Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Строение атомов и типы валентных связей

    Объяснение строения и свойств молекул, основанное на представлении о перекрывании 5- и р-орбиталей, оказалось во многих случаях непригодным, в частности для соединений углерода. Как видно из схемы электронного строения атома углерода (рис. 29), в нем имеются два неспаренных электрона. Следовало бы ожидать, что такой атом углерода должен быть двухвалентным. Для проявления валентности, равной четырем, необходимо возбудить атом углерода. При этом один из 25-электронов может занять уровень 2р , благодаря чему образуется конфигурация (15) (25) (2р ) (2р.) 2р , в которой имеется 4 неспаренных электрона, из них три электрона обладают орбиталями р, а четвертый — орбиталью 5. При полном спаривании должно быть три однотипных связи, а четвертая связь должна быть другого типа. Од- [c.84]


    ВС-метод. В методе валентных связей результаты работы Гейтлера и Лондона обобщены и распространены на многоатомные молекулы. Поэтому характерные особенности двухэлектронной связи в молекуле На перенесены на связи в многоатомных молекулах типа СН4 и др. Принимается, что каждая связь осуществляется парой электронов с антипараллельными спинами, локализованной (сосредоточенной) между двумя определенными атомами. При этом атомные орбитали двух электронов перекрываются. Представление о локализованной паре электронов является квантовомеханическим аналогом более ранней идеи Льюиса о связи как о паре электронов, общей двум атомам. Уже на заре теории химического строения возникло и широко используется химиками по сей день понятие валентности атома. Каждому атому в соединении приписывалось определенное целое число единиц сродства к другим атомам. Это число и называлось валентностью. [c.56]

    Наиболее интересные особенности простых тригалогенидов элементов этой группы (перечисленных в табл. 70) появляются вследствие тенденции к расширению валентной оболочки металла от сравнительно нестабильной шестиэлектронной группировки. Плоские симметричные молекулы МХз, по-видимому, стабилизированы частичной двоесвязностью в связях М — X благодаря перекрыванию свободной рл-орбитали с орбиталями галогенов. При описании строения таких молекул в рамках метода валентных связей относительные веса трех канонических структур (I, П и П1), изображенных на рис. 56, для различных галогенидов неодинаковы. Структура 11 должна быть тем существеннее, чем более электроотрицателен атом X, но эффективность перекрывания рл — ря-орбиталей, отражающаяся в структуре П1, должна быть максимальной для Р и минимальной для I. Современные работы по устойчивости комплексов типа В ВХз, где О — донорная молекула, показывают, что структура П1 в ВРз более существенна, чем в молекулах других галогенидов. Определение теплот образования аддуктов пиридин ВХз [c.254]

    От чего же зависит тип решетки для каждого твердого тела При образовании кристалла, составляющие его частицы, выбирают такую решетку, чтобы энергия взаимодействия между ними была возможно больше. В зависимости от природы взаимодействия все решетки могут быть разделены на атомные, металлические, ионные и молекулярные. Атомные решетки состоят из атомов, связанных гомеополярными (ковалентными) связями (например, кристаллические решетки углерода, серы, фосфора). Поэтому число соседей каждого атома в такой решетке (координационное число) определяется валентностью атома. Так, валентность углерода (а также кремния и германия) равна четырем, поэтому алмаз и другие кристаллы элементов IV группы имеют тетраэдрическую структуру. В центре тетраэдра находится атом, связанный гомеополярно (а-связями) с четырьмя соседними атомами, расположенными в четырех вершинах тетраэдра. Таким образом, алмаз по своему строению примыкает к ряду жирных углеводородов (метан, этан, пропан и т.д.) и представляет собой как бы огромный, разветвленный углеводород, в котором все атомы водорода замещены атомами углерода. Другая модификация (разновидность) кристаллов, образованных атомами углерода — графит, примыкает к ароматическим углеводородам. Графит состоит из огромных параллельных друг другу плоскостей. В каждой плоскости атомы углерода образуют связанные между собой шестиугольники так, что каждый атом имеет три соседа. Связи между этими соседями являются о-связями, а перпендикулярно к этим плоскостям направлены я-связи, которые перемещаются вдоль всей плоскости. Этим определяется электропроводность графита (в отличие от алмаза), осуществляющаяся вдоль кристаллических плоскостей. В графите параллельные плоскости сравнительно слабо связаны между собой молекулярными силами, что приводит к легкости их сколь- [c.324]


    Химики давно уже связывали различие в свойствах типичных неорганических и органических соединений с существованием разных видов химической связи в этих соединениях. Как известно, соединения, подобные хлориду натрия, диссоциируют на ноны не только в водном растворе уже в твердой соли в узлах кристаллической решетки находятся не атомы, а катион натрия и анион хлора, притягивающиеся друг к другу электростатическими силами. Ионы образуются из атомов путем передачи внешних (валентных) электронов, Так, атом натрия способен легко отдавать свой единственный внешний электрон и превращаться в катион. Атом хлора, наоборот, принимает один электрон, превращаясь в анион. В результате этого процесса внешние электронные слои обоих атомов приобретают строение электронной оболочки инертных газов, создаются устойчивые восьмиэлектронные группировки, так называемые октеты электронов. Такой тип связи называется гетерополярным или ионным  [c.77]

    В развитие классич. представлений о способности атома вступать в X. с. с другими атомами, проявляя ту или иную валентность, каждому атому была сопоставлена нек-рая численная величина, получившая назв. электроотрицательности (Л. Полинг, 1932). Эта величина Характеризует силу притяжения электронов к данному атому при образовании X. с. Если электронная пара смещается в сторону одного из атомов, он считается более электроотрицательным, чем второй. Чем больше разность электроотрицательностей атомов, образующих X. с., тем более эта связь близка к ионному типу. Использование электроотрицательности основано на простых эмпирич. ф-лах, связывающих ее с длинами связей и др. характеристиками строения молекул. Однако как всякая характеристика, не учитывающая окружение атома в молекуле, электроотрицательность имеет весьма ограниченную применимость. По своему определению электроотрицательность весьма близка к сродству к электрону (либо к потенциалу ионизации), однако первое понятие относится к нек-рому эффективному атому в молекуле, тоща как второе - к взаимод. о д, льного атома (либо иона) со свободным электроном. [c.235]

    Атом кислорода можно рассматривать как двухатомный остаток молекулы воды, вследствие чего он также может замещать два атома водорода в двух молекулах метана и пр. Примером таких кислородных производных углеводородов служат соединения типа СНз—О—СНз, называемые эфирами. Если же атом кислорода связан только с одним атомом углерода (соответственно валентности кислорода, такую связь изображают в виде двойной связи), то у этого углеродного атома остается возможность соединения с двумя атомами водорода или с двумя одноатомными остатками, что соответствует формуле двухатомного радикала >С=0. Этот радикал называется карбонилом или карбонильной группой. Примерами соединений, содержащих карбонильную группу, могут являться вещества строения [c.65]

    Далее он указывает на то, что идея механических типов постепенно изживает себя, так как соединения, содержащие несколько многоатомных элементов, можно относить к разным типам и, следовательно, типическая классификация становится излишней. Наоборот, атомность элементов начинает играть все большую роль, ибо химические свойства сложного тела условливаются преимущественно химическим отношением элементов, его составляющих . Далее А. М. Бутлеров дает определение химического строения в переводе с немецкого оно звучит так Полагая, что каждому химическому атому свойственно лишь определенное и ограниченное количество химической силы (сродства), с которым он принимает участие в образовании тела, я назвал бы химическим строением эту химическую связь или способ взаимного соединения атомов в сложном теле . Применяя современную нам терминологию, можно сказать, что химическое строение молекулы сложного вещества — это определенный способ соединения между собой составляющих ее атомов, зависящий от их валентности. [c.219]

    Теория валентных связей сыграла большую роль в развитии представлений о химической связи, однако ей не хватило внутренней согласованности, ее математический аппарат оказался слишком громоздким и не позволил провести расчеты достаточно сложных молекул. Кроме того, стали известны соединения, строение которых принципиально не согласуется с теорией валентных связей. Например, в молекуле диборана ВаНв число межатомных промежутков В — Н (8) больше числа электронных пар (6) в циклопентадиениле железа Ре (С5Н5)а атом железа связан с 10 атомами углерода, хотя у них и нет 10 электронных пар, необходимых для образования таких связей. Точно так же с точки зрения метода локализованных пар не могли быть описаны соединения, содержащие связи металл — металл (кластеры типа КезС ), соединения нульвалентных металлов (карбонилы типа Сг (С0 ) и т. д. [c.264]


    Электронное строение и типы связей элементов периодической системы - ключ к пониманию Сфуктуры и свойств простых и сложных веществ, образованных эти.ми элементами Два или более атомов располагаются друг около друга так, как это энергетически выгодно. Это справедливо независимо от того, сильно или слабо связана фуппа атомов, содержит эта фуппа лишь несколько или 10 атомов, является расположение атомов упорядоченным (как в кристалле) или неупорядоченным (как в жидкости). Группа ато.мов устойчива тогда и только тогда, когда энергия атомов, расположенных вместе, ниже, чем у отдельных атомов. Единственной физической причиной конкретной кристаллической сфуктуры любого элемента и его модификаций является перекрытие валентных и подвалентных оболочек его атомов, приводящее к образованшо определенных межатомных связей. Число протяженность и симмефия орбиталей атомов данного конкретного элемента полностью определяют число, длину, ориентиров и энергию межатомных связей, образующихся в результате перекрытия этих орбита-лей, а следовательно, размещение атомов в пространстве, т е. кристаллическую структуру, основные физико-химические свойства элемента. [c.30]

    Теория типов имела, однако, и несомненные заслуги. В связи с ней были созданы предпосылки для возникновения теории химического строения учение о валентности элементов и представление о цепеобразном соединении атомов друг с другом. В самом деле, уже из формул четырех основных типов, предложенных Жераром, следует, что водород и хлор могут соединяться с одним атомом водорода, кислород —с двумя, а азот — с тремя. Такие же выводы можно было бы сделать и для других элементов, в том числе и для углерода. Приняв атом водорода за единицу, можно считать, что сам водород и галогены — элементы одноатомные (или, как стали говорить позднее, одновалентные), кислород и сера — двухатомные (двухвалентные), азот и фосфор — трехатомные (трехвалентные), углерод — четьцрехатомен (четырехвалентен). Атомность элементов отождествлялась с числом единиц сродства, которыми обладали их атомы. Соединение двух атомов, образование химической связи происходит, как тогда говорили, в результате взаимной нейтрализации ( потребления ) двух единиц сродства, по одной от каждого атома. Рассматривая формулы углеводородов и их производаых, [c.56]

    Нет ведь никак11х оснований считать один атом хлора в I2 заряженным положительно, а другой — отрицательно. Ничем они друг друга не хуже. Они совершенно одинаковые. Полной связи здесь нет. Это — настоящая валентная связь, для изображения которой уместно и законно пользоваться валентным штрихом. Как бы мы себе его ни представляли. Значит, имеются по крайней мере два типа химических связей — ионные и валентные (их называют ковалентными). В одном и том же соединении могут быть разиые связи. Уже упомянутый нашатырь в действительности имеет вот какое строение  [c.115]

    С точки зрения теории локализованных связей в органических предельных соединениях, несмотря на 15 25 2р -электронное строение элемента углерода, реализуется его энергетически более выгодное 25р -гибридное состояние с выровненньши валентными связями и углами. В соединениях с трех- и двухкоординационным атомом углерода (алкены и алкины), где 25р -гибридное состояние может суш ествовать при наличии одной или двух изогнутых связей, атом углерода переходит в более богатые энергией 2зр - и 25р-гибридные состояния. При этом вместо двух изогнутых ст-связей в молекуле образуется л-связь фронтального типа. Стабилизация атомов углерода в энергетически невыгодных состояниях достигается за счет эффективных взаимодействий л-орбиталей с другими орбиталями при связи С —С, а в молекулах неклассического типа — за счет резонансных эффектов [71]. [c.147]

