Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние температуры на скорость химической реакции. Уравнение Аррениуса

    Влияние температуры. С повышением температуры скорость химической реакции, как правило, возрастает. Согласно правилу Вант-Гоффа при повышении температуры процесса на 10° скорость реакции в области умеренных температур увеличивается в два—четыре раза. Аррениус показал, что зависимость константы скорости от температуры может быть выражена уравнением [c.528]


    Согласно простому эмпирическому правилу (правило Вант-Гоффа) при повышении температуры на 10 К скорость химической реакции увеличивается в 2—4 раза. Такое правило дает весьма приближенную оценку влияния температуры. Скорость необратимых реакций прямо пропорциональна константе скорости, связь которой с температурой чаще всего может быть описана уравнением Аррениуса  [c.54]

    Оба эти метода дают возможность выявить основные различия в активности, связанные со значительными изменениями какого-либо одного параметра (химического состава, структурных свойств и т. д.), если остальные параметры остаются без изменения. Вместе с тем сложной взаимосвязи между процессами сорбции, диффузии и, химической реакцией они не отражают. Более надежным способом, позволяющим избежать неправильных выводов при сравнении катализаторов с нестабильной во времени активностью, является экстраполяция конверсии на нулевое время. Этот метод обычно используют в тех случаях, когда реакция проводится в дифференциальном, а не интегральном реакторе. Однако, как правило, применяется он значительно реже, хотя известно, к какой путанице может привести, например, определение влияния соотношения Si/Al на каталитические свойства деалюминированного морденита, если однозначный способ определения активности отсутствует. Еще меньше можно назвать работ, в которых были проведены кинетические определения зависимости констант скоростей от скорости подачи сырья или парциальных давлений исходных компонентов -й продуктов реакции. Между тем, сравнивая активности, часто дйпускают, что реакции имеют первый порядок, и пересчитывают измеренные степени превращения в константы скорости. Принято также определять температурную зависимость активности и подставлять данные по конверсии при различных температурах в уравнение Аррениуса. Такой расчет будет правильным, если используются только начальные конверсии, потому что в этом случае можно избежать неточностей из-за разной скорости дезактивации катализаторов при различных температурах. Но даже и тогда расчет энергии активации совсем не обязательно приведет к Д,, характерной для данной химической реакции, которая протекает на определенном типе активных центров. Полученная величина Еа может в значительной степени отражать ограничения, связанные с диффузией и массопередачей. [c.56]

    Вопрос о влиянии температуры является кардинальным в химической кинетике. Установлено эмпирически, что при повышении температуры на каждые 10° скорость многих химических реакций возрастает примерно в 2—3 раза. Зависимость между скоростью реакции и температурой вычисляется, как известно, из уравнения Аррениуса в его экспоненциальной форме  [c.42]


    Следует подчеркнуть, что зависимость типа а характерна для простых реакций, другие типы температурной зависимости—для сложных реакций или реакций, на протекание которых влияет скорость физических процессов. Сильная зависимость скорости химических реакций от температуры была замечена уже давно и учитывалась соотношением г=аТ ", где т изменялось от 6 до 8. Позднее (в 1878 г.) Гуд предложил уравнение г=ае 1Т. В 1889 г. Аррениус дал рациональное объяснение (которое до сих пор является общепринятым) к уравнению скорости простого экспоненциального вида. Пытаясь объяснить влияние температуры на скорость инверсии тростникового сахара в присутствии кислот, он высказал предположение, что непрерывно образующаяся тауто-мерная форма сахара более чувствительна к воздействию кислот, чем нормальная форма. Таутомерная форма имеет определенную теплоту образования и находится в равновесии с нормальной формой. К этому равновесию Аррениус применил термодинамическое уравнение  [c.31]

    Температура оказывает сильное влияние на скорость химической реакции, так как в уравнении Аррениуса температура входит в показатель степени, однако это влияние неодинаково для различных типов реакций. [c.53]

