Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура, pH и другие факторы

    Кроме того, известно, что теплопередачу приходится осуществлять при помощи различных газообразных, жидких и твердых теплоносителей, которые обладают различными физическими свойствами. Для успешного решения указанных задач необходимо располагать основными зависимостями по теплопередаче наиболее важных технических материалов воздуха, воды и водяного пара, а также и других материалов, которые применяются в химической промышленности. Теплопередача в промышленности осуществляется в различных условиях. Так, в некоторых случаях она протекает при очень большом давлении и при высокой температуре, в других— при очень низкой температуре или низком давлении. Интенсивность теплообмена в значительной степени зависит от того, в каком состоянии находится соответствующий материал, или от способа, каким осуществляется теплопередача. В частности, интенсивность теплообмена различна для нагревания или охлаждения, испарения или конденсации. Значительную роль играют в данном случае условия производства, чистота поверхностей, коррозия и другие факторы, от которых зависит выбор материалов и наивысших допускаемых температур с учетом качества продукта или перерабатываемого сырья. [c.7]


    ВЛИЯНИЕ ТЕМПЕРАТУРЫ И НЕКОТОРЫХ ДРУГИХ ФАКТОРОВ НА ПЕРЕНАПРЯЖЕНИЕ ВОДОРОДА [c.401]

    Изменение высоты пика иногда можно приписать изменению формы полосы. Ширина полосы поглощения обычно увеличивается с повышением температуры. Это увеличение обусловлено возрастанием тепловой энергии системы, оказывающим влияние и на энергию колебаний. Тепловое уширение будет поэтому приводить к уменьшению высоты пика, хотя в действительности наблюдается возрастание интенсивности с температурой. Другой фактор, которым частично можно объяснить неожиданное увеличение интенсивности, — это взаимное перекрывание двух главных компонент маятникового дублета. При возрастании температуры расщепление компонент уменьшается от приблизительно 12 до 11 см . Эффективные высоты пиков при этом увеличиваются, так как интенсивности индивидуальных полос усиливают друг друга. Малое изменение в расщеплении только частично может объяснить эти эффекты, но никак не полностью. В настоящей работе для отделения компонент маятникового колебания не использовали метод разделения контура, а интегрирование всего дублета сглаживает любые изменения в форме полосы. Интегральные интенсивности также возрастают с температурой. Это исключает возможность объяснения аномального поведения высот пиков изменением их ширины. Можно, однако, выдвинуть по крайней мере два других объяснения наблюдаемого явления. [c.139]

    Другим фактором, влияющим на хлорирование в углеродной цепи, является температура. Повышение температуры при сульфохлорировании увеличивает долю хлорирования в углеродной цепи в общей реакции, выдвигаясь на передний план при температуре 100°. Поэтому на практике реакцию проводят по возможности при комнатной температуре (20—30°). При этом сульфохлорирование начинают при 35—40°, а затем работают при 20—25°, отводя тепло реакции и тепло, выделяемое в результате облучения светом ртутных паров, при помощи специально подведенного охлаждения. [c.363]

    Часто рассчитывается теоретическая температура реакции сгорания. Она зависит от соотношения реагентов (например, избыток воздуха, вводимого в реактор, должен быть нагрет). Другие факторы, которые следует принимать во внимание, когда по расчету получается высокая теоретическая температура, — обратимость реакции и диссоциация продуктов. Так, при сгорании водорода в кислороде часть образующейся воды диссоциирует на водород и кислород и даже на Н и ОН. В случае сгорания топлива в воздухе диссоциация продуктов при высоких температурах вследствие малых парциальных давлений может быть более интенсивной, чем это следует из данных, полученных для неразбавленных продуктов сгорания. [c.148]


    Вязкость масла - это основной показатель качества, который является общим для всех масел. Для двигателя или любого другого механизма необходимо применять масла с оптимальной вязкостью, величина которой зависит от конструкции, режима работы и степени износа, температуры окружающей среды и других факторов. [c.69]

    Отработанные нефтепродукты являются, как правило, отходами потребления и включают отработанные моторные и индустриальные масла, а также смесь отработанных нефтепродуктов. Количество и качество отработанных масел в первую очередь зависит от организации сбора, качества исходного масла, оборудования и условий его эксплуатации. Масла в процессе использования загрязняются водой и пылью, продуктами коррозии при соприкосновении с металлами, продуктами окисления, образующимися при контакте с воздухом и под воздействием повышенных температур. Свойства масел ухудшаются под влиянием естественного света, давления, электрического поля и других факторов. Масла в процессе эксплуатации оборудования разжижаются топливом. [c.133]

    В заключение следует отметить, что снижение температуры реакции, при сохранении глубины общего превращения за счет других факторов процесса, приводит  [c.47]

    Стабилизация хлоропреновых каучуков. Такие свойства хлоропреновых каучуков и резин, как пластичность, эластичность и другие физико-механические показатели, ухудшаются при длительном хранении, под влиянием высоких температур и других факторов. Ухудшаются в основном свойства каучуков, полученных с применением в качестве регулятора серы и в меньшей степени меркаптана. Эти явления вызваны главным образом структурированием и деструкцией. [c.379]

    Итак, движущая сила реакции, проводимой при постоянных давлении и температуре, измеряется изменением свободной энергии продуктов по сравнению с реагентами. Если изменение свободной энергии отрицательно, реакция протекает самопроизвольно если изменение свободной энергии положительно, реакция протекает самопроизвольно в противоположном направлении если же изменение свободной энергии равно нулю, реагенты и продукты находятся в равновесии. Изменение свободной энергии складывается из двух составляющих AG = АН — TAS. Значительное уменьшение энтальпии, означающее выделение теплоты, благоприятствует протеканию реакции. Но следует учитывать и другой фактор. Значительное возрастание энтропии при образовании продуктов из реагентов также благоприятствует реакции. При обычных температурах энтропийный фактор, как правило, невелик, и поэтому AG и АН имеют одинаковые знаки. В таких случаях самопроизвольные реакции оказываются экзотермическими. Но возможны и другие варианты, когда энтальпийный и энтропийный факторы действуют в противоположных направлениях, и может случиться, что энтропийный член оказывается преобладающим. Это относится главным образом к реакциям, в которых происходит превращение твердого или жидкого вешества в газы или растворы. [c.75]

    Почти для всех светлых топлив нормируется йодное число, как показатель наличия в них непредельных углеводородов, обусловливающих химическую нестойкость этих продуктов. Под влиянием температуры, кислорода воздуха, каталитического действия металлов, света и других факторов непредельные углеводороды быстро окисляются и полимеризуются. Это приводит к осмолению топлив и ухудшению их эксплуатационных свойств. [c.200]

    УВ в них и их эмиграции, состав ОВ и другие факторы влияют на количество генерированных и эмигрировавших УВ, поэтому подчас бывает трудно выявить генетические различия нефтей по количеству парафино-нафтеновых или нафтено-ароматических УВ. Эти различия более четко отмечаются по структуре УВ (см. рис. 2). В нефтях и ОВ пород в одноименных толщах наблюдаются близкие содержания парафиновых УВ и моноциклических нафтенов и почти идентичные — три-, тетра-, пента-и гексациклических нафтенов. Следует отметить, что содержание этих УВ в ОВ пород в каждой нефтематеринской толще независимо от глубины залегания, температуры и стадии катагенеза почти не меняется. [c.35]

    Обычно накопление нагара идет до определенного предела, обусловленного главным образом температурой, а также качеством и расходом топлива и масла и рядом других факторов [98]. При эксплуатации двигателя обычно образуется зона существования нагара . Достигнув определенного предела, рост нагара прекращается и остается постоянным. С изменением режима работы двигателя нагар может снова начать расти или уменьшаться за счет выгорания [99]. Если с половины днища поршня снять нагар, то через некоторое время работы двигателя образуется новый нагар на том же уровне (рис. 2.16). [c.75]

    Величина предела прочности смазок зависит от температуры и скорости нагружения. Другие факторы, например геометрические размеры испытуемого образца смазки, слабо сказываются на результатах испытания. Повышение температуры вызывает небольшое уменьшение предела прочности смазок. В сравнительно широком диапазоне температур (несколько десятков градусов) пределы прочности линейно убывают с повыщением температуры снижение обычно составляет 1—5% на 1 градус. Так, пределы прочности смазок при повышении температуры от 20 до 50 °С или от 20 до 80 С уменьшаются не более чем в 1,5 и 3 раза соответственно. Здесь не учитываются, конечно, смазки, плавящиеся при температурах ниже 50— 80 °С. Возрастание скорости нагружения несколько увеличивает измеряемый предел прочности. Зависимость предела прочности смазок от скорости нагружения невелика — изменение скорости нагружения в 3840 раз вызывает увеличение предела прочности при 20 °С всего в 2,5 раза. [c.272]


    Предел прочности сказывается на стартовых характеристиках узлов трения, заполненных смазкой, хотя далеко не в той степени, как это предполагалось ранее. При обычных пусковых режимах подшипников качения из общего сопротивления, обусловливаемого смазкой, доля сопротивлений, вызываемых пределом прочности, составляет всего несколько процентов. Основные же стартовые усилия объясняются внутренним трением (вязкостью) смазки [286]. Увеличение температуры, снижение вязкости масла, повышение концентрации загустителя и другие факторы несколько увеличивают роль предела прочности. [c.276]

    В нефтехимических производствах в качестве исходного сырья и полупродуктов широко применяются непредельные углеводороды. В присутствии катализаторов они полимеризуются, образуя полимеры. Однако частичные полимеризация и поликонденсация углеводородов могут протекать и без катализаторов под воздействием температуры и других факторов. При осуществлении некоторых процессов образуются высококипящие продукты, которые при дальнейшей переработке осмо-ляются. [c.121]

    Изучение Ватсоном и другими [27, 28] соотношения между характеристическим фактором с одной стороны и плотностью и вязкостью с другой, показывает, что при данной вязкости и температуре характеристический фактор К представляет собой линейную функцию от плотности G (в °АР1). [c.39]

    Скорость выгорания кокса с поверхности катализаторов при прочих равных условиях зависит от особенностей отложения кокса в стадии крекинга и внутренней поровой структуры частнц. Поэтому регенерационную характеристику катализаторов оценивают в одинаковых условиях закоксовывания и при двух режимах горения кокса—диффузионном и кинетическом. Полученные результаты выражают в виде зависимости приведенной интенсивности горения кокса (в граммах за 1 ч из 1 тг катализатора) от температуры регенерации или других факторов, определяющих скорость горения. [c.169]

    Оптимальная объемная скорость для каждого конкретного вдда сырья определяется опытным путем, при этом необходимо учитывать и другие факторы тип и состояние катализатора, температуру, парциальное давление водорода, которые также влияют на степень обессеривания. [c.45]

    Режимы работы кубов на разных заводах различны, поскольку зависят от свойств сырья, марки получаемого битума, способа поддержания теплового баланса и других факторов. В общем, расход воздуха на окисление в кубах вместимостью 200 м обычно меняется от 600 до 1800 м /ч, средняя температура окисления при производстве дорожных и строительных битумов — от 220 до 280 °С. Длительность цикла также зависит от указанных выше условий и колеблется в пределах 20— [c.128]

    Но все-таки общее направление движения нефти в конечном счете определяется тектоникой, поэтому, если можно сп-орить о роли тех или иных синклинальных форм на фоне других тектонических структур, то ни в коем случае нельзя отрицать громадного значения и роли больших депрессий регионального характера, названных нами геосинклиналями. Ведь в них-то и происходило накопление первично битуминозного материала — так называемой материнской породы. Здесь под влиянием повышенной температуры и давления и при участии других факторов (анаэробных бактерий) происходило превращение органического материала в диффузно рассеянную в породе нефть, и отсюда началось ее движение вследствие разницы в удельном весе воды и нефти происходит их разделение и подъем последней вверх по восстанию. На своем пути поднимающаяся из геосинклиналей с места своей родины нефть встречала различного рода препятствия тектонического характера в виде литологических особенностей того или иного пласта, и в этих преградах происходило ее накопление и образование нефтяных залежей . Отрицая возможность накопления нефти в некоторых локальных структурных типах синклиналей, нельзя забывать огромного значения и роли геосинклиналей в образовании и аккумуляции нефти. [c.272]

    На рис. 82 представлены принципиальная схема и необходимое оборудование для процесса окисления в трубчатом реакторе. Сырье насосом подают в печь. Нагретое до температуры 180—240 °С око смешивается с рециркулятом и воздухом и поступает в реактор. На охлаждение реактора низконапорными вентиляторами подают воздух. Расход воздуха на обдув труб регулируют, открывая или закрывая заслонки на линии подачи воздуха, в зависимости от заданного температурного режима работы реактора, времени года и других факторов. Часто оказывается достаточным охлаждение реактора за счет тепловых потерь, т. е. при неработающих вентиляторах. Прореагировавшая в реакторе газожидкостная смесь направляется в испаритель-сепаратор фаз. Газы выводятся из верхней части испарителя, а жидкость откачивают с низа. Часть жидкости (в балансовом количестве) выводят из процесса как готовый про-дукт, другую, большую часть — рециркулируют. [c.130]

    Температура бензина при хранении зависит от климатического пояса, времени года, емкости и расположения резервуара (наземный, полуподземный, подземный) и ряда других факторов. [c.330]

    Установить существование простых зависимостей между изменением объема и химическими или физическими свойствами углеводородов до сего времени не удалось. Происходящая усадка зависит от молекулярных масс компонентов, от строения углеводородов, температуры и других факторов. Ниже представлено одно из эмпирических уравнений для расчета уменьшения объема при смешении двух компонентов  [c.160]

    Движение эмульсии в реакторе показано на рис. 24. Эмульсия через реакционную зону поднимается вверх по трубам и поступает на прием циркуляционного насоса. Для снятия тепла, выделяющегося в результате реакции алкилирования и работы мешалки, а также вносимого с потоками, в реакторе поддерживают давление, равное давлению паров углеводородной смеси. Это позволяет автоматически отводить тепло из реакционной зоны путем испарения части жидкости. Таким образом, здесь используется внутренний холодильный цикл. Величина давления в реакторе определяется в зависимости от температуры, числа ступеней, соотношения изобутан олефины и других факторов. Наиболее распространенный режим давлений при переработке фракций углеводородов Сд следующий в первой секции реактора 1,5—2 ат, в каждой из последующих секций оно падает на 0,1—0,2 аг и в последней секции обычно равно 0,4— 0,8 ат. [c.111]

    Наибольшее количество установок служит для переработки дистиллятного сырья и лишь некоторые для переработки остатков. При гидрокрекинге дистиллятного сырья рабочая температура обычно поддерживается более низкой, чем при гидрокрекинге остаточного. Как известно, гидрированию способствуют более низкие температуры. Другим фактором, который надо иметь в виду, является то, что при гидрокрекинге остаточного сырья на катализа-трре откладывается больше углерода и металлов. Это приводит к снижению активности катализатора. [c.291]

    Замечание к уравнению 1. При температуре нитрования 425° и малом времени реакции (порядка секунды или доли секунды), например, н-бутан по Ф. Фрею и Хзппу [82] распадается только на 0,0002% с образованием радикалов. Таким образом, для образования больших количеств свободных радикалов, чем может образоваться по условиям равновесия, необходимо воздействие других факторов, кроме пиролиза. [c.283]

    Температура паров в низу колонны регулируется изменением расхода теплоносителя в кипятильник. Здесь применяются самые различные схемы в зависимости от конструкции колонны, условий проведения процеоса, качества получаемых продуктов и других факторов. Наиболее распространены схемы регулирования температуры в зоне питания или на контрольной та(релке изменением расхода теплоносителя в кипятильник в прямом или каскадном (через регулятор расхода) ко Нтуре регулирования. Хорошие результаты получаются также от схем регулирования перепада тем-лдратур на нескольких тарелках (рис. 1-23) при разделении шн-рококипяших смесей с большой разностью относительных летучестей компонентов [ 17]. [c.333]

    Все колонны, имеющиеся на установках, представляют собой цилиндрические сосуды вертикального типа. Они оборудуютс5] штуцерами, люками-лазами, патрубками и другими приспособлениями, необходимыми для эксплуатации колонны при заданное режиме и проведения ремонтно-монтажных работ. Основные раз меры колонны (высота и диаметр, число ректифицирующих таре лок, размеры щтуцеров, патрубков, число предохранительных кла панов и др.) определяются технологическими, термодинамическими гидравлическими и механическими расчетами. Размеры колонн за висят от фракционного состава нефти, давления, температуры, си стемы орошения и других факторов. Важным размером являетс5 поперечное сечение колонны, которое определяется по формул (в м )  [c.168]

    Состав тяжелых компонентов (продуктов уплотнения ароматических углеводородов, так называемых термоконтактных смол) вависит от режимов дегидрирования, деструкции, применяемых катализаторов, ингибиторов и других факторов. Около 90% (масс.) смол составляют компоненты с температурой кипения [c.183]

    Уравнение Ван-дер-Ваальса дает достаточно точные результаты для всех газов даже в области их критических температур и давлений. Однако при высоких давлениях, когда плотность газа велика или когда газ находится вблизи точки сжижения, это уравнение дает значительные отклонения от действительного поведения газа (ср. приведенные выше примеры 2 н 3). Отклонения объясняются тем, что при большой плотности газа иа его давление оказывают влияние не только силы взаимного притяжения, но также и силы взаимного отталкивания частиц, обусловленные внешними электронными оболочками этих частиц. Кроме того, здесь на реальное поведение газа в значительной мере также оказывают влияние неупругие столкновения его частиц и другие факторы. В связи с этим, кроме уравнения Ван-дер-Ваальса, был предложен ряд других, более сложных уравнений для реального состояния газов, на которых мы здесь останавливаться не будем, так как они для ггракгики технологических расчетов интереса не представляют. Уравнением Ван-дер-Ваальса в производственных расчетах также пользуются довольно редко наиболее удобными и более точными для этого являются энтропийные диаграммы (глава IV, стр. 103). [c.57]

    При высоких температурах на металлических поверхностях, омываемых маслом, образуются отложения, напоминающие лак. Эти отложения имеют гладкую блестящую поверхность светложелтоватого, коричневого или черного цвета. Они представляют собой продукты глубокого окисления компонентов масла и имеют такой химический состав карбены и карбоиды 70—80%, асфальтены и гидроксикислоты до 10°/о, масло и нейтральные смолы 15—25% [96]. Лаковые отложения неоднородны и по элементному составу. В зависимости от качества масла и топлива, от температуры и других факторов состав лака может колебаться. В среднем в лаковых отложениях содержится 81—85% углерода, 7—9% водорода и 7—9% кислорода. Причина образования лаковых отложений при окислении масел на металлических поверхностях была установлена Н. И. Черножуковым Н С. Э. Крейном еще в 1932 г,. [80]. Было показано, что лакообразные вещества представляют собой продукты конденсации гидр-оксикислот. Позднее это было подтверждено при испытании на двигателях. [c.73]

    Как описано в ])яде патентов Рида [76], весьма сходные результаты получены при пропускании хлора и двуокиси серы через углеводород. Этот метод обычно известен под названием реакция Рида . Реакция нашла некоторое ограниченное промышленное применение в США и Германии для производства алкилсульфокпслот, легко получаемых нри гидролизе алкилсульфонилхлоридов [56, 7]. При производстве но этому методу сульфонатов (применяемых как детергенты и смачивающие агенты) из разнообразных парафинов предпочтение отдавали углеводородам, содержащим в молекуле от 12 до 16 атомов углерода. Получены также сульфонаты из парафина и более высокоплавкого парафина, получаемого но процессу Фишера—Тропша [7]. В парафинах с длинными цепями сульфонилхлорид может замещаться, но-видимому, в любое положение. Из простых парафинов пропан дает приблизительно равные выходы пропан-1-сульфонил-хлорида и вторичного производного. к-Бутан дает приблизите.тьно 1/д бутан-1-сульфонилхлорида и бутан-2-сульфонилхлорида изобутан дает только первичное производное. По данным [28] нри использовании в качестве катализатора азосоединения реакция протекает при температурах от Одо 75° без света. Имеются сведения, что добавка фосфорной кислоты [23, 26] в реакционную смесь нейтрализует вредное влияние загрязнений железа. Промышленному применению процесса препятствуют нежелательное образование хлоридов и другие факторы. [c.92]

    В качестве сырья исно.чьзуются атмосферные и вакуумные остатки различных нефтей, ха])актеризую1циеся высокой коксуемостью [3,4, 3.10, З.П]. Контакт сырья и катализатора 0суп1сствлястся нри температурах, близких к процессу каталитического крекинга или выше (450-700 С) в зависимости от требуемой глубины превращения сырья, степени восстановления и закоксованности катализатора и других факторов. В реактор может подаваться флюидизирующий агент (водяной пар, азот, углеводородные газы) для созда- [c.60]

    Молекулярная масса вязкостных присадок, ппименяемых для получения загущенных масел, колеблется от 5000—10 000 до 100 000—200 000 и более, С увеличением молекулярной массы загущающая способность вязкостных присадок возрастает одновременно ухудшается их механическая стабильность, т, е. способность препятствовать механической деструкции. В связи с этим при вы-6oipe вязкостных присадок для того или иного смазочного масла следует учитывать специфику условий его работы, преобладающего влияния температуры, величины градиента скорости сдвига или других факторов на работоспособность данного масла. [c.170]

    Кроме теплового воспламенения газовых смесей возможно также самоускорение реакции горения, свя занное с развитием цепной реакции. Процесс самовоспламенения реальных горючих смесей имеет цепной характер. Самовоспламенение горючей смеси может произойти только в случае превышения некоторой определенной температуры, называемой температурой самовоспламенения. В отличие от таких характеристик, как нор.мальная скорость и концентрационные пределы, температура самовоспламенения не является физикохимической константой горючей газовой смеси и зависит от габаритов сосуда или аппарата, в котором находится смесь, и от ряда других факторов. [c.22]

    Скорость химических реакций с повышением температуры резко растет. Для гетерогенных реакций температурный коэффициент скорости обычно ниже, чем для гомогенных, так как при этом накладывается влияние других факторов, и наиболее медленной стадией процесса является не сама химическая реакция, а процессы диффузии, адсорбции и т. и. Зависимость скорости гомогенной реакции от температуры приближенно описывается эмииргшеским правилом Вант-Гоффа нри нагревании на 10 констаита скорости увеличивается в два-четыре раза, т. е. [c.338]

    Как правило, аномалии зависимости температуры размягчения от пенетрации не наблюдаются, поскольку битумы, облада-юшие такими аномалиями, недостаточно стабильны, и длл практики они не представляют большого интереса. В связи с этим математическое описание зависимости температуры размягчения от пенетрации может быть довольно простым. Однако часто такие описания основаны на сомнительных допущениях, например, об отсутствии влияния на зависимость температуры размягчения от пенетрации других факторов [25], или ограничены полученным в конкретных условиях экспериментальным материалом без перехода к другим условиям [26]. Рациональным представляется следующее полуэмпирическое уравнение, предложенное в работе [27] для окисленных битумов  [c.30]

    Расчету на прочность предшествует выбор конструкционного материала в зависимости от необходимой химической стойкости, требуемой прочности, дефицитности и стоимости материала и других факторов. Прочностные характеристики конструкционного материала при расчетной температуре определяются допускаемыми напряжениями в узлах и деталях. Номинальные допускаемые напряжения ад для наиболее распространенных в химическом аппаратостроенни марок стали приведены на рис. IV. 1. [c.76]

    Для разработки процесса термоконтактного получения водорода наобходимы экспериментальные данные о кинетике окисления кокса при температурах 700—1400° С. Но так как на окисление oiK a могут влиять, кроме тем1паратуры, и другие факторы скорость подачи кислородсодержащего газа и концентрация в нем кислорода, диаметр зерен кокса, необходимо исследовать и их влияние. С этой целью изучено окисление кокса при линейных скоростях подачи кислородсодержащего газа от 0,14 до 1,77 м/с (в расчете на полное сечение слоя зерен контакта). Этот интервал охватывает всю возможную область скоростей потока, которая может быть реализована в промышленных условиях. [c.80]


Смотреть страницы где упоминается термин Температура, pH и другие факторы: [c.291]    [c.66]    [c.234]    [c.76]    [c.70]    [c.397]    [c.341]    [c.17]    [c.18]    [c.375]    [c.382]   
Смотреть главы в:

Растительный белок -> Температура, pH и другие факторы




ПОИСК





Смотрите так же термины и статьи:

Влияние температуры и некоторых других факторов на перенапряжение водорода

Влияние температуры на скорость химической реакции. , И Другие факторы, влияющие на скорость химической реакции

Влияние характера агрессивной среды, температуры, давления и других факторов на коррозию металла Влияние природы и концентрации агрессивного вещества

Другие важные факторы структура, морфология, температура и давление

Другие факторы

Зависимость температуры стеклования полимеров от их молекулярной массы, химического состава, состава смесей и других факторов

Перенапряжение водорода температуры и других факторов

Физиология цветения температура и другие факторы

Химические реакции, происходящие при матировании стекла. — Зависимость процесса матирования стекла от концентрации раствора ванны, температуры и других факторов



© 2025 chem21.info Реклама на сайте