    При наличии очень небольших, но контролируемых количеств примесей в правильной кристаллической решетке, либо при небольшом избытке одного из компонентов твердого вещества, или же просто при наличии вакансий в кристаллической решетке образуются так называемые дефектные кристаллы. Каждый из таких дефектов— примесь, избыточный компонент или вакансия — обусловливает недостаток или избыток валентных электронов, необходимых для образования связи между частицами кристалла, и поэтому придает веществу новые свойства. Например, в кристалле элементарного кремния атом кремния может быть замещен атомом алюминия, что обусловливает недостаток в один электрон, поскольку атом алюминия имеет только три валентных электрона, а атомы кремния — четыре. Появление в решетке атома, которому недостает валентных электронов для образования должного числа ковалентных связей, приводит к образованию электронной вакансии, или так называемой дырки. При наложении на кристалл электрического потенциала дырка начинает мигрировать и в результате у кристалла появляется особый вид электропроводности подобные кристаллы называют полупроводниками. Если замещающий атом обладает избытком электронов, лишние электроны не принимают участия в образовании ковалентных связей и могут свободно перемещаться по кристаллу под влиянием приложенного внешнего потенциала. Такой полупроводник относится к п-типу (его проводимость обусловлена наличием свободных отрицательных зарядов, отрицательный по-английски negative), а полупроводники с недостатком электронов относятся к р-типу (их проводимость обусловлена наличием свободных положительных зарядов — дырок, положительный по-английски positive). Строение полупроводников этих типов схематически изображено на рис. 10.22. [c.183]

    Большинство переходных элементов типа Сг, Мп, Ре, Со, Мо дают подобные соединения, которые называют карбонилами металлов. М—С—О имеет линейное строение, и природа связи между молекулой СО с дипольным моментом 0,112Д (табл. 4.1) и нуль-валентным атомом М отличается от характера связи в других комплексных соединениях. Другим интересным соединением является комплекс между неполярной молекулой этилена и ионом Р1(1П) в соли Цейзе К[Р1"С1з(С2Н4)], структура которой оставалась загадкой более 130 лет и выяснена только в 1956 г. В 1952 г. впервые синтезировали соединение Ре(0) быс-(циклопентадиенил)железо [Ре(С5Н5)2], и с тех пор было получено много так называемых низковалентных соединений, имеющих в центре катион с зарядом +1 или +2, нуль-валент-ный атом или катион с зарядом —1 ([Со (СО)5] ). [c.224]

    Известны другие твердые тела этого же типа, но с другим геометрическим строением. Например, сера, которая обычно двухвалентна, при нагревании приблизительно до 200° С образует длинные цепи с характерным валентным углом 105° (пластическая сера). Цепи содержат локализованные ковалентные связи S—S и удерживаются между собой частично благодаря силам Ван-дер-Ваальса, частично благодаря спутыванию , так как эти цепи достаточно длинны, чтобы обволакивать одна другую. Аналогично этому кристаллические Se и Те образуют параллельные зигзагообразные цепи, в которых каждый атом имеет двух соседей (рис. 11.4), а SiSg состоит из бесконечных [c.327]

    Атомные характеристики Атомный номер 32, атомная масса 72,59 а е м, атомный объем 13,64-]0- мкмоль, атомный радиус 0,139 нм, ионный радиус Ое2+ 0,065 им, Ое + 0,044 им. Электронное строение свободного атома германия 45 р2. Потенциалы ионизации 1 (эВ) 7,88 15,93 34,21. Электроотрицательиость 2,0. Кристаллическая решетка ге.рмання — кубическая типа алмаза с периодом а = 0,5657 нм. Энергия кристаллической решетки 328,5 мкДж/кмоль. Координационное число 4. Каждый атом германия окружен четырьмя соседними, расположенными на одинаковых расстояниях в вершинах тетраэдра. Связи между атомами осуществляются спаренными валентными электронами. При высоких давлениях (13,0 ГПа) германий может перейти в тетрагональную сингонию с.параметрами а = 0,593 им, с = 0,698 им, с/а= 1,18. [c.214]

    Электронное строение молекулы бензола. Свойства бензола интерпретируются теорией молекулярных орбит следующим образом. Каждый атом углерода может иметь три связи, гибридизован-ные тригонально по типу зр и лежащие в одной плоскости (см. том I 5.9, рис. 41). При этом наиболее прочная о-связь образуется в том случае, когда валентный угол имеет значение 120°. Эти условия выполнены в уникальном случае щестиуглеродного цикла, поэтому бензол имеет плоский цикл, прочно связанный 0-связями (рис. 18,а). Эти условия также являются идеальными для многократного перекрывания р-орбит (рис. 18,6). Так как система циклическая, каждая р-орбита перекрывает орбиты соседних атомов со специфической широкой делокализацией [c.124]

