Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Насыщенные и ароматические карбоновые кислоты

    Кислоты и эфиры. Насыщенные алифатические карбоновые кислоты и эфиры, как правило, не дают волн восстановления в доступной области потенциалов. Однако на платиновом микроэлектроде можно наблюдать волны их окисления (реакция Кольбе). Ароматические производные восстанавливаются в сильнокислых растворах до спиртов  [c.467]


    НАСЫЩЕННЫЕ И АРОМАТИЧЕСКИЕ КАРБОНОВЫЕ КИСЛОТЫ [c.206]

    Насыщенные и ароматические карбоновые кислоты [c.207]

    Ароматические карбоновые кислоты можно гидрировать с восстановлением карбоксильной группы или с насыщением ароматической системы  [c.491]

    ОДНООСНОВНЫЕ НАСЫЩЕННЫЕ И АРОМАТИЧЕСКИЕ КАРБОНОВЫЕ КИСЛОТЫ [c.129]

    Фениловые и виниловые эфиры насыщенных карбоновых кислот Насыщенные карбоновые кислоты (рис. 150) а,р-Ненасыщенные карбоновые кислоты и кислоты ароматического ряда (рис. 153,171) Алкиловые эфиры насыщенных карбоновых кислот Насыщенные альдегиды и кетоны, эфиры . -ненасыщенных и ароматических карбоновых кислот (рис. 125, 130) [c.134]

    При благоприятных условиях коррозия может ингибироваться исключительно малыми количествами некоторых органических соединений. Это было установлено при использовании недавно нашедших применение парообразных ингибиторов коррозии [34]. К ним относятся соединения с низкой летучестью, оказывающие настолько сильное защитное действие, что железо и сталь не корродируют во влажном воздухе, насыщенном их парами. Пропитанные этими соединениями бумага или картон могут быть использованы в качестве оберточного материала. При такой упаковке металлические предметы не требуют дополнительной защиты, пока упаковочный материал не поврежден. Наиболее известными парообразными ингибиторами коррозии являются нитрит циклогексиламина и некоторые другие слабо ионизированные соли этого соединения, а также соли дициклогексиламина, фенилэтиламина, дибутил-амина, гидразина и др. Для обработки упаковочных материалов можно применять также соединения и других классов, например бензойную кислоту и ее соли и ряд других ароматических карбоновых кислот. [c.182]

    Гидрирование фталевых кислот и их эфиров. Гидрирование трех изомерных фталевых кислот в циклические спирты осуществляется с большим трудом. Ароматическое кольцо гидрируется значительно хуже, чем в бензоле или феноле. При прямом гидрировании фталевых кислот существенное развитие имеют побочные реакции. Так, при использовании металлических катализаторов на основе меди, хрома, никеля, кобальта и платины происходит не только насыщение кольца, но и декарбоксилирование. Полученный продукт содержит циклогексан и моно-карбоновую кислоту. [c.49]

    Обычно карбоновые кислоты составляют 5—15% всех кислородных соединений нефти и нефтепродуктов. Содержащиеся в нефти кислоты достаточно стабильны. В результате низкотемпературного автоокисления углеводородов нефти образуется лишь небольшая часть этих продуктов. Почти все кислоты нефти имеют моно-, би- или полициклическую структуру иногда в молекуле их присутствуют циклановые и ароматические кольца (преобладают насыщенные циклы — пятичленные). [c.40]


    Возможности учета небольших отклонений от сформулированных условий рассмотрены в [1, гл. 8 . Там же суммированы описанные в литературе примеры спектрофотометрического определения молярных масс органических соединений различных классов и условия анализа. В подавляющем большинстве случаев погрешность определения не превышала 1—2%. Спектрофотометрическим методом удавалось определять молярные массы алифатических карбоновых кислот, насыщенных спиртов, альдегидов ароматических углеводородов аминов, эфиров, кислот фенолов, углеводородов и других соединений. [c.155]

    Описано много комплексных соединений серебра с органическими лигандами. Известны комплексы серебра с ненасыщенными и насыщенными углеводородами, с карбоновыми кислотами, с аминокислотами, тиокислотами, комплексонами, с многочисленными аминами ароматического и жирного ряда, с лигандами, содержащими фосфор и мышьяк, с лигандами, содержащими азот и серу, азот и селен, фосфор и серу, с дикетонами и другими органическими соединениями. Не все эти соединения имеют одинаковое значение для аналитической химии. Ниже приводится краткая характеристика важнейших комплексов серебра с органическими лигандами. [c.29]

    Карбоновые кислоты, в которых карбоксильная группа и ароматическое ядро разделены цепью насыщенных атомов углерода, обладают, с одной стороны, свойствами алифатических карбоновых кислот, а с другой-свойствами алкилбензолов Поскольку свойства и тех и других уже рассматривались, в настоящем разделе будут обсуждены только такие соединения, в молекулах которых ароматическое ядро и карбоксильная группа непосредственно связаны между собой [c.299]

    В зависимости от природы К карбоновые кислоты подразделяются на предельные (насыщенные, К — алкил), непредельные (ненасыщенные, К — алкенил), ароматические (К — арил), циклические (К — циклоалкил) и др Предельные и непредельные кислоты часто называют жирными (по происхождению) [c.628]

    Углеводородные радикалы в карбоновых кислотах проявляют типичные химические свойства, соответствующие их природе замещение в насыщенных и ароматических углеводородных остатках, присоединение в ненасыщенных. С другой стороны, указанные реакции имеют некоторые особенности, обусловленные наличием карбоксильной группы. [c.273]