    Так как в химико-технологическом процессе всегда участвует несколько веществ (два минимум), то уравнение (У.16) соответственно усложняется, поскольку появляется несколько коэффициентов диффузии, плотностей и т. п. Поэтому аналитический расчет коэффициента массопередачи практически невозможен и для его определения в каждом конкретном случае нужна постановка специального эксперимента. Сложная зависимость ( .16) может быть упрощена исключением ряда переменных, если известно, в какой области идет процесс — диффузионной, кинетической или переходной. Лимитирующую стадию можно определить, изучая влияние параметров технологического режима на общую скорость процесса и. Если и возрастает с повышением температуры в соответствии с законом Аррениуса (рис. 46) и температурный коэффициент > 1,5, то, как прав 1ло, лимитирующая стадия — химическая реакция, и процесс идет в кинетической области. Если же и растет с увеличением скоростей потоков реагирующих фаз, то лимитирующая стадия — это массообмен между фазами, и процесс идет во внешнедиффузионной области. На рис. 46 показано влияние температуры и скорости газового потока на кинетику процесса в системе Т—Г для обжига, горения, газификации. Из рис. 46 видно, что в области низких температур скорость процесса резко повышается с ростом температуры, так как определяющей стадией служит химическая реакция. В области высоких температур скорость химических реакций настолько возрастает, что процесс переходит в диффузионную область и общую скорость процесса лимитирует степень турбулизации газового потока (пропорциональная скорости газа гш ). Такой вид кривых зависимости скорости процесса или выхода продукта от температуры и скоростей реагирующих фаз (или от степени их перемешивания) характерен и для других гетерогенных систем. [c.109]

    НО по сравнению с влиянием температуры на скорость химической реакции в соответствии с уравнением Аррениуса. [c.182]

    Скорость химических процессов очень чувствительна к изменению температуры. Для большинства реакций повышение температуры на 10° С приводит к увеличению химической реакции примерно в 2—4 раза. Определить фактическое изменение скорости реакции при изменении температуры позволяет уравнение кинетики, в котором влияние температуры учитывается константой скорости реакции. Для значительной части химических реакций зависимость константы скорости К от температуры реакции Т выражается уравнением Аррениуса [c.220]

    Уравнение (7.2) известно под названием уравнения Аррениуса, так как именно Аррениус впервые показал, что такой формулой выражается влияние температуры на скорость химической реакции. [c.134]

    На фиг. 4 работы Тунга [17] показано развитие процесса горения на физической плоскости для случая, когда суммарная скорость химической реакции второго порядка определяется уравнением Аррениуса. На графике приводятся значения энергии активации, энтальпии и температуры поверхности в виде безразмерных отношений, а также числа Прандтля и Шмидта. Вдоль ординаты и абсциссы отложены величины, пропорциональные расстоянию, нормальному к плоской стенке, и расстоянию от передней кромки соответственно. На основании роста скорости и тепловых пограничных слоев при наличии и в отсутствие химической реакции высказывается предположение о том, что влияние химической реакции на начальной стадии развития процесса горения очень невелико. На этом графике показаны также профили скорости, температуры, концентрации и скорости реакций в двух отдельных сечениях. Отметим, что пики на профилях температуры и скорости реакций с увеличением расстояния от передней кромки смещаются в сторону свободного потока, указывая таким образом на возможность зажигания, если это расстояние станет достаточно большим. [c.99]


    Влияние температуры на скорость реакций. Скорости химических реакций возрастают с увеличением температуры. В общем случае зависимость константы скорости k от температуры Т (в кельвинах) подчиняется уравнению Аррениуса. По крайней мере это справедливо в области умеренных температур ( 100 К) [c.25]

    Влияние режима обжига. Важнейшим фактором, влияющим на скорость связывания СаО, является температура обжига щихты. Константа скорости химической реакции, согласно уравнению Аррениуса (43), экспоненциально зависит от температуры. Поскольку, как уже рассматривалось, скорость связывания СаО (у) определя- ется кинетикой диффузионных процессов, то зависимость ее от температуры также мол ет носить экспоненциальный характер  [c.216]