    Необычные связи и строение имеет соединение, показанное на рис. 1.5. Строение представленной частицы вполне нормальное для многоядерного карбонильного соединения, за исклю чением того факта, что атом углерода, находящийся в центре основания квадратной пирамиды, построенной из атомов железа, имеет координационное число, равное пяти, и, по-видимо-му, является пятивалентным. (Хотя классическая органическая химия не признает такую валентность углерода, современная неорганическая химия часто использует его как пятивалентный, например, в СНз, так и трехвалентный, например, в карбока-тионах . ) Пятивалентность атома углерода в этом комплексе не является уникальной. Известны даже шестивалентные атомы углерода, например, в анионе Рбб(СО) 1бС , который может быть окислен до карбонилкарбида со строением типа бабочки , служащего моделью в металлорганическом катализе  [c.19]

    Исследована структура триклинной формы HsOEP [132J,. строение молекулы которой аналогично строению молекулы НгТРЬР в триклинной форме также имеется два типа пиррольных колец с такой же разницей в значениях валентных углов и длин связей (см. табл. 6). Атом водорода пиррольного кольца тоже выходит из плоскости порфинового ядра и расстояние между атомами водорода, связанными центром симметрии, равно 2,36 А. Можно отметить, кроме того, удлинение связи между атомами углерода Сь, при которых атомы водорода замещены углеводородными радикалами. [c.234]

    Фокс И Мартин [3—6] изучили природу этих полос и установили СВЯЗЬ их положения с различными типами строения. В ряде работ, опубликованных в период с 1937 по 1940 г., этим авторам удалось показать, что в случае углеводородов положение максимума поглощения, соответствующего валентным колебаниям С — Н, почти целиком определяется природой самой связи и фактически не зависит от других особенностей строения. Так, группам СНз, СНг и СН насыщенных соединений соответствуют близко расположенные максимумы поглощения двойная свя ь ароматических соединений, образованная углеродом, к которому присоединен атом водорода, вызывает смещение полосы С — Н в сторону больших частот, тогда как при наличии одних лишь ненасыщенных алифатических соединений наблюдается дальнейшее и еще большее ее смещение. При использовании призмы из хлористого натрия с ее сравнительно низкой дисперсией удается только распознать главные классы соединений, но и это представляется ценным. Расмуссен и Браттен [7], например, использовали указанную спектральную область для обнаружения ненасыщенности в олефинах. Между тем дисперсия призмы из фтористого лития уже достаточна для дифференцирования различных типов групп с СН-связями основных классов соединений, так что могут быть отдельно идентифицированы группы СНз, СНг и СН. Максимумы поглощения, соответствующие колебаниям в ненасыщенных и ароматических соединениях, рассматриваются в гл. 3 и 5, а в настоящей главе обсуждаются лишь полосы, которые обусловлены валентными колебаниями С — Н, когда все связи данного атома углерода являются насыщенными. [c.25]

    Алмаз — прозрачный, твердый, тугоплавкий кристалл, давно известен как драгоценный камень. Его кристаллическое строение далр название структурному типу. Число атомов в элементарной ячейке алмаза равно восьми. Половина атомов находится в углах гранецентрированной кубической решетки, другая половина занимает центры четырех октантов из восьми. Октанты образованы тремя взаимно перпендикулярными плоскостями, проходящими через центр ячейки параллельно ее граням. В структуре алмаза каждый атом, окруженный четырьмя другими, образует четыре ковалентные связи, отдавая в общее пользование для каждой связи один из своих валентных электронов и получая второй от соседнего атома. Этот процесс образования химической связи в алмазе, а также и в его аналогах, в квантовой химии описывается следующим образом. [c.62]

    Систематическое рассмотрение типов кристаллических структур и свойств моносоединений щелочных, щелочноземельных металлов, имеющих внешние s-электроны, а также следующих за ними d- и /-переходных металлов II—VIII групп с элементами групп кислорода, азота, углерода, с бором и водородом в связи с их электронным строением, ионизационными потенциалами и электроотрицательностями свидетельствует о том, что при образовании этих соединений имеется непрерывный переход от ионных кристаллов щелочных и щелочноземельных металлов к ковалентноионным соединениям d- и /-переходных металлов полупроводникового характера. Главную роль при этом играет передача валентных электронов от атома металла к атому неметалла, в результате чего образуются ионы с внешними ортогональными р -оболочками, взаимодействие которых носит обменный характер. Металлическая проводимость и отрицательное значение коэффициента Холла таких соединений обусловлены наличием некоторой концентрации свободных электронов, представляющих избыточные, слабосвязанные электроны металла. При отсутствии электронов или в случае захвата их на глубокие 4/-уровни кристаллы имеют свойства полупроводников. [c.189]

