Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная способность при нуклеофильном замещении в ароматическом ряду

    Для этого необходимо вначале изучить строение и свойства ароматических соединений, главным образом, особенности их реакционной способности, рассмотренные в главе 1. Далее изучению подлежат основные реакции, используемые в синтезе соединений ароматического ряда. При этом имеется в виду такое изучение, которое позволило бы читателю сознательно управлять течением реакций. В книге они систематизированы в 13 главах по типам химических превращений как электрофильные, нуклеофильные и радикальные реакции ароматического замещения, реакции в боковых цепях и заместителях, реакции циклизации и реакции окисления — восстановления. Такая систематизация позволяет сделать ряд широких обобщений и облегчает усвоение обширного материала. [c.6]


    Арилгалогениды обсуждаются в отдельной главе потому, что они очень сильно отличаются от алкилгалогенидов по методам синтеза и свойствам. Арилгалогениды в целом относительно не реакционноспособны в реакциях нуклеофильного замещения, которые столь характерны для алкилгалогенидов. Однако присутствие некоторых других групп в ароматическом кольце резко повышает реакционную способность арилгалогенидов в отсутствие подобных групп реакцию все же удается осуществить, но лишь при использовании очень сильно основных реагентов или высоких температур. Мы покажем, что существуют два механизма нуклеофильного замещения в ароматическом ряду механизм бимолекулярного замещения (для активированных арилгалогенидов) и механизм элиминирования — присоединения, который включает образование очень интересного промежуточного соединения, называемого дегидробензолом. [c.781]

    Выше уже говорилось о том, что арилгалогениды характеризуются очень низкой реакционной способностью по отношению к нуклеофильным реагентам типа ОН , OR , NHg и N , которые играют такую важную роль в химии алкилгалогенидов. Вследствие этого нуклеофильное замещение в ароматическом ряду имеет гораздо меньшее значение в синтезе, чем нуклеофильное замещение в алифатическом ряду или электрофильное замещение в ароматическом ряду. [c.792]

    Рассмотрим кратко некоторые из этих активационных эффектов, а затем попытаемся их объяснить с точки зрения уже знакомых нам химических принципов. Мы обнаружим аналогию между реакциями электрофильного и нуклеофильного замещения в ароматическом ряду в отношении их механизмов, а также способов, посредством которых заместители оказывают влияние на реакционную способность и ориентацию. [c.792]

    В реакциях нуклеофильного замещения в ароматическом ряду, так же как и при электрофильном замещении, влияние заместителя на реакционную способность обусловлено его способностью притягивать или подавать электроны при нуклеофильном замещении в ароматическом ряду, так же как и при электрофильном, заместитель оказывает влияние главным образом в орто- или мара-положениях кольца. При нуклеофильном замещении в ароматическом ряду оттягивание электронов вызывает активацию, а подача электронов — дезактивацию. [c.794]


    Приведенная интерпретация реакционной способности и ориентации при нуклеофильном замещении в ароматическом ряду основана на одном важнейшем допущении, которое пока еще ничем не было обосновано замещение протекает в две стадии, из которых первая гораздо более медленная, чем вторая. [c.799]

    Однако в реакциях нуклеофильного замещения в ароматическом ряду часто наблюдается лишь очень небольшое различие в реакционной способности различных галогенпроизводных, причем чаще всего именно фториды содержащие самую прочную связь углерод — галоген, оказываются наиболее реакционноспособными. Если реакционная способность не зависит oi прочности связи углерод — галоген, то отсюда следует вывод, что реакция скорость которой мы наблюдаем, не включает стадии разрыва связи углерод — галоген. При нуклеофильном замещении в ароматическом ряду, тан же как и при электрофильном замещении в ароматическом ряду, скорость [c.799]

    Изменение растворителя систематически меняет нуклеофильную реакционную способность [178] так, что менее поляризуемые (жесткие), сильно сольватируемые ионы становятся более реакционно-способными с уменьшением полярности растворителя. Гидроксилсодержащие растворители из-за наличия водородной связи обычно сильно сольватируют ионы по сравнению с апротонными растворителями. Поэтому для водных спиртов и кислот ряд скоростей подобен, но он значительно изменяется в апротонных растворителях, таких, как ацетонитрил и диметилформамид. Эти изменения иллюстрируются данными для типичных реакций алкилирования и ароматического замещения (табл. 5-23), приведенными в обзоре Паркера [178]. [c.240]

    Глава шестая представляет особый интерес и посвящена описанию реакционной способности полярных двойных связей по отношению к нуклеофильным реагентам. Сюда же включены и реакции нуклеофильного замещения в ароматическом ряду. В этой главе также разбираются многочисленные реакции конденсации, Привлекают внимание очень интересные механизмы реакций, доказываемые многочисленными фактами и соображениями. [c.6]

    Последовательность изменения реакционной способности галогенов арил-галогенидов в качество замещаемых групп в реакциях типа /5 ,2 в ароматическом ряду обычно такова Ясно видно, что факторы, управляющие реакционной способностью при нуклеофильном замещении у ненасыщенных углеродных атомов, полностью отличаются от тех, которые наблюдаются в реакциях 8 / у насыщенных атомов углерода. Поляризуемость относительно мало влияет на реакционную способность нуклеофилов и замещаемых групп в случаях замещения у ненасыщенных центров (ср. стр. 245). [c.315]

    Аминирование с замещением атома галогена занимает важное место в ряду антрахинона [416—418]. Электроноакцепторный эффект двух карбонильных групп повышает реакционную способность крайних ароматических колец антрахинона по отношению к нуклеофильным реагентам. Атом галогена в. а-положении замещается легче, чем в -положении, особенно в неполярном растворителе, причем с увеличением сольватирующей способности растворителя различия в реакционной способности [c.308]

    Нуклеофильные константы имеют ограниченную область применения и не описывают достаточно точно реакционную способность реагентов в других процессах (нуклеофильное замещение в ароматическом ряду, присоединение по карбонильной группе и др.). Кроме того, область применимости рассмотренных уравнений ограничивается реакциями, проводимыми в протонных растворителях. При переходе к апротонным растворителям, а также к реакциям в газовой фазе, относительная реакционная способность нуклеофилов существенно изменяется независимо от природы нуклеофила, главную роль играет его основность. Подробное изучение реакций нуклеофильного замещения в апротонных растворителях позволило сделать вывод, что поляризуемость нуклеофила играет подчиненную роль, а изменение реакционной способности в очень большой степени связано с изменением сольватации реагента. [c.319]

    Механизмы реакций нуклеофильного замещения были предметом обширных исследований и обсуждаются в ряде книг [159,251, 252]. Лимитирующая стадия в реакциях замещения в алифатическом ряду может быть моно- или бимолекулярной (5м1 или 5 2). Нуклеофильное замещение в ароматическом ряду, как правило, протекает по двухступенчатому бимолекулярному механизму, причем лимитирующей стадией может быть образование или распад промежуточного соединения. И в случае алифатических, и в случае ароматических соединений часто образуются заряженные комплексы. Во многих случаях изменения величины и распределения зарядов между исходным и переходным состояниями коррелируют с влиянием среды на скорость нуклеофильного замещения в ароматическом и алифатическом рядах [159]. Различные изменения зарядов, теоретически возможные в реакциях нуклеофильного замещения, могут быть причиной влияния мицелл на скорость этих реакций. По имеющимся данным, мицеллы влияют на скорости реакций нуклеофильного замещения в алифатическом ряду только в тех случаях, когда хотя бы один из реагентов заряжен. Однако вполне возможно, что будут обнаружены мицеллярные эффекты в реакциях нуклеофильного замещения между нейтральными молекулами в тех случаях, когда распределение реагентов между мицеллами и объемом растворителя, а также их реакционная способность в этих двух фазах сильно различаются. [c.316]


    В качестве нуклеофильных реагентов использовались первичные алифатические амины с различной величиной радикала (бутиламин и гексиламин), вторичные амины (дибутиламин), алициклический (пиперидин) и ароматический (анилин). Как установлено, между основностью амина и его реакционной способностью в реакции взаимодействия с тозилатом целлюлозы имеется непосредственная связь при действии пиперидина, основность которого выше, чем первичных алифатических аминов, получается в одних и тех же условиях продукт с более высокой степенью замещения, чем при взаимодействии тозилата целлюлозы с бутил- или гексиламином. Аминобензойные кислоты с различным положением заместителей в ядре по скорости взаимодействия как с нитратом, так и с тозилатом целлюлозы могут быть расположены в ряд [36]  [c.29]

    Несколько неожиданные результаты были получены нами при обмене галоида, активированного присутствием в антрахиноновом ядре нитрогруппы. Сведения о сравнительной подвижности атома хлора и нитрогруппы в реакциях нуклеофильного замещения ароматических соединений в литературе довольно разног ечивы. Так, в монографии Гyбeнai указывается, что реакционная способность атома хлора в а-положении антрахинонового ядра выше таковой для нитрогруппы. В патентной литературе защищается способ получения п-нитроал кил аминозамещенных антрахинона обменом атомов хлора в 1,5-дихлор-4,8-динитроантрахиноне. По данным патента, нитрогруппа в указанных условиях не затрагивается. С другой стороны, в литературе имеются сообщения, что в соединениях бензольного ряда нитрогруппа вытесняется при нуклеофильном замещении приблизительно в 10 раз быстрее, чем атом хлора . В случае 1-хлор-4 Нитроантрахинона мы могли ожидать большей подвижности атома хлора в подобных реакциях, поскольку он дополнительно активируется нитрогруппой (сильная активация) нитрогруппа в свою очередь активируется атомом хлора лишь слабо. В действительности картина оказалась сложнее. В отсутствие соединений меди взаимодействие 1-хлор-4-нитроантрахинона с аминами протекает в двух направлениях  [c.102]

    Реакции проводили в среде ДМФА, в качестве катализатора (для процесса 3) использовали комплекс однохлористой меди с 8-оксихинолином. Процесс 1 относится к реакциям бимолекулярного нуклеофильного ароматического замещения. По своей реакционной способности л<-феноляты располагаются в ряд NH > СН, > Н > С1 > Вг > NOj, симбатный изменению их основности. Реакция 2 описывается кинетическим уравнением первого порядка первый - по фенолу, нулевой - по 4-нитрохлорбензолу. д -3амещенные фенолы по реакционной способности располагаются в ряд N0, > С1 > Вг > СН, > NHj, симбатный изменению их кислотности. I.e., при переходе от процесса 1 к процессу 2 ряд зависимости заместителей иа скорость реакции инвертируется. Для реакции 3 на- [c.155]

    Любая другая функциональная группа, которая присутствует в молекуле арилгалогенида, вступает, конечно, в характерные для нее реакции. Нас особенно будут интересовать реакции электрофильного замещения в бензольном кольце. Как было показано в разд. 11.5, галогены влияют очень необычно на реакцию электрофильного замещения они обладают дезактивирующим действием, оставаясь ор/тго,лара-ориентантами. Низкая реакционная способность галогенов в нуклеофильном замещении в ароматическом ряду и аномальное влияние на реакции электрофильного замещения в ароматическом ряду обусловлены одними и теми же структурными особенностями арилга-галогенидов. [c.781]

    Может также возникнуть вопрос почему один из данной серии субстратов реагирует по механизму общего основного катализа, а другой — по нуклеофильному Изменение механизмаг легко проследить на реакции катализируемого имидазолом гидролиза сложных эфиров различного строения. Сложные эфиры с активированной ацильной группировкой, а также содержащие плохие уходящие группы в присутствии имидазола реагируют по механизму общего основного катализа. С другой стороны, сложные эфиры с хорошей уходящей группой реагируют в тех же условиях по механизму нуклеофильного катализа. Сходным образом замещенные фенила-цетаты с сильными электроноакцепторными заместителями гидролизуются под действием ацетат-ионов по механизму нуклеофильного катализа, но при наличии любых других заместителей механизм катализируемого ацетат-ионом гидролиза меняется на общий основной. Переход от общего основного к нуклеофильному катализу в промотируемых имидазолом реакциях был исследован путем анализа взаимосвязи между реакционной способностью и строением на примере катализируемого имидазолом и гидроксид-ионом гидролиза ряда сложных эфиров. Соответствующие константы скорости в логарифмических координатах показаны на рис. 7.4. Константы скорости в случае гидроксид-иона отвечают одному и тому же механизму для всех сложных эфиров и поэтому могут быть использованы для построения эмпирической шкалы, отражающей структурные изменения. Электронные эффекты, которые можно учитывать в рамках уравнений Гаммета (ароматические а константы) и Тафта (алифатические ст константы), пока приниматься во внимание не будут. Таким образом, при сопоставлении констант скорости катализируемых имидазолом реакций с константами скорости реакций, катализируемых гидроксид-ионом, автоматически будут выявляться те структурные факторы, которые влияют на реакционную способность. Заметим, что в ходе такого анализа необходимо принимать во внимание помимо смены механизма катализа [c.177]

    Хотя 2- и 4-аминопиридины потенциально таутомерны, они существуют главным образом в аминоформе, аналогично аминопроизводным ряда азолов (стр. 189) [94]. Однако вследствие электронного влияния на атомы С-2 и С-4 (в результате электроотрицательности атома азота ядра), химические свойства этих аминов отличаются от свойств производных анилина и 3-аминопириди-на. По своему химическому поведению 3-аминопиридины подобны типичным ароматическим аминам, например они легко диазоти-руются. Диазотирование 2- и 4-изомеров приводит обычно к соответствующим плридонам, если не соблюдены специальные меры предосторожности [101]. Соли диазония в обычных условиях выделить не удается, об их высокой реакционной способности (например, ХЬП1) может свидетельствовать быстрое нуклеофильное замещение азота водой или другими нуклеофилами. Такое поведение характерно для алифатических солей диазония. [c.222]

    Алифатические галогениды в 5лг реакциях проявляют в зависимости от природы галогенида однозначный порядок реакционной способности Р -С С1 < Вг < I. При нуклеофильном замещении в ароматическом ядре в реакциях элиминирование — присоединение ряд реакционной способности галогенобензолов проявляет удивительную зависимость от природы основного реагента, вызывающего элиминирование ННа1. Бергстром с сотрудниками [5], изучая конкурирующее аминирование амидом калия в жидком аммиаке, нашел следующую последовательность реакционной способности Вг > I > С1 фторбензол оказался инертным. Наоборот, дегидробензол образуется с наибольшей скоростью при взаимодействии литийорганических соединений с фтор-бензолом. Это различие, по-видимому, указывает на различные механизмы образования дегидробензола. Тем не менее, как показано ниже, все факты могут быть объяснены простым изменением параметров в пределах обычного механизма. По-видимому, целесообразно начать рбсуждение с примеров четкого образования дегидробензола при действии литийорганических соединений, которое не осложняется явлениями обратимости. [c.73]

    Наконец, следует подчеркнуть, что реакции, рассмотренные в этой главе, предполагались ионными с присоединением электрофильной ионной пары, имеющей очень высокое сродство к электрону, или с присоединением нуклеофильной ионной пары, имеющей очень высокий потенциал ионизации. Однако можно также рассматривать вызванные растворителем псевдоионные ароматические замещения. Например, ситуация последнего типа может возникнуть в случае реакций нуклеофильного замещения в ароматическом ряду, включающих нуклеофилы — амины. Читателю следует самому убедиться, что те же самые тенденции реакционной способности будут наблюдаться, если ароматическое замещение инициируется ионным присоединением. [c.215]

    Ароматические фторпроизводные получают главным образом нуклеофильным замещением атомов хлора или диазониевой группы (реакция Шимана) (см. разд. 11.3). Однако известен ряд способов электрофильного фторирования аренов фтором, а также его органическими или неорганическими соединени 1ми. Прямое фторирование молекулярным фтором в обычных условиях невозможно из-за его высокой реакционной способности. Энергия диссоциации молекулы Рг на атомы составляет 150,6 кДж/моль, тогда как энергии образования связей С—Р и И—р. равны 485,3 и 418,4 кДж/моль соответственно [595]. Вследствие этого фторирование молекулярным фтором чрезвычайно экзотермично. Замещение атомов вОдорода на фтор в аренах удается провести при сильном разбавлении фтора азотом или аргоном, низких температурах и очень малой конверсии. Практического значения фторирование молекулярным фтором пока не имеет. Для изучения ориентации и субстратной селективности реакции пропускали смесь фтора с азотом (<1% Рг) в раствор арена РЬХ (X—И, Ме, ОМе, С1, Вг, Р, N02, СК) в СС1зР при —78°С [596]. Факторы парциальных скоростей при конверсии порядка 0 01% отлично коррелируют с о+-константами заместителей (коэффициент корреляции [c.233]

    Основная часть органических красителей представляет собой производные трех соединений бензола, нафталйнй и антрахинона. Производные антрахинона занимают особое положение в химии красящих веществ и составляют ведущую группу среди светопрочных красителей разных классов. Этому способствует глубокая окраска многих простых замещенных и устойчивость большинства производных к действию окислителей, в частности к фотоокислению в условиях практической службы окрашенных изделий. По рентгенострук-турным данным плоская молекула антрахинона включает два мало деформированных, бензольных цикла, связанных парными карбонильными группами расстояние между углеродными атомами карбонильных групп и ароматических циклов близко соответствует величине ординарной связи. Строение дифенилендикетона определяет его пониженную реакционную способность в реакциях электрофильного замещения, а также относительную автономию бензольных циклов и облегченный обмен заместителей при действии нуклеофильных агентов. Сопряжение карбонильных групп с участием не локализованных двойных связей, а ароматических циклов определяет особое положение антрахинона в ряду хинонов и малую усхойчивость образующихся при его восстановлении л зо-диоксипроизводных антрацена. ,  [c.3]

    Конденсация по Ульману галогенфенолятов представляет собой типичную реакцию нуклеофильного ароматического замещения, при которой образуются соли Си+, играющие роль катализатора. Реакционная способность галогенфенолятов в ряду заместителей понижается в следующей последовательности  [c.200]

    В течение последних нескольких лет интенсивно изучались факторы, влияющие на устойчивость анионных а-комплексов. Систематические исследования установили существование нескольких интересных корреляций между строением и устойчивостью. Стимулом для больщннства таких исследований были основные проблемы нуклеофильного замещения в ароматическом ряду [уравнение (14)], в котором а-комплекс является скорее реакционноспособным интермедиатом, а не продуктом присоединения. Данный обзор включает само нуклеофильное замещение [уравнение (14)], симметричный обмен [уравнение (15)] и нуклеофильное присоединение [уравнение (16) и (17)]. В предыдущих обзорах, посвященных взаимозависимости строения с реакционной способностью в нуклеофильном замещении для ароматического ряда [11, 14, 16], конечно, упоминалось об устойчивости а-комплекса. Здесь будут обсуждаться аспекты, связанные непосредственно со строением комплекса и его устойчивостью. [c.504]

    В число наиболее давно известных и чрезвычайно широко изученных реакций замещения входят процессы замещения галогенов у углеродных атомов [36, 37]. Эта группа реакций является одним из наиболее важных методов химической модификации белков и заключается в алкилировании всех или некоторых нуклеофильных заместителей, содержащихся в молекуле белка, в зависимости от доступности этих заместителей, условий реакции и количества используемого реагента. В табл. VI-5 приводен ряд алифатических и ароматических галогенпроизводных, которые вводились во взаимодействие с белками, а также типичные условия, возможные направления реакций и пути использования этих реакций для исследовательских или промышленных целей. Среди галогенидов обычно наиболее реакционноспособны иодиды, затем — бромиды (обладающие почти столь же высокой реакционной способностью, что и иодиды), хлориды и, наконец, фториды. Этот ряд, однако, может быть обращен для некоторых ароматических соединений, поскольку, как ун е отмечалось, реакционная способность вещества RY зависит как от природы Y, так и от R. [c.335]

    Имидаэол и его производные играют важную роль в различных химических и биохимических процессах. В реакциях нуклеофильного замещения у карбонильного атома углерода они заметно превосходят по реакционной способности близкие им по основности амины алифатического и ароматического рядов . Однако до настоящего времени нет единого мнения относительно причин высокой активности этих соединений в реакциях нуклеофильного замга ения. В связи с этим представляется важным получить количественные характеристики влияния стх турн имидазола и его производных на их нуклеофильность. [c.119]


Смотреть страницы где упоминается термин Реакционная способность при нуклеофильном замещении в ароматическом ряду: [c.19]    [c.79]    [c.102]    [c.18]    [c.148]    [c.104]    [c.190]    [c.266]    [c.363]    [c.446]    [c.78]    [c.279]    [c.91]    [c.601]    [c.44]   
Смотреть главы в:

Органическая химия -> Реакционная способность при нуклеофильном замещении в ароматическом ряду




ПОИСК





Смотрите так же термины и статьи:

Замещение нуклеофильное

Нуклеофильная способность

Нуклеофильное замещение ароматическое

Нуклеофильное замещение в ароматическом ряду

Нуклеофильное замещение в ряду

Ряды нуклеофильности



© 2025 chem21.info Реклама на сайте