Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции присоединения к ароматическим связям

    Рассмотрим вопрос о характере связей в бензольном кольце. Кекуле предложил (1865 г.) формулу с чередующимися двойными связями. Эта формула объяснила реакции присоединения ароматических соединений. Однако она не могла объяснить, почему бензол более склонен к реакциям замещения и почему бензольное кольцо устойчиво к окислителям. Наличие двойных связей указывает на высокую непредельность, между тем бензол ее не проявляет. [c.398]


    Вскоре после того, как были опубликованы каталитические реакции оргапических галоидных соединений в присутствии хлористого алюминия, было открыто, что галоидные алкилы можно заменить этиленовыми углеводородами в качестве алкилирующих реагентов для получения гомологов бензола. Область этой реакции была расширена процессами присоединения кислот олеинового ряда, эфиров и кетонов к ароматическим углеводородам, а также интрамолекулярным замыканием цикла в арилалкильных соединениях с двойной связью. Сравнительно недавним достижением являются реакции присоединения ароматических углеводородов к производным окиси этилена и алкилирования ароматических углеводородов парафинами и циклопарафинами. [c.10]

    Олефиновые и диолефиновые углеводороды цепной структуры имеют одну (олефиновые) или две (диолефиновые) двойные связи. Общая формула олефинов — С Нг , диолефинов — С Н2 2. Ввиду наличия двойных связей углеводороды этих групп более реакционно способны и менее химически стабильны, чем парафиновые, нафтеновые и ароматические углеводороды. Олефиновые и диолефиновые углеводороды способны к реакциям присоединения, в том числе и окисления. Поэтому присутствие углеводородов этих групп в авиационных топливах не допускается. [c.8]

    Согласно представлениям, принятым в химии нефти, ненасыщенные углеводороды обладают одной или большим числом активных двойных связей в молекуле. В противоположность ароматическим углеводородам двойная связь в ненасыщенных углеводородах обнаруживает способность ко многим реакциям присоединения, например таким, как присоединение галоидов и серной кислоты. Ненасыщенные углеводороды всегда отсутствуют в продуктах прямой гонки, но представляют собой важный класс углеводородов в крекинг-бензинах. Присутствие двойной активной связи легко обнаружить в углеводородах низкого и среднего молекулярного веса, включая газойли. Свойства высокомолекулярных ненасыщенных соединений почти неизвестны, поэтому любые выводы о составе ненасыщенных высококипящих фракций следует считать недостоверными. [c.12]

    Реакция нитрования ароматических соединений изучалась широко, однако механизм ее не был полностью объяснен до недавней работы Инголда и сотрудников. Согласно старой теории присоединения — выделения азотная кислота присоединяется по двойной связи в бензольном кольце с последующим отделением воды  [c.555]


    Почему ароматические молекулы не вступают, подобно этилену, в реакции присоединения по двойным связям В какие реакции они вступают вместо этого  [c.342]

    Если скелетный никель при низких температурах обеспечивает 1 основном протекание гидрогенолиза С — З-связи в мягких условиях без существенного изменения строения углеводородной части молекул, то в случае процессов гидрогенизации необходимо обеспечить такие условия работы катализатора, чтобы реакции присоединения водорода но кратной связи в олефиновых и ароматических углеводородах протекали строго избирательно. [c.383]

    Химический критерий ароматичности определяется также совокупностью ряда свойств I) легкость образования ароматических колец в различных реакциях 2) стабильность ароматических систем, в частности труднее протекают реакции присоединения по кратным связям 3) легкость замещения водорода на различные группы в реакциях электрофильного замещения 4) характерные свойства некоторых заместителей в аренах (кислые свойства ароматического гидроксила, ослабленная основность аминогруппы, малая реакционная способность галогена и др.). [c.236]

    Алкилирование ароматических углеводородов олефинами можно рассматривать как реакцию присоединения бензола и его гомологов к олефиновой двойной связи по схеме  [c.74]

    Образование я- и а-комплексов напоминает механизм реакций присоединения по кратной связи алкенов (см. гл. 1). Различие наблюдается только на заключительной стадии реакции реакция с алкенами завершается присоединением противоиона, а с ароматическими соединениями — отщеплением протона и восстановлением ароматической структуры. [c.316]

    Несмотря на то что между хинонами и двухатомными фенола ми существует тесная связь, хиноны не являются ароматическими соединениями в строгом смысле слова. Это видно из реакций присоединения. Две структуры — бензоидная и хиноидная легко пере- ходят друг в друга  [c.314]

    Бензол — бесцветная жидкость с характерным запахом температура кипения 80,1 °С, температура плавления 5,5 °С. Ароматические свойства бензола, определяемые особенностями его структуры, выражаются в относительной устойчивости бензольного ядра, несмотря на непредельность бензола по составу. Так, в отличие от непредельных соединений с этиленовыми двойными связями, бензол устойчив к действию окислителей например, подобно предельным углеводородам, он не обесцвечивает раствор перманганата калия. Реакции присоединения для бензола не характерны, наоборот, для него, как и для других ароматических соединений, характерны реакции замещения атомов водорода в бензольном ядре. Ниже приведены важнейшие из таких реакций. [c.567]

    Эта формула объясняла реакции присоединения в ароматических соединениях, однако она не могла объяснить большей склонности бензола к реакциям замещения и устойчивости к действию окислителей. Наличие трех двойных связей в молекуле бензола свидетельствует о высокой непредельности, которой бензол не проявляет. Объяснение всех химических особенностей оказалось возможным лишь с позиций квантовой химии. [c.320]

    Бензол QHй — наиболее простое и в то же время важнейшее ароматическое соединение. Он представляет собой циклическое непредельное соединение, которое отличается замечательными свойствами он неактивен в реакциях присоединения для него, напротив, характерны реакции замешения. Эти особенности отмечаются как основные для всех ароматических соединений. Циклическое строение бензола было открыто Кекуле в 1865 г., который предложил для бензола формулу с чередующимися двойными и ординарными связями (формула Кекуле)- [c.226]

    Образование выровненной системы связей обусловливает ароматический характер этих соединений. Он проявляется в высокой устойчивости к окислению, склонности к реакциям замещения при малой активности в реакциях присоединения. При этом наличие в структуре ароматических соединений легко поляризуемого 6 р -электронного облака делает их весьма активными в реакциях с катионоидными (электрофильными) реагентами. Так, при взаимодействии бензола с хлором в присутствии катализатора легко происходит замещение атома водорода в бензоле хлором  [c.146]

    В результате реакций, обсуждающихся в этом разделе, образуется новая углерод-углеродная связь. По отношению к ароматическому субстрату они представляют собой электрофильное замещение, так как кольцо атакуется положительной частицей. По традиции их относят к этому типу реакций. Однако по отношению к электрофилу большинство из этих реакций являются нуклеофильным замещением, и все, что говорилось в гл. 10 о реакциях нуклеофильного замещения, справедливо и в данных случаях. Некоторые из них могут не быть реакциями замещения по отношению к реагенту так, например, при использовании в качестве реагента олефинов — это присоединение к двойной углерод-углеродной связи (реакция 11-13) или присоединение по связи С = 0 (реакция 11-24). [c.348]


    В т. 3 рассматриваются реакции ароматического нуклеофильного и свободно-радикального замещения, а также реакции присоединения к кратным связям углерод—углерод и углерод—гетероатом. [c.4]

    Ароматические углеводороды с кратными связями в боковой цепи. Первый и наиболее важный в этом ряду углеводород — стирол СеНб—СН=СНз (фенилэтилен, или винилбензол). Это жидкость с приятным цветочным запахом темп. кип. 145,2°С, темп, плавл. —30,6°С 4 =0,9060. За счет двойной связи в боковой цепи легко вступает в реакции присоединения (обеспечивает растворы [c.342]