    Исследования, произведенные на координационных (комплексных) соединениях, значительно продвинули наши познания о химич. связи в этих веществах. Так, напр., атом железа обнаруживает в растворах Fe l, магнитный момент, свидетельствующий о наличии у ГеЗ+ 5 неспаренных электронов. В комплексном же соединении KgfFei N) ] железо обнаруживает момент, свойственный лишь 1 неспаренному спину. Соединение K4[Fe( N)e] вовсе лишено магнитного момента, что объясняется отсутствием неспаренных электронов. Или, папр., у иона Ni + оказывается момент, свойственный двум неспаренным электронам, а в квадратных плоских комплексах типа K.,[. i( N)4] момент атома никеля равен нулю. Карбонил железа Ке(С0)5 лишен магнитного момента, что показывает, что он имеет структуру, при к-рой все 6 связей, имеющихся у атома Ге, насыщены. Магнетохимич. исследования позволили этим путем выяснить [электронное строение таких сложных веществ, как гемопротеины. [Магнитный момент молекулы гемоглобина, как оказалось, соответствует 5 неспаренным спинам, между тем как оксигемоглобин во всех случаях лишен магнитного момента. Это означает, что при окислении гемоглобина насыщаются все свободные валентности. [c.502]

    Иллюстрацией такой крайне сложной структуры является AgP. Как уже было указано в I6.9, при достаточно низких температурах это вещество имеет тетраэдрическое строение, при котором каждый атом серебра окружен четырьмя атомами иода, а каждый атом иода — четырьмя атомами серебра. Для того чтобы все электроны были общими, кристалл должен был бы состоять из Ag и I + ++-ИОНОВ иными словами, три электрона иода должны были бы быть общими. Однако иод очень неохотно принимает участие в этом процессе, и мягкость кристалла указывает на то, что атомы не имеют четырех прочных тетраэдрических связей. Поэтому, пожалуй, не очень неожиданно, что при более высоких (комнатных) температурах структура становится неправильной. При комнатной температуре многие атомы серебра в положении равновесия оказываются ближе к трем из окружающих их атомов иода, чем к четвертому. Выше 14б°С процесс обобществления электронов становится значительно слабее, ионы иода перестраиваются в кубическую объемноцентри-рованную решетку, а ионы серебра, повидимому, свободно движутся, подобно )1ШДкости, в промежутках. Все это происходит несмотря на то, что плотность высокотемпературной формы оказывается большей. Вследствие свободной подвижности ионов серебра высокотемпературная форма легко проводит электрический ток. Вполне удовлетворительного объяснения этого совершенно исключительного поведения дать нельзя, но оно, несомненно, не типично ни для чисто ионного кристалла, ни для кристалла чисто ковалентного типа. Хотя, как было сказано выше, случай Agi является исключительным, следует отметить, что не особенно большое число других кристаллов было исследовано столь же тщательно. Хотя других случаев, в которых некоторые атомы или ионы могут меняться местами, имеется мало или совсем не имеется, в остальных отношениях некоторые кристаллы могут быть также очень сложны. В сложном кристалле такого типа обычно содержится, по меньшей мере, один переходный элемент или, во всяком случае, один элемент из центральной части периодической таблицы. Обычно это такие элементы, для которых следует ожидать тип связи, промежуточный между ковалентным и ионным, и часто, но далеко не всегда, некоторые из элементов не находятся в своем максимальном валентном состоянии. Здесь интересно отметить, что усложненные структуры появляются и в случае перехода от металлической к ковалентной связи (см. 18.2). [c.335]


Смотреть страницы где упоминается термин Строение атомов и типы валентных связей: [c.122]    [c.238]    [c.238]    [c.118]    [c.362]    [c.27]    [c.327]    [c.274]    [c.114]    [c.162]    [c.74]    [c.15]    [c.200]    [c.200]   
Смотреть главы в:

Аналитическая химия -> Строение атомов и типы валентных связей

Аналитическая химия -> Строение атомов и типы валентных связей




ПОИСК





Смотрите так же термины и статьи:

Атомов строение

Валентность и типы связей

Связь валентная

Строение атома и валентность

типы связ



© 2025 chem21.info Реклама на сайте