    Кинетическая и диффузионная область. Очень важно правильно определить, протекает процесс в диффузионной области или кинетической, т. е. что является определяющей — скорость массопередачи или скорость химической реакции. Основными переменными, позволяющими это обнаружить, служат скорость потока и температура. Уравнение (VI, 2) показывает, что скорость массопередачи почти прямо пропорциональна скорости потока. С другой стороны, такое изменение рабочих условий совершенно не сказывается на скорости химической реакции. Влияние температуры на массопередачу выражено только в изменении физических свойств веществ в критериях подобия. Однако суммарное влияние температуры на скорость массопередачи весьма незначительно но сравнению с влиянием температуры на скорость химической реакции в соответствии с уравнением Аррениуса. [c.175]

    Температура очень сильно влияет на скорость процессов химической коррозии металлов. С повышением температуры процессы окисления металлов протекают значительно быстрее, несмотря на уменьшение их термодинамической возможности. Характер влияния температуры на скорость окисления металлов определяется температурной зависимостью константы скорости химической реакции кс (при кинетическом контроле процесса окисления металлов) нли коэффициента диффузии йд (при диффузионном контроле процесса), которая выражается одним и тем же экспоненциальным законом (уравнение Аррениуса), связывающим температуру с относительной долей частиц, обладающих энергией выше некоторого порогового значения (рис. 82, а)  [c.122]

    Природа электродной поляризации может быть установлена в результате изучения влияния температуры на скорость электрохимического процесса. Зависимость константы скорости химической реакции от температуры выражается уравнением Аррениуса  [c.318]

    Влияние температуры на скорость химической реакции выражается уравнением Аррениуса  [c.208]

    Значительное влияние, которое оказывает повышение температуры на скорость медленных реакций, приписывается тому, что только активированные молекулы способны реагировать. Энергию активации можно определить, исходя из уравнения Аррениуса или из теории абсолютных скоростей реакций. Согласно последней, химические реакции обычно протекают так, как это схематически изображено на фиг. 31. На этой схеме начальное количество энергии системы обозначено через, конечное количество энергии через Я,., а энергия активированного состояния [c.162]

    Какие условия могут оказывать влияние на скорость химической реакции 2. Может ли привести изменение условий проведения опыта к изменению механизма химической реакции 3. Как скорость реакции зависит от температуры 4. Опишите уравнение Аррениуса. 5. Сравните теорию активных соударений и абсолютных скоростей реакции. 6. Как изменяется потенциальная энергия в процессе химической реакции 7. Что такое координата реакции 8. Что такое активированный комплекс 9. Дайте определение экзо- и эндотермическим реакциям. 10. Какие факторы способны увеличить скорость химической реакции 11. Дайте определение изокинетической зависимости. Когда она наблюдается 12. Какие основные виды рН-зависимостей вы знаете 13. В каких координатах следует спрямлять рН-зависимости константы скорости Почему 14. Запишите уравнение Хендерсона-Хассельблаха. [c.68]

    Влияние температуры. С ростом температуры скорость ферментативной реакции проходит через максимум. Рост скорости с увеличением Т при 7 <Та,ах обусловлен тепловой активацией химических процессов и температурной зависимостью концентраций активных форм фермента. Рост значений Кщах и констант скорости различных стадий часто описывается в узких интервалах ДГ = 20—40° С уравнением Аррениуса при изучении реакций в широких диапазонах температур на зависимостях gk 1/Т наблюдаются изломы. [c.245]

    Поскольку скорость химической реакции и диффузия продуктов окисления через окалину в зависимости от температуры подчиняются единому экспоненциальному закону, т. е. выражению, подобному уравнению Аррениуса, скорость высокотемпературной коррозии пр,и данном составе золовых отложении с повышением температуры увеличивается экспоненциально как при кинетическом, так и при диффузионном режиме окисления. Выше было сказано, что химикочминералогический состав возникающих на поверхности нагрева золовых отложений зависит от температуры поверхности и изменяется со временем. Поэтому изменяется также и коррозионная активность отложений и влияние температуры на коррозию в различных интервалах температур может оказаться различным. Иногда можно встретить и такие области процессов, где вследствие выделения из отложений коррозионноактивных компонентов интенсивность коррозии с повышением температуры снижается. [c.12]

    Крупным вкладом в развитие учения о скоростях химических реакций оказались работы Н. А. Меншуткина о скоростях образования сложных эфиров из спиртов и кислот (1877 —1884). Н. А. Меншуткин изучал влияние строения спиртов, а также и среды на скорость и предел реакций с кислотами. Он исследовал также реакции образования амидов и анилидов из соответствующих солей при действии кислот. Н. А. Меншуткин пошел значительно дальше М. Бертло и П. Сен-Жиля, и его выводы и экспериментальные данные были использованы в развитии как химической кинетики, так и теории химического строения. Плодотворными оказались кинетические представления. Основываясь на законе распределения скоростей молекул газа (установил К. Максвелл в 1859), Л. Пфаундлер (1867—1874) пришел к выводу, что реакция может осуществляться лишь в результате соударений молекул, энергия которых (скорость движения) выше некоторой критической величины. Число таких активных молекул возрастает с повышением температуры. На основе этих воззрений К. Гульдберг и П. Вааге в 1879 г. усовершенствовали закон действующих масс. С. Аррениус в 1889 г. развил теорию активных (возбужденных) молекул и предложил уравнение зависимости константы скорости реакции от энергии активации. [c.171]

    Под влиянием исследований Н. А. Меншуткина по химической кинетике начинает свои работы известный голландский физико-химик Якоб Вант-Гофф. В 1884 г. он дал первые уравнения для скорости химической реакции в завлсимости от концентрации реагирующих веществ. Через пять лет, в 1889 г., шведский физико-химик С. Аррениус нашел уравнение для зависимости скорости реакции от температуры. [c.6]

    Таким образом, оба выражения (1) и (2) констан гы скорости реащии для крайних случаев дают одинаковые значгения температур, в которых эта константа будет принимать эк, стремальное значение. Анализ уравнения (1) показывает, что существование экстремальных значений константы скорости реакции о бусловлено энергетическим вкладом колебательных степеней с вободы, и, если в твердом теле протекает несколько химически х реакций, то в определенных температурных областях возможно существование максимальных значений скоростей этих реакций. Для реакций с конденсированными телами как результат суммарного влияния различных степеней свободы закономерно наличи г изломов на графике Аррениуса в этих температурных областя х. По физическому смыслу эти температуры являются термодинамическими характеристическими температурами. [c.331]

    Первоначальное стремление обнаружить однозначную зависимость между строением органических соединений и скоростью их реакций привело в конечном итоге к выводам о том, что такой однозначности не существует и что, говоря словами Майкела (1919), в каждом отдельном случае мы должны рассматривать величину реакционной способности в данной физической и химической системе [62, с. 404], Иначе говоря, скорость органической реакции зависит не только от строения реагентов, их концентрации и от физических параметров (температуры и давления), но и от химических факторов (растворителя и катализаторов). Собственно исследованию подвергалось влияние этих параметров не на саму скорость реакции, а на основные факторы, определяющие величину константы скорости реакции, а именно на изменение предэкспонентного и экспоненциального множителей в уравнении Аррениуса. [c.154]


Смотреть страницы где упоминается термин Влияние температуры на скорость химической реакции. Уравнение Аррениуса: [c.182]    [c.51]    [c.230]   
Смотреть главы в:

Сборник задач и упражнений по физической и коллоидной химии -> Влияние температуры на скорость химической реакции. Уравнение Аррениуса




ПОИСК





Смотрите так же термины и статьи:

Аррениус

Аррениуса уравнение

Влиянне температуры на скорость реакции

Реакции влияние температуры

Реакция температуры

Скорость реакции влияние температуры

Скорость реакции от температуры

Скорость реакции уравнение Аррениуса

Скорость температуры

Скорость химических реакций влияние температуры

Скорость химических реакций уравнения

Уравнение скорости

Уравнения реакций

Уравнения химические

Уравненне скорости химическои реакции

Химические реакции скорость

Химические скорость

Химический ая ое температуры



© 2025 chem21.info Реклама на сайте