что на катализаторе становится возможным зарождение цепей со скоростями, намного большими, чем в газовой фазе. Второй функцией ката- [c.392]


    Ускоряющее в большинстве случаев действие катализаторов, образование активных промежуточных соединений, снижение величины энергии активации и ряд других моментов неизбежно приводят к выводу о возможности цепных механизмов в гетерогенном катализе. В. В. Воеводский [67] считает, что ...цепные и радикальные механизмы в гетерогенном катализе должны быть не менее, а по-видимому, даже более распространены, чем в гомогенных реакциях . Тот факт, что небольшое количество катализатора способно превратить в конечные продукты огромные массы реагентов, подтверждает эти идеи. Н. Н. Семенов [68], рассматривая механизм гетерогенно-каталитических процессов с точки зрения цепных механизмов, считает, что на поверхности катализатора (металл, полупроводник) имеются свободные валентности V, поверхностно вступающие во взаимодействие с молекулами реагентов и инициирующие образование свободных атомов, например [c.164]

    Эти теории на первый взгляд далеки от обычных химических трактовок катализа. Авторы не претендуют на игнорирование существующих теорий или полную замену их. Н. Н. Семенов и В. В. Воеводский отмечают, что предлагаемая возможность цепных механизмов реакций через свободные радикалы ...вовсе не теория катализа, а лишь один из возможных путей развития цепных процессов, который, быть может, найдет применение в области каталитических процессов . [c.167]

    ДО дает восстановленный катализатор и продукты реакции. Этот механизм возможен при взаимодействии одной молекулы окисляемого ве-и ества с одной молекулой кислорода, однако при глубоком окислении, когда по стехиометрии для реализации процесса необходимо участие в реакции большого числа молекул кислорода, механизм становится маловероятным (например, для окисления одной молекулы этилена в элементарном каталитическом акте должны одновременно участвовать три молекулы кислорода, для окисления более сложных молекул необходимы десятки молекул кислорода). Стадийный механизм включает по крайней мере две стадии процесса, при этом вначале происходит стадия диссоциативной хемосорбции кислорода на катализаторе с образованием активированного комплекса. На второй стадии молекула окисляемого вещества взаимодействует одновременно с несколькими активированными комплексами с образованием продуктов реакции и восстановлением катализатора. При гетерогенно-гомогенном радикально-цепном механизме катализатор облегчает наиболее энергоемкий этап цепного процесса - зарождение цепей. Образовавшиеся радикалы органических веществ десорбируются в газовую фазу, давая начало объемному развитию цепи. Гомогенные стадии в гетерогенно-гомогенном катализе изучены пока недостаточно глубоко. Многочисленные экспериментальные данные по глубокому окислению углеводородов часто проти- [c.11]


    Ф. Габер и К. Вейс предложили первую схему окислительно-восстановительного катализа ионами железа при распаде перекиси водорода по цепному механизму. [c.371]

    Катализаторы обладают свойством вступать в соединение с реагентами многократно, поэтому малые количества катализатора способны изменять большие количества реагентов. Это подтверждает цепной механизм реакций катализа. [c.98]

    При некоторых процессах металлургического производства также протекают газовые каталитические реакции. Одной из них является дожигание СО до СО2. Эта реакция является примером катализа, имеющего цепной механизм. Она ускоряется в присутствии следов воды. При высоких температурах пары воды, хотя и в очень малой степени, диссоциируют с образованием атомарного водорода и свободного радикала ОН. Эти частицы, являющиеся активными центрами, вызывают следующую цепную реакцию  [c.522]

    Радикальный механизм гомогенного катализа возможен как в газовой, так и в жидкой фазе. Катализатор служит инициатором, направляющим реакцию по цепному механизму. Ускорение достигается в результате появления богатых энергией частиц — свободных радикалов в процессе самой реакции. По такому механизму протекают некоторые окислительные реакции в газах, полимеризация в жидкой фазе и т. п. Типичным примером газофазной каталитической реакции радикального типа моя<ет служить действие оксидов азота на окисление алканов, в частности метана в формальдегид. Взаимодействие метана с оксидами азота вызывает цепную реакцию с относительно легким зарождением цепей и высокой скоростью их обрыва. Механизм этого процесса можно представить упрощенно следующей цепью реакций  [c.222]