    В реакциях нафталин и его производные проявляют, подобно бензолу, ароматические свойства. Хотя строение нафталина изображают структурной формулой с двойными связями, он, как и бензол, с трудом вступает в реакции присоединения для него более характерны реакции замещения. Но, так как бензольные ядра в нафталине не изолированы и имеют общие углеродные атомы, ароматический характер нафталиновых соединений в значительной мере нарушен, и они не обладают той устойчивостью, которая присуща отдельным или связанным, но не конденсированным ядрам бензола. Поэтому во все реакции нафталин вступает легче, чем бензол при этом, в отличие от бензола, атомы водорода и углерода в нафталине не одинаковы по реакционной способности. [c.347]

    Обладая подвижной шестеркой я-электронов, ароматическое ядро является удобным объектом для атаки электрофильных реагентов. В своей начальной стадии реакции ароматического ядра напоминают реакции присоединения к кратным связям. Отличие заключается в том, что затем вместо присоединения аниона идет отщепление протона, благодаря чему восстанавливается особо устойчивая, энергетически выгодная ароматическая система связей, [c.116]

    В среде диметилсульфоксида и гексаметилфосфамида удалось осуществить катализируемую грег-бутоксид-анионом реакцию присоединения ароматических гетероциклических соединений к ненасыщенным углеводородам с сопряженными кратными связями (гомогенное алкилирование). Известна также катализируемая основанием реакция изомеризации алкинов, протекающая в этанольном растворе гидроксида калия. По своей депротонирующей способности эти системы занимают промежуточное положение между системами гидроксид-ион — вода и амид натрия — аммиак. В роли депротонирующего агента может выступать также анион диметилсульфоксида. [c.83]

    То обстоятельство, что в экстрагированной пленке СКН-26, содержащего ГОФНА, после облучения сохраняется полоса поглощения при 3390 СМ , характерная для ЫН- и ОН-групп в молекуле ГОФНА, свидетельствует о присоединении амина к каучуку нафтильным кольцом. Известно, что в нафтильном кольце более реакционноспособными являются атомы углерода в а-положении. Исходя из этого предполагается, что в реакциях присоединения ароматических аминов к каучуку принимает участие двойная связь нафтильного кольца при атоме углерода в а-положении. Ниже приведена схема механизма защитного действия вторичных ароматических аминов в СКН-26  [c.167]

    В настоящем разделе рассмотрены механизмы двух разных реакций присоединения водорода к циклическим соединениям — к двойной или ароматической связям. Сравнительно недавно выяснилось, что существует особый тип реакций присоединения атомов водорода к цик-лоалканам, при котором число Н-атомов в молекулах не меняется, поскольку каждому присоединившемуся атому водорода соответствует другой атом водорода, уходящий из молекулы. Такие реакции и воирос о том, происходят ли эти присоединения и отрывы одновременно или последовательно, рассмотрены в следующем разделе. [c.58]

    Нафтеновоароматические углеводороды. Поведение нафтеновых производных ароматических углеводородов при пиролизе в общем аналогично реакциям алкилированных ароматических углеводородов с открытой цепью. Имеются два основных тина производных 1) нафтеновые кольца, присоединенные к ароматическому ядру простой связью и 2) нафтеновые кольца, конденсированные с ароматическими ядрами. [c.111]

    Полученное выражение соответствует экспериментальному при 6 ккал/моль и Рза/Рт Ю - Значбние энергии активации реакции присоединения аа = 6 ккал/моль вполне разумно. Значение Рт вследствие проявления клеточного эффекта , ло всей вероятности, равно 1, следовательно, рза Ю . Для реакции присоединения сложного высокомолекулярного радикала к системе п-связей алкилированных ароматических систем такое значение возможно. [c.120]

    Существование стабильной замкнутой системы я-электронов определяет химические свойства ароматических углеводородов. Например, бензол обладает суммарным эффектом сопряжения, равным 150,72 кДж/моль это значительно увеличивает стабильность бензольного кольца к реакциям присоединения, так как энергетически выгодными становятся лишь те процессы, тепловой эффект которых превышает упомянутую вел1ичину. Сопряжение в шестичленном кольце бензола приводит к то му, что в нем выравнены длины связей (0,139 нм), что соответствует промежуточному значению между длинами простой (0,154 ям) и двой- [c.15]

    Изучение многочисленных реакций присоединения радикалов к ароматическим и другим сопряженным соединениям свидетельствует о том, что имеется существенная зависимость между константами скорости этих реакций и природой атомов субстрата и реагента, между которыми образуется а-связь. Таким образом, активированный комплекс этих реакций должен быть а-комплексом. Следуя работам Эванса, Поляни, Шворца и их сотр., рассмотрим более подробно модель реакции (18.1), которая послужит основой для кинетического описания этих реакций [31, 104, 265]. [c.170]

    В полициклических аренах С—С-связи неравноценны в отличие от бензола, поэтому по определенным связям (с большей электронной плотностью) легче протекают реакции присоединения. Так, в молекуле нафталина связи 1—2, 3—4, 5—6 и 7—8 по сравнению со связями 2—3 и 6—7 имеют больший порядок и меньшую длину. Избирательный характер реакций присоединения в этих случаях связан с тем, что образующиеся соединения с разделенными ароматическими циклами могут иметь более высокую энергию сопряжения, чем исходные полиарены. [c.32]

    Конденсация. Для конденсации так же, как и для присоединения, характерно образование С—С-связи. Конденсация ароматических углеводородов, даю-, шая соединения с более высокой молекулярной массой, вплоть до кокса [1, 10, 22], характерна для каталитического крекинга. При этом ароматический карбе-ний-ион вступает в последовательные реакции присоединения к ароматическим углеводородам и Н-переноса. Процесс конденсацин вследствие высокой стабильности многоядерного ароматического карбений-иона может продолжаться дальше до элиминирования протона. [c.82]

    Энергетический выигрыш при образовании ароматическо системы обусловливает повышенную устойчивость бензола по сравнению с алкенами и сопряженными нециклическими полие-нами к реакции присоединения по кратным связям, поскольку при этом должна нарушиться ароматическая система. [c.323]

    Сгорание углеводородов является высо-коэкзотермичным процессом. Поэтому углеводороды главным образом сжигают с целью получения энергии. Ненасыщенные алифатические углеводороды-алкены (олефины) и алкины (ацетилены)-легко вступают в реакции присоединения по кратным углерод-углеродным связям. В отличие от них ароматические углеводороды с трудом вступают в реакции присоединения. Разновидностью присоединения является реакция полимеризации алкенов, которая позволяет получать множество ценных синтетических материалов. [c.435]

    А. с. почти не вступают в реакции присоединения, стойкие к окислителям, легко замещают атомы водорода, соединенные с ароматическим циклом, на другие атомы или группы. А. с. проявляют высокую энергетическую стойкость по сравнению с ненасыщенными соединениями. Ее характеризуют так называемой энергией сопряжения, равной разности между вычисленной энергией образования гипотетической молекулы с фиксированными связями и экспериментально найденной энергией образования ре-алыюй молекулы. Энергия сопряжения для бензола 40 ккал/моль, нафталина 75 ккал/моль, тиофена 31 ккал/моль и др. А. с. характеризуются некоторыми общими особенностями строения, в частности промежуточным между простым и двойным характером связи в цикле и плоскостным строением цикла. [c.31]

    Молекула бензола в методе МОХ. Рассматривая проблему ароматичности, остановимся в первую очередь на бензоле и отметим его особенности, характерные для ароматических соединений а) плоский цикл с выравненными связями С—С, промежуточными по длине между ординарной и двойной связями б) нехарактерность реакций присоединения, несмотря на ненасыщенность углеводорода, т. е. известная химическая стабильность бензольного кольца в) анизотропия диамагнитной восприимчивости молек> лы. [c.227]

    Теперь, зная молекулярные орбитали и их энергию, можно попытаться объяснить особенности ароматических молекул. Первая из них — устойчивость молекул, их неактивность в реакциях присоединения, несмотря на непредельный характер бензола и его производных. В бензоле нет локализованных двухцентровых этиленовых связей, которые ответственны за активность олефинов в реакциях присоединения и которые предполагались в гипотетическом бензоле Кекуле. Электроны я-связей занимают делокализованные шестицентровые орбитали, охватывающие все бензольное коль,цо. При этом разрыхляющие я-орбитали [c.229]

    Еще в XIX столетии было признано, что ароматические соединения [34] сильно отличаются от ненасыщенных алифатических соединений [35], но в течение многих лет химикам не удавалось прийти к взаимно приемлемому удовлетворительному определению ароматического характера [36]. В качественном отношении серьезных разногласий никогда не существовало, и определение сводилось к следующей форме ароматические соединения характеризуются особой устойчивостью и легче вступают в реакции замещения, а не в реакции присоединения. Трудность состояла в том, что такое определение было не слишком ясным и не подходило для пограничных случаев [37]. В 1925 г. Армит и Робинсон [38] установили, что ароматические свойства бензольного ядра связаны с наличием замкнутого кольца электронов, ароматического секстета (ароматические соединения, таким образом, являются своеобразными примерами делокализованной связи), но в то время еще нельзя было определить, обладают ли другие циклы, отличные от бензола, таким электронным кольцом. С развитием магнитных методов исследования, главным образом ядерного магнитного резонанса, появилась возможность экспериментально определять наличие или отсутствие в молекуле замкнутого электронного кольца, и теперь ароматичность можно охарактеризовать как способность удерживать индуцированный кольцевой ток. Соединения, обладающие такой способностью, называют д агро/г-ными. Сегодня это определение является общепринятым, хотя оно не лишено недостатков [39]. Существует несколько методов, позволяющих установить, способно ли соединение удерживать кольцевой ток, но наиболее важный из этих методов основан на химических сдвигах в спектрах ЯМР [40]. Чтобы это понять, необходимо вспомнить следующее как правило, величина химического сдвига протона в ЯМР-спектре зависит от электронной плотности его связи, и чем выше плотность электронного облака, окружающего или частично окружающего протон, тем в более сильное поле смещается его химический сдвиг (т. е. тем меньше величина б). Однако из этого правила имеется несколько исключений, и одно из них касается протонов, расположенных вблизи ароматического цикла. При наложении внешнего магнитного поля (как в спектрометре ЯМР) в ароматических молекулах возникают кольцевые токи л-электронов, которые (при расположении плоскости ароматического [c.63]

    Алициклические углеводороды. Циклические углеводороды, не содержащие в своем составе ароматических циклов, получили название алициклических. Непредельные алициклические углеводороды называют циклоалканами или нафтенами. Их получают из некоторых видов нефти, например, из бакинской. Прочность циклов снижается с уменьшением числа атомов углерода в цикле из-за увеличения напряжения вследствие изменения валентных углов при образовании связей. Характерной для циклоалканов является реакция замещения. Малые циклы склонны к реакциям присоединения, сопровождающимся разрывом циклов. [c.305]


Смотреть страницы где упоминается термин Реакции присоединения к ароматическим связям: [c.367]    [c.168]    [c.255]    [c.224]    [c.297]    [c.168]    [c.139]    [c.118]    [c.394]    [c.22]    [c.35]    [c.278]    [c.258]    [c.453]   
Смотреть главы в:

Принципы органического синтеза -> Реакции присоединения к ароматическим связям




ПОИСК





Смотрите так же термины и статьи:

Реакции присоединения

Связь ароматическая



© 2025 chem21.info Реклама на сайте