    Окисление углеводородов в паровой фазе, как источник ценных технических продуктов продукт реакции содержит ненасыщенные углеводороды с одной и двумя двойными связями, ароматические углеводороды, насыщенные и ненасыщенные алифатические альдегиды, насыщенные и ненасыщенные кетоны, лак-тоны, спирты, небольшие количества карбоновых кислот и фенолов [c.221]

    В этой книге, предназначенной прежде всего для студентов, изучающих органическую химию, предпринята попытка сравнительно доступно изложить современное состояние теории органических химических реакций. При этом автор не стремится охватить абсолютно все типы реакций, так как это является предметом современных учебников органической химии предполагается, что читатель уже знаком с этими учебниками. Казалось более целесообразным осветить в первую очередь влияния и взаимодействия, скрывающиеся за отдельными механизмами, причем рассмотреть вопрос под различными углами зрения (субстрат — реагент — растворитель). Прежде всего такого рода знание помогает правильно подобрать условия реакции и вообще планировать практическую работу. Далее, для учащихся особенно важно, чтобы теория помогала обобщить многообразие материала и рассмотреть его с единой точки зрения на наглядных примерах. Так, реакции азометинов, нитрилов, нитро- и нитрозосоединений обычно не относят к карбонильным реакциям, но в этой книге их рассматривают вместе с карбонильными реакциями (реакциями альдегидов, кетонов, карбоновых кислот и их производных). Кроме того, применяя принцип винилогии, здесь же рассматривают присоединение по Михаэлю и нуклеофильное ароматическое замещение. Электрофильное присоединение к олефинам и электрофильное замещение в ароматическом ядре также обсуждаются с общей точки зрения. Что касается других глав, то в них сохранена обычная классификация реакций по типа.м нуклеофильное замещение у насыщенного атома углерода, отщепление, секстетные перегруппировки и радикальные реакции. Первые три главы служат введением в них рассматривается проблема химической связи, распределение электронной плотности в молекуле и общие вопросы течения химических реакций органических соединений. [c.9]

    Ароматические карбоновые кислоты. Бензойная кислота (р/Са 4,20) является более сильной кислотой, чем ее насыщенный аналог — циклогексанкарбоновая кислота. Это дает основание предположить, что фенильная группа подобно двойной связи сильнее оттягивает электроны от карбоксильной группы, чем насыщенная система углеродных атомов, из-за наличия зр -гкб-ридизованного атома углерода, связанного с карбоксильной группой (см. стр. 76). [c.79]


    В некоторых случаях непредельные углеводороды идентифицируют в виде дибромпроизводных. Для идентификации ароматических углеводородов окисляют их боковые цепи и исследуют образовавшиеся карбоновые кислоты. Многие ароматические углеводороды исследуют в виде характерных кристаллических производных пикриновой кислоты. К шестичленным нафтенам применяют реакцию пербромирования по Густавсону — Коновалову, а ко всем насыщенным —нитрование по Коновалову разбавленной кислотой в запаянных трубках. [c.90]

    Названия органических кислот имеют окончания (суффикс) -овая кислота или -карбоновая кислота . Существуют многие сотни полутривиальных названий кислот насыщенных, ненасыщенных, ароматических, гетероциклических, гидрокси- и аминокислот, а также некоторых сульфокислот. Некоторые из этих названий возникли еще в 17-ом столетии. Далеко не полный список таких названий приведен в правилах ШРАС, здесь же основное внимание будет сосредоточено на систематической номенклатуре. [c.131]

    Первая реакция аналогична восстановлению алифатических кислот и их сложных эфиров и протекает с теми же катализаторами. Гидрирование с насыщением ароматической системы во многом подооно гидрированию соответствующих углеводородов (на никелевом катализаторе при 160—200°С и под давлением водорода). Ароматическое ядро карбоновых кнслот гидрируется значительно труднее, чем в бензоле или в феноле. [c.509]

    Свойства фенолов. 1. Фенолы имеют большую кислотность, чем спирты, уступая, однако, в этом отношении карбоновым кислотам. Они растворяются в водных растворах щелочей, причем их соли, феноляты, лишь слабо гидролизуются водой. Двуокись углерода осаждает 41Снолы из водных щелочных растворов, и таким способом они могут быть отделены от карбоновых кислот. Следовательно, ароматический остаток усиливает кислотные свойства гидроксилыюй группы. Это вызывается, по-видимому, той же причинои, которая обусловливает сильно кислотный характер енолов. Более же сильную кислотность енолов по сравнению с насыщенными спиртами мы объясняли тем, что в этих соединениях гидроксильная группа находится у двойной связи в фенолах гидроксильная группа также связана с ненасыщенным атомом углерода (по формуле бензола Кекуле она находится у двойной связи ).  [c.538]

    Пример 3. Соединение нейтрального характера реагирует со щелочами при нагревании с образованием соли и летучего органического вещества. Качественные реакции на азот, серу и галогены отрицательные. В коротковолновой части (у > 2500 см ) ИК-спектра (рис. 1.13) имеются только полосы валентных колебаний водорода насыщенных радикалов (между 2800 и 3000 см ). Очень слабая широкая полоса при частоте 3500 см — вероятнее всего примесь воды (или спиртов), второй слабый максимум при 3450 см" — обертон очень сильной полосы при 1730 см" -. Следовательно, вещество не содержит никаких группировок ОН (а также ЫН и 5Н, но они исключаются уже данными качественных реакций), не содержит водорода при тройных связях С=С, двойных связях С=С и С=0 или ароматических кольцах. Отсутствие этих фрагментов подтверждается также исследованием области частот 1500—2500 см , в которой имеется лишь полоