Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурная изомерия органических соединений

    В результате изучения процессов электролиза (в первой половине прошлого века) было выдвинуто предположение об электрической природе валентных сил (Берцелиус) и установлены различия валентности по знаку. Естественно было в соответствии с поведением элементов при электролизе приписать элементам, выделяющимся на аноде (кислород или хлор), отрицательный заряд в соединении и, следовательно, отрицательную валентность, а элементам, выделяющимся на катоде (водород, металлы), наоборот, положительный заряд и положительную валентность. Берцелиус настойчиво пытался распространить эти представления на все соединения. Однако такой подход к органическим соединениям большей частью не оправдывался, и в органической химии вместо этой дуалистической теории валентности была принята унитарная теория валентности, в основе которой лежало представление о постоянных валентностях, свойственных основным элементам органической химии — углероду (4), водороду (1), кислороду (2) и т. д. без различия знака, и только для азота пришлось допустить возможное различие валентности по величине (3 или 5). В частности, в конце 50-х годов XIX столетия в работах Кекуле, Кольбе и Купера было введено представление, что углерод обычно бывает четырехвалентным и что атомы его могут соединяться между собой образуя цепи. В конце 50-х и в начале 60-х годов XIX столетия А. М. Бутлеровым была создана структурная теория, способствовавшая дальнейшему быстрому развитию органической химии. Им было объяснено явление изомерии [c.55]


    Структурная изомерия органических соединений [c.25]

    На рис. 24.2 для каждого структурного изомера алканов приведены два названия первое из них представляет собой так называемое тривиальное название. Изомер с не-разветвленной углеродной цепочкой считается нормальным изомером, что сокращенно обозначается буквенной приставкой н-. Изомер, в котором от главной цепочки ответвляется одна группа СН3, обозначается приставкой изо-, например изобутан. Однако при возрастании числа изомеров невозможно подобрать приставки для обозначения каждого изомера. Уже на довольно раннем этапе развития органической химии стала ясна необходимость создания систематической системы наименований органических соединений. В 1892 г. на съезде Международного союза химиков в Женеве бы.гти сформулированы первые правила систематической номенклатуры органических веществ. С этого времени задача составления правил наименования всех появляющихся соединений возложена на Международный союз чистой и прикладной химии (ИЮПАК). Интересно отметить, что работа ИЮПАК не прерывалась даже во времена двух опустошительных мировых войн и крупных социальных потрясений. Химики всего мира независимо от своей национальной или политической принадлежности пользуются единой системой наименования соединений. [c.411]

    Не следует думать, что структурная изомерия органическим соединениям. Она встречается и сс веществ. Вот два примера  [c.108]

    Вторая причина многообразия структурных форм высокомолекулярных соединений нефти заключается в том, что с ростом молекулярного веса увеличивается число элементов, участвующих в построении молекул. Так, в углеводородной части масляных фракций из сернистых нефтей уже содержатся значительные примеси сернистых соединений, но практически отсутствуют кислородные соединения в составе смол наряду с серой уже находятся значительные количества кислорода, а нередко и азота наконец, в асфальтенах, кроме серы и кислорода, сконцентрирована основная масса азота, ванадия, никеля [30, 31, 32] и некоторых других микроэлементов. Таким образом, с увеличением молекулярного веса фракций нефти наблюдается постепенный переход от компонентов чисто углеводородного характера к смесям, состоящим из углеводородов и гетеро-органических соединений. Структура и состав этих соединений непрерывно усложняются в результате увеличения числа гетероатомов, входящих в Молекулу. Однако углеводородный скелет по-прежнему остается несущим каркасом молекул. Поэтому огромное разнообразие возможных структурных форм высокомолекулярных соединений нефти в случае смол и асфальтенов, в отличие от углеводородов, обусловлено не только изомерией углеродного скелета молекулы, но и изомерией, вызванной наличием в молекулах атомов серы, кислорода, азота и других элементов. В наиболее высокомолекулярной смолисто-асфальтеновой части нефтей уже встречаются заметные количества металлоорганических соединений, что еще более увеличивает качественное разнообразие структурных форм этих соединений. [c.22]


    Количества теоретически возможных структурных изомеров органических соединений различных типов  [c.301]

    Структурными называют изомеры, отвечающие различным структурным формулам органических соединений (с разным порядком соединения атомов). [c.284]

    Многие области структурного использования рефрактометрии (определение структурных формул органических соединений, типа геометрической изомерии комплексных соединений, химического строения водных растворов электролитов) имеют в настоящее время, в основном, исторический интерес. Вместе с тем, изучение водородных связей (Я-связей) и взаимного влияния атомов в комплексных соединениях и сегодня представляют определенный научный интерес и вполне конкурентоспособно дифракционным методам структурного анализа. [c.179]

    Отдельные органические соединения после выделения в чистом виде были подвергнуты анализу для выяснения их качественного и количественного состава. Поскольку многие вещества, не отличающиеся по составу, обладали тем не менее различными свойствами, возникла необходимость в структурной теории, объясняющей эту особенность. Такая структурная теория была создана во второй половине прошлого века А. М. Бутлеровым на основе представлений Кекуле и Купера о четырех-валентности углерода и его способности образовывать цепи. Эта теория исходила из нового взгляда на органические соединения, согласно которому химические свойства веществ определяются не только типом и числом атомов, составляют,их молекулу, но и химической структурой вещества, т. е. способом соединения атомов в молекуле. С помощью этой теории стало возможным объяснить причины изомерии и в отдельных случаях предсказать число изомеров. [c.12]

    В 1858 г. Кекуле опубликовал свою теорию строения молекул, а в 1873 г. на основании этой теории Вислиценус установил, что право- и левовращающие молочные кислоты имеют одинаковое строение, и отметил, что если установлено, что молекулы структурно идентичны, но все же обладают различными свойствами, то это можно объяснить только тем, что эта разница обусловлена неодинаковым расположением этих атомов в пространстве . В 1874 г. Вант-Гофф и одновременно Ле Бель выдвинули концепцию пространственного расположения четырех заместителей при атоме углерода. Вант-Гофф развил свою идею на основании представлений Кекуле и Вислиценуса, тогда как Ле Бель базировался на работах Пастера. Это создало основы для современных представлений о строении, причем была установлена связь между конфигурацией и оптической изомерией органических соединений. Однако образование оптически активных соединений в живых системах все еще оставалось загадкой, причем это явление объяснялось с точки зрения ненаучной концепции жизненной силы [1]. [c.16]

    Впервые явление изомерии, открытое шведским химиком Й. Берцелиусом в начале XIX в., объяснил крупнейший русский химик А. М. Бутлеров — создатель классической теории строения органических соединений и автор структурных химических формул. [c.14]

    Органическое соединение соответствует эмпирической формуле СзН . Оно реагирует с бромной водой и натрием, в последнем случае выделяется водород. Определите структурную формулу этого вещества. Может ли этот углеводород иметь изомеры  [c.250]

    В химической физике полимеров решение многих задач значительно упрощается, если их удается сформулировать в терминах теории графов. Такой подход особенно эффективен при описании разветвленных и сетчатых полимеров, которые представляют собой наборы макромолекул с различным числом структурных единиц (звеньев), соединенных между собой всевозможными способами. Для того чтобы учесть возникающую в таких системах структурную изомерию макромолекул, каждой из них удобно поставить в соответствие молекулярный граф, аналогичный структурной формуле в классической органической химии. Однако синтетические полимеры являются наборами практически бесконечного числа индивидуальных химических соединений, а поэтому отвечающие им статистические ансамбли молекулярных графов содержат такое же число различных представителей. Их распределение в полимерном образце является случайным и определяется условиями его синтеза. Следовательно, в теории полимеров приходится иметь дело с ансамблями случайных графов, для нахождения вероятностной меры которых нужно рассматривать процесс получения полимерного образца, когда происходит формирование соответствующего этому образцу набора макромолекул. Такая необходимость совместного физического и химического рассмотрения полимерных систем, как будет видно из дальнейшего, является одной из основных особенностей их теоретического онисания. [c.145]


    TOB, не оказывать вредного воздействия на окружающую среду и биологические объекты. Ряд алкил-1,3-диоксанов, диоксоланов и 1,1-диалкок-сиалканов может быть легко получен из олефинов, альдегидов, гликолей, а-окисей и спиртов, являющихся доступными продуктами нефтехимии. Сведения о типичных представителях этого класса приведены в табл. 21. Из ряда Щ1клических ацеталей были выбраны два структурных изомера, различающиеся размером цикла и положением алкильных заместителей (I - производное 1,3-диоксана, II - производное 1,3-диоксолана), ограниченно растворимые в воде (20%) и неограниченно — в органических средах, устойчивые в щелочных и нейтральных растворах и стабильные в щироких интервалах температур и давлений. Эти соединения легко получаются в промыщленных масштабах, и работа с ними в условиях нефтедобычи не требует специальных мер предосторожности. [c.149]

    Открытие конформационной изомерии качественно изменило и усложнило содержание проблемы пространственного строения органических соединений. Для характеристики структурной организации молекулы, имеющей ординарные связи, уже недостаточно только знания статического распределения в пространстве атомов и стабилизирующих их системы валентных взаимодействий. При существовании у молекул ряда легко переходящих друг в друга конформаций такую информацию нужно иметь о каждой пространственной форме. Кроме того, необходимо знать положение конформационного равновесия, весьма чувствительного к изменению внешних условий, и систему взаимодействий валентно несвязанных атомов, которая по сравнению с системой валентных связей более сложна. Решить проблему структурной организации молекул с помощью одних [c.111]

    Органическим соединением присуще явление изомерии и наличие у соединений определенного состава двух или большего числа изомеров. Изомеры — это химические соединения, имеющие одинаковый атомный и изотопный состав, т. е. одну аналитическую формулу, одну и ту же молекулярную массу, но отличающиеся друг от щ>уга структурной формулой и свойствами. [c.13]

    Структурная изомерия характерна для органических соединений. Так, подсчитано, что углеводород С20Н42 имеет 366 319 изомеров. Встречаются структурные изомеры и среди неорганических веществ, например, [c.54]

    Все множество описанных (а также и еше неизвестных) органических соединений можно представить себе как некое гиперпространство, пронизанное многочисленными осями координат классической систематики (такими, как гомологические ряды, типы функциональности, серии структурных изомеров и т.д., и т.п.). Любая из этих осей отражает реальные структурные характеристики молекул, и потому, сравнивая координаты определенных соединений в этом гиперпространстве, можно судить о степени их структурного родства. Органический синтез привносит в это многомерное пространство еще одно важное измерение, основанное на синтетических отношениях между соединениями — на возможности их взаимопревращений. С учетом координат по этой дополнительной оси многие отдаленные друг от друга соединения (точки нашего гиперпространства) или даже целые их классы (области) в действительности могут оказаться весьма близки. Такая близость (родство) — это не результат формального умствования, а отражение вполне реальных, внутренне присущих таким родственникам структурных особенностей и химических свойств. Рассмотрим эти утверждения более подробно. [c.542]

    Для отражения последовательности соединения атомов, направления а-связей, валентных углов, структурных изомеров используют шаростержневые модели, для моделирования бокового перекрывания электронных облаков при тс-связи, пространственной изомерии — плоскостные модели из картона. Широко применяются в школе пластилиновые модели (их иногда еще называют масштабными) — очень простые и доступные в изготовлении. Моделирование химических процессов осуществляется средствами мультипликации в учебных кинофильмах и т. д. Моделирование широко используется в научных исследованиях при проектировании органического синтеза, анализе органических веществ, и это лишний раз доказывает, что в химии методы обучения отражают с определенным приближением методы химической науки. [c.250]

    Разделяемые методом газовой хроматографии вещества (газы и пары) распределяются между двумя фазами подвижной (газовой) и неподвижной. Этим методом можно разделять только такие соединения, которые не разлагаются и не меняют свой химический состав при переводе их в газообразное состояние. Особенно широко газовая хроматография применяется при изучении состава смесей органических соединений, поскольку она позволяет разделять отдельные члены гомологических рядов, структурные и пространственные изомеры. Разработанные ранее, до появления ГХ, хроматографические методы требуют сравнительно много времени, довольно больших объемов образцов и не обеспечивают достаточно хорошего разрешения для сложных смесей. Газовая хроматография позволяет за короткое время при минимальном количестве образца осуществить его эффективное разделение. [c.13]

    Стереохимия — это синтез представлений о химическом строении и пространственном сорасположении атомов в молекулах. Н поскольку такой синтез обогатил понятие структуры молекул новым содержанием, включив в него представления о формировании свойств вещества под влиянием тажих стереохимических факторов, как зеркальная изомерия, цис—грамс-расположение, эффекты свободного и заторможенного вращения вокруг С—С-связи, трансаннулярные эффекты и т. д., появление стереохимии означало подъем всей структурной химии органических соединений на новый уровень. [c.89]

    Постоянный рост числа научных публикаций делает необходимой разработку способов их удобного хранения и поиска. Целесообразно поручить это ЭВМ. Для ввода такой информации в машину прежде всего надо изобразить структурные формулы органических соединений в виде линейной комбинации знаков. Однако с помощью брутто-формул, из-за явления изомерии, это можно сделать только для простых молекул, таких как СН4 или С2Нб- [c.25]

    Простейшим представителем алкенов является этен - С2Н4, или Н2С=СН2. При написании структурных формул органических соединений углеводородные группы обычно записывают, начиная с углерода СН2=СН2. Пропен имеет формулу СН2=СН—СН3 и у него, как и у пропана, один изомер. Но у бутена не два изомера, [c.401]

    Владимир Васильевич Марковников (1838—1904) родился близ Нижнего Новгорода (г. Горький). Высшее образование он получил в Казанском университете (1856—1860) по окончании которого работал в лаборатории А. М. Бутлерова. В, В. Марковников синтезировал ряд новых соедипени предсказанных структурной теорией и широко развил идеи о взаимном влиянии атомов в молекулах. Таковы, например, его работы по синтезу изомасля-ной, оксимасляной, хлормасляной кислот, по изучению реакции присоединения галоидоводородов к двойной связи. Большой научный интерес представляют работы К истории учения о химическом строении , Об изомерии органических соединений (магистерская диссертация, 1865), Материалы по вопросу [c.78]

    Здесь вопрос читателя, не является ли преувеличением утвернсденпе автора, что класс спиртов насчитывает сотни представителей, будет вполне закономерным, но ответ будет тот же. Дело в том, что резкому увеличению количества различных спиртов способствует явление, называемое в органической Х1гмии изомерией. Явление это заключается в том, что одному и тому же составу отвечают два и более различных веществ, или изомеров. Изомерия органических соединений определяется тем, что свойства органических веществ зависят не только от их состава, но и от строения молекул. Разница в строении таких молекул наглядно выражается структурными формулами ор-ганпческпх соединений. Сущность явления изомерии была впервые научно обоснована нашим знаменитым соотечественникам А. М. Бутлеровым, который показал, что в изомерных веществах атомы соединены в различном порядке. [c.10]

    Русский химик Александр Михайлович Бутлеров (1823—1886) использовал эту новую систему структурных формул в разработанной им теории строения органических соединений В 60-х годах прошлого столетия он показал, как с помощью структурных формул можно наглядно объяснить причины существования изомеров (см. гл. 5). Так, например, у этилового спирта и диметилового эфира одна и та же эмпирическая формула СгНпО, однако структурные формулы этих соединений значительно различаются  [c.84]

    Раздел, посвященный индивидуальным углеводородам, начат с изложения вопросов стереохимии и термодинамической устойчивости моно- и полициклических углеводородов. В силу ряда обстоятельств, стереохимии углеводородов уделялось значительно меньше внимания, чем стереохимии различных функционально-замещенных органических соединений (спирты, кислоты, кетоны и пр.), хотя, по логике вещей, именно стереохимия углеводородов должна была быть положена в основу изучения стереохимии прочих.органических соединений. В какой-то степени автор попытался восполнить этот пробел. Следующая глава посвящена вопросам термодинамической устойчивости и равновесных состояний для различных структурных изомеров. В последующих главах изложены вопросы кинетической реакционной способности различных углеводородов и приведены примеры многочисленных изомерных перегруппировок, протекающих под воздействием кислот Льюиса в жидкой фазе при комнатной температуре. Особое внимание уделено здесь рассмотрению вопросов динамической стереохимии и механизма протекающих реакций. Все эти исследования изложены в плане проблемы Строение и реакционная способность органических соединений . В заключение этого раздела приведена глава, посвященная синтезу индивидуальных углеводородов, причем рассмотрены как вопросы синтеза, осуществля- [c.4]

    В зависи.мости от того какие лучи электромагнитного спектра пропускать через вещество, могут возбуждаться либо вращательные, либо колебательные движения, либо электронные переходы, либо все виды движений одновременно. Возбуждение того или иного движения в молекуле происходит тогда, когда его частота совладает с частотой электромагнитного колебания (резонанс). Наибольшей энергией обладают рентгеновские лучи (Я = 0,01 — 10А), еатем ультрафиолетовые лучи (10ч-4000.4), затем видимый свет (4000.А.8000А), затем инфракрасные лучи (0,8—300 р), затем микроволны 0,03—100 см и далее радиоволны. Энергия радиоволн слишком мала, чтобы возбуждать колебания молекул органических веществ. Микроволны и длинные инфракрасные волны могут возбуждать только вращательные движения в молекулах. Если частоты колебания этих волн совпадают с собственной частотой вращения отдельных частей молекулы, то происходит резонансное поглощение энергии инфракрасного облучения этой частоты, что отразится в спектре поглощения. Такого рода спектры применяются для тонкого структурного анализа органических веществ. Инфракрасные спектры органических соединений обычно изучают в пределах длтш волн 1 25 х, при этом линии поглощения Б спектре появляются за счет вращательного п колебательного движения в молекулах исследуемого вещества. Каждой функциональной группе и группе атомов в молекуле исследуемого соединения в спектре соответствует одна или несколько линий с опре-денной длиной волны. С помощью инфракрасных спектров можнс проводить идентификацию чистых углеводородов, анализировать качественно и количественно смеси нескольких компонентов вплотг-до обнаружения таких близких структур как цис- и транс-изомеры. На рис. 16 приведен г /с-спектр толуола. [c.32]

    Уже в теории химического строения Бутлерова постулировалось (и было доказано) существование определенной последовательности химической связи атомов, которая была названа им химическим строением. Бутлеров в 1863 г. весьма определенно высказывался в пользу того, что развитие методов исследования в будущем позволит определить пространственное распЬложение атомов в молекуле, т. е. геометрическую структуру или ее строение (не путать с химическим строением ). В 1874 г. Вант-Гоффом была выдвинута стереохимическая гипотеза, согласно которой четыре водородных атома в метане (или их заместители) расположены в вершиназс тетраэдра, в центре которого находится атом углерода. Эта гипотеза позволила объяснить особый вид изомерии, названный оптической изомерией. Гипотеза Вант-Гоффа была подтверждена структурными исследованиями молекул и лежит в основе стереохимической теории (теории пространственного расположения атомов в молекулах) органических соединений [к-9]. [c.172]

    Напишите структурную формулу вещества состава С,НяО, если известно, что оно имеет ароматическое кольцо, вступает во взаимодействие с натрием и гидроксидом натрия при обычных условиях реагирует с бромом, образуя продукт состава С,Н5ВгзО. К какому классу органических соединений его можно отнести Напишите формулы его изомеров и назовите их по систематической номенклатуре. [c.265]

    Состав большинства неорганических веществ однозначно характеризует их молекулярное строение Н2304 — это всегда серная кислота ЫазР04 — это всегда фосфат натрия КА1 (504)2 —это всегда алюмокалиевые квасцы и т. д. В органической химии широко распространено явление изомерии— существуют разные вещества, имеющие одинаковый состав молекул. Эмпирические, суммарные формулы становятся поэтому для органических соединений неоднозначными простая формула С2Н6О отвечает как этиловому спирту, так и диметиловому эфиру более сложные эмпирические формулы могут соответствовать десяткам, сотням и даже тысячам различных веществ. С созданием бутлеровской теории химического строения стало ясно, что изомеры отличаются друг от друга порядком химической связи атомов — химическим строением. Определение химического строения, установление структурной формулы стало (и остается до сих пор) главной задачей при исследовании органических веществ. [c.84]

    Все соединения, содержащие асимметрический атом углерода, должны расщепляться на оптические антиподы. Можно представить радость Я. Бант-Гоффа, когда он пришел к отому выводу. Ему потребовалось не таг много времени, чтобы изложить все то, что он продумал, на одиннадцати страницах брошюры, которая была опубликована в сентябре 1874 г. па голландском я ыке под названием Предложение применять в прострапстве современные структурно-химические формулы вместе с примечанием об отношении между оптической вращательной способностью и химической конституцией органических соединений Эту брошюру с коллекцией моделей тетраэдрического атома углерода он послал А. Байеру в Страсбург, А. М. Бутлерову в Петербург, А. Гофману в Берлин, А. Кекуле в Бонн, Э. Франклапду в Лондон, И. Вислицепусу в Вюрцбург, А. Ш. Вюрцу и М. Бертло п Париж. Сейчас все в большей и большей степени признается, — писал Я. Вапт-Гофф в начале своей работы,- - что общеизвестные конституционные формулы непригодны для объяснения некоторых случаев изомерии, а причина этого, может быть, заключается в том, что мы не высказываемся достаточно ясно относительно действительного положения атомов  [c.217]

    Структурная (топологическая изомерия). Как уже отмечалось, структурные изомеры — обычно химически различные соединения, как в случае НН4Ь С0 и СО(ЫН2)2, являющемся первым примером пары соединени , для которой термин изомеры был применен. Этот тип изомерии типичен для органической химии самые простые примеры — углеводороды нормаль-ньи бутан и и 5обутаи, о-, м- и лг-замещенные производные беи- [c.71]


Смотреть страницы где упоминается термин Структурная изомерия органических соединений: [c.252]    [c.78]    [c.109]    [c.276]    [c.288]    [c.4]    [c.194]    [c.268]    [c.296]    [c.199]    [c.111]    [c.61]    [c.22]    [c.230]   
Смотреть главы в:

Курс современной органической химии -> Структурная изомерия органических соединений




ПОИСК





Смотрите так же термины и статьи:

Изомер структурные

Изомерия структурная



© 2025 chem21.info Реклама на сайте