    Как видно из физических моделей катализа, сущность ускоряющего действия катализаторов состоит в понижении энергии активации Е химической реакции в результате изменения реакционного пути при участии катализатора или вследствие осуществления реакции по цепному механизму при инициирующем действии катализатора. Однако в некоторых типах каталитических реакций одновременно с понижением Е происходит уменьшение предэкспоненциального члена ко в уравнении Аррениуса  [c.23]

    Довольно похожие схемы были даны для катализа дегидразами и оксидазами, мутазой , глиоксалазой и пероксидазами. Уотерс [51 разработал цепные механизмы для некоторых ферментов, катализирующих окислительные процессы. На основании цепных механизмов очень трудно объяснить специфичность ферментов и кофер-ментов. Активность катализаторов или инициаторов цепных реакций в большой степени зависит от реакции, соответствующей большой длине цепи, т. е. большой величине отношения скорости роста цепи к скорости обрыва цепи. Если это наблюдается, то почти любое вещество, способное разлагаться с образованием свободных радикалов, которые могут инициировать цепи при умеренной скорости Rl, будет давать большую скорость цепной реакции, равную X (длина цепи). Трудно согласовать это неспецифическое поведение катализаторов свободнорадикальных цепных реакций со строго специфическим поведением ферментов. Кроме этого, до сих пор не было получено положительных доказательств существования свободных радикалов в ферментативных реакциях фактически же доказано, что свободные радикалы, (образованные, например, при облучении) уничтожают активность ферментов. Более того, имеются [c.110]

    Характерные особенности простых цепных реакций были отмечены в гл. I, где выведены уравнения для скоростей реакции, в которые входят скорости инициирования, роста и обрыва цепи. При выводе уравнений был рассмотрен только один тип цепного реакционного центра, X, и теперь необходимо выяснить, нужны ли видоизменения этой простой картины реакции в случае более подробного рассмотрения [1—3] катализа и ингибирования цепных реакций. Для цепной реакции не характерно, чтобы реакционным центром служил только один химический тип промежуточной частицы вне зависимости от того, протекает ли реакция через свободный атом, радикал или по ионно-цепному механизму. Чаще встречаются два химически различных цепных центра, которые реагируют в чередующихся стадиях роста. Такая картина наблюдается почти всегда, когда в цепной реакции участвуют два реагирующих вещества, например в случае взаимодействия хлора и водорода, при котором цепными центрами попеременно являются атомы водорода и хлора  [c.353]

    Как видно из рисунка, производительность катализатора в течение первых секунд его работы резко возрастает по мере увеличения продолжительности его контакта с раствором. Наличие первоначального само-ускорения процесса может служить одним из подтверждений представ-леиия о цепном механизме гетерогенного катализа. Однако е исключено, что наблюдаемое изменение производительности катализатора ОБЯзано с процессом его формирования, в результате которого на по- [c.459]


    Окисление метана кинетика реакции согласуется с цепным механизмом исследование зависимости обрыва цепи от величины поверхности твердой фазы позволяет предполагать существование гомогенно-гетерогенного катализа [c.191]

    По радикальной теории катализа кристалл оказывает влияние на ход реакции по той же причине, по какой свободный радикал оказывает влияние на ход гомогенной реакции. При этом действуют те же два закона, что и в цепных гомогенных реакциях закон сохранения общего числа валентностей и закон стремления валентностей к насыщению. Радикальный механизм катализа непосредственно вытекает из электронной теории и является химическим аспектом электронного механизма катализа. [c.236]

    С ВЫХОДОМ 7% от образовавшихся кислот и карбонильных соединений соответственно. Как известно, при цепном окислении атаке подвергаются вторичные и третичные атомы углерода, а концевые метильные группы в реакцию не вступают [90]. Было показано, что в реакциях окисления некоторых парафинов и олефинов на твердых полупроводниковых и металлических катализаторах добавки ингибиторов, например гидрохинона, значительно замедляют скорость реакции. Сначала скорость реакции падает пропорционально добавке ингибитора, но, начиная в некоторого момента, она становится постоянной и не равной нулю, что однозначно доказывает наличие неценного поверхностного процесса. Из изложенных фактов можно сделать вывод, что в случае жидкофазного окисления углеводородов на твердых катализаторах мы имеем дело с гетерогенно-гомогенным процессом, причем доля объемного продолжения здесь весьма значительна. Выход радикалов с поверхности в объем вероятен по соображениям, излагаемым ниже. Вероятна также, вследствие наличия ближнего порядка в жидкостях, эстафетная передача свободной валентности аналогично тому, как это происходит со свободными радикалами в чисто цепных реакциях при протекании реакции в клетке из окружающих радикал молекул растворителя. При применении истинно инертного растворителя эстафета обрывается и скорость реакции замедляется с разбавлением, ка то бывает в газофазных процессах. В целом можно предположить, что при поверхностном радикальном механизме гетерогенных каталитических реакций степень выхода реакций в объем зависит от соотношения скорости передачи свободной валентности в объем и скорости превращения радикалов на поверхности. Видимо, в газофазных процессах, протекающих при высоких температурах, условия более благоприятствуют превращению радикалов, в то время как в ряде жидкофазных реакций создаются условия, увеличивающие вероятность передачи свободной валентности в объем. Таким образом, как это часто имеет место в гетерогенном катализе, нельзя говорить, подобно М. В. Полякову [93], о каком-то специальном гетерогенно-гомогенном механизме катализа, а можно говорить лишь о соответствующей области протекания процесса в результате сложившихся соотношений скоростей различных его стадий. [c.62]

    Представленные на конференции работы по вопросу цепных реакций в гетерогенном катализе показывают, что мысль о возможности цепного механизма в гетерогенном катализе обратила на себя внимание исследователей в наших ведущих химических институтах (ИХФ АН СССР, ИОХ АН СССР, ИФХ АН СССР, Физико-химический институт им. Л. Я. Кар-пова). [c.370]

    В кинетических исследованиях [337, 338] было показано, что катализ бромистым водородом позволяет направить процесс окисления пропана в сторону образования ацетона. Реакция включает две стадии, идущие по цепному механизму. В первой стадии происходит быстрая самотормозящаяся реакция, в которой образуется небольшое количество промежуточного продукта Уо- Во второй стадии продукт Уо медленно распадается по мономолекулярному закону, индуцируя цепную реакцию образования ацетона. Реакция заканчивается, когда промежуточный продукт полностью израсходован. [c.274]

    Большую роль Семенов приписывает работе И. Христиансена [24], в которой явления отрицательного катализа в ряде окислительных процессов были объяснены при помощи цепного механизма. Эта работа, как указывает Семенов, позволила перебросить мост между новой теорией и прежними усилиями органиков, имевшими известный успех, объяснить механизм окислительных реакций органических соединений с помощью учения о промежуточных продуктах [23, стр. 20]. [c.53]

    Схемы Марголис и Рогинского нарочито до получения надежных экспериментальных данных о лабильных формах, существующих на поверхности [85, стр. 115], не детализированы. Однако они, отражая процессы окисления до выхода реакции в объем, свидетельствуют о наличии в условиях окислительно о гетерогенного катализа своеобразного цепного механизма. Своеобразного потому, что в данном случае, так же как и в синтезах на основе СО и На, цепи имеют плоский характер и распространяются не свободными радикалами, а радикалами или ионами, связанными с поверхностью. [c.286]

    Реакции при гетерогенном катализе осуществляются на поверхности по цепному механизму. Например  [c.332]

    B случае одноэлектронного переноса обычно происходит переход реагентов в свободнорадикальную или ион-ради-кальную форму. В результате этого в зависимости от значений констант скорости элементарньк р-ций радикалов с реагентами и катализатором и их относит, концентраций может осуществляться радикальный или радикально-цепной механизм катализа. В простейшем случае механизм О.-в.к. сводится к замене лимитирующей стадии окислит.-восстано-вит. взаимод. реагентов двумя более быстрыми р-циями с участием катализатора в разл. окислит.-восстановит. состояниях. Напр., в процессе разложения Н2О2 лимитирующая [c.337]

    Цепные механизмы характерны генерацией носителей цепи (т. е. промежуточных поверхностных соединений, например СзНвад,., Наде, Оадс) в каждом акте реакции, тогда как обычные механизмы предусматривают образование и уничтожение промежуточных форм в ходе процесса. Наиболее четко представление о цепном механизме катализа было выражено в работе [62]. Хотя авторы в начале подчеркивали отсутствие претензий на универсальность цепных механизмов, однако в заключение речь шла уже о попытке набросать основные контуры теории катализа и о стирании граней между гомогенной кинетикой и гетерогенным катализом [62]. [c.14]

    Коненсный цепной катализ характерен для медленно диссоциирующих в реакционных средах комплексных соединений. Это наиболее яркая иллюстрация цепного механизма катализа. В этом единственном случае катализатор в течение всего цепного процесса связан с субстратом и обеспечивает протекание реакции по цепному механизму. Для этого вида коненсного катализа, ввиду его многомаршрутности и энергетической связи отдельных стадий, представляются малоэффективными выводы о механизме на основании макрокинетических данных более надежны суждения [c.49]

    Большой научный интерес представляют исследования инициированного крекинга, то есть термического распада алканов при температурах, когда сам по себе распад не происходит (практически скорость распада равна нулю) но его вызывают небольшие примеси инициаторов—соединейия, легко распадающиеся на радикалы при низких температурах. Эта форма крекинга возможна лишь в той мере, в кйкой распад имеет радикально-цепной характер. При пониженных температурах крекинг не происходит вследствие очень малой скорости реакции первичного распада алкана на радикалы. Вместе с тем понижение температуры более благоприятно для развития цепей. Поскольку остановка процесса при низких температурах связана с практически ничтожной скоростью реакции зарождения радикалов, то, вводя в зону крекинга небольшие количества соединений, легко распадающихся на радикалы, необходимые для развития термического распада, мы можем повысить до нужных значений концентрацию радикалов и ускорить крекинг принципиально до значений скорости, соответствующих обычным температурам крекинга. Однако понижение температуры всегда приводит к понижению скорости элементарных реакций, которые происходят с заметной скоростью лишь при высоких температурах. Это в первую очередь относится к тем реакциям развития цепей при крекинге, которые связаны с распадом тех или иных сложных радикалов. Скорость распада таких радикалов уменьшается с понижением температуры и, естественно, по- нижается и скорость цепного крекинга в целом. Таким образом, индуцирование термического крекинга алканов при помощи инициаторов в условиях, при которых aw по себе распад не происходит, непосредственно доказывает радикально-цепной механизм крекинга, поскольку не представляется возможным рассматривать индуцированный крекинг как одну из форм молекулярного (или гетерогенно-гомогенного) катализа. [c.62]

    Л. 11. Ьах (Проблеме. кинетики и катализа, стр. 23—24) подвергает критике как теорию Боденштейла, так И теорию Хабера цепного механизма образования перекиси.  [c.42]

    Важным классом мономеров, способных иолимеризоваться по анионно-цепному механизму являются эпоксиды. Полимеризация катализуется сильными основаниями, например алкоксид-ионами, и приводит к полиэфирам. На каждой стадии присоединения генерируется новый алкоксидный центр, который может реагировать с другой мономерной молекулой за счег нуклеофнлытого раскрытия цикла  [c.408]

    Газофазный гомогенный катализ, когда и реагенты и катализатор — газы, применяются сравнительно редко. Примером его могут служить дегидратация уксусной кислоты в парах при участии катализатора—парообразного триэтилфосфата, окисление метяия R формальдегид воздухом, ускоряемое оксидами азота, окисление оксида углерода в диоксид в присутствии водяных паров и т. п. Газофазный катализ может осуществляться по молекулярному и радикальному цепному механизму. [c.222]

    Почти все реакции разложения можно ускорить, если имеется катализатор, способный при разложении или реакции с субстратом служить источником свободных радикалов. Так, например, алкил-перекиси или кислород могут катализировать многие из таких реакций разложения. Галоиды катализируют разложение большинства галоидалкилов, простых эфиров и альдегидов, поскольку они легко диссоциируют. Весьма активными инициаторами реакций полимеризации являются также металлалкилы и азосоединения, фотолиз введенных кетонов и альдегидов тоже может инициировать другие реакции разложения. Однако разложение некоторых галоидалкилов, например я-пропилхлорида, не ускоряется катализаторами, дающими свободные радикалы, и поэтому считается, что они разлагаются только по молекулярному механизму, давая непосредственно олефины и хлористый водород. В общем изучение каталитического разложения не внесло значительного вклада в выяснение механизма разложения. Существование катализа свободными радикалами указывает на возможность протекания реакции по цепному механизму, но не говорит в пользу того, что она будет идти как цепная в отсутствие катализатора. [c.380]

    Детальному рассмотрению подвергнут вопрос о возможности цепных реакций в объеме фазы при обычном гетерогенном и энзиматическом катализе. В работах М. В. Полякова по гетерогенно-гомогенным окислительным реакциям показана возможность зарождения цепей на твердых поверхностях и перехода их в объем. Опытами А. Н. Баха, Н. Н. Семенова, И. В. Мочан и других исследователей показано также, что < катализ на расстоянии может наблюдаться в тех случаях, когда с поверхности контакта в фазу могут поступать активные частицы, способные зарождать гомогенные цепи. И. М. Ковальский недавно разработал метод одновременного контроля течения реакции в объеме и на поверхности и установил, что ряд реакций (например, восстановление сернистого газа окисью углерода, взаимодействие хлора с водородом в присутствии кислорода и др.), считавшихся типично гетерогенными, в действительности протекает по цепному механизму в объеме и только индуцируется катализаторами, т. е. одновременно происходят объемный и поверхностный процессы. [c.10]

    Одноэлектронные реагенты (Fe , [VOP ) сильно индуцируют обмен [Au li] с ионом хлорида, но двухэлектронные восстановители, например Sn(II), Sb(III), неэффективны [227]. И в этом случае имеются данные, указывающие на катализ соединениями золота в валентном состоянии Au(II). Кинетическое исследование обмена при 0°, индуцированного Fe(II), указало на следующий цепной механизм  [c.157]

    Именно с точки зрения возможности осуществлоиия этих двух типов цепных механизмов и следует рассматривать вопрос о применимости ценных представлений в гетерогенном катализе. [c.370]

    Необходимо отметить еще одно очень важное направление, тес о связанное с вопросом о цепных механизмах, в катализе, которое, к сожалению, почти не получило никакого освещения в работах, доложенных на конференции. Речь идет об исследованиях, поавящениых воцросу возмож но сти осуществления цепного процесса путом многократного протекания ката.питичеоких циклов на заранее приготовленном активном центре, О бладающем в какой-то мере радикальными свойствами, но неспособном уничтожиться в отсутствие процесса. При таком протекании реакции мы имели бы, по-видимому, дело с цепным процессом при отсутствии непрерывного зарождения цепей, но с подачей в систему в начальный момент некоторого заданного количества активных центров. Исследования в этом направлении, подкрепленные непосредственным изучением свойств активных центров в ходе процесса (как химическими, так [c.372]

    Многими исследователями, среди которых отметим Семенова , Шан-торовича , Хиншельвуда и Дальтона , показано, что гомогенное окисление фосфина разбивается по цепному механизму. Гомогенное каталитическое окисление фосфина кислородом в присутствии окислов азота изучал Розенкранц, Каталитическое окисление фосфина водяным паром на серебряном контакте при высоких давлениях и температурах исследовали Бушмакин и Фрост , Неоднократно отмечалась роль адсорбции в катализе и особенно роль специфической химической адсорбции или активированной адсорбции, В научной литературе описано очень немного систем, для которых прямыми экспериментами доказана роль активированной адсорбции одного из компонентов в дальнейшей каталитической реакции. Некоторыми авторами при изучении реакции синтеза аммиака показано, что активированная адсорбция азота является наиболее медленной стадией каталитического процесса, [c.293]


Смотреть страницы где упоминается термин Цепной механизм катализа: [c.370]    [c.54]    [c.345]    [c.130]    [c.16]    [c.206]    [c.458]    [c.28]    [c.371]    [c.398]    [c.72]    [c.245]   
Смотреть главы в:

Катализ в органической химии -> Цепной механизм катализа




ПОИСК





Смотрите так же термины и статьи:

Катализ механизм



© 2024 chem21.info Реклама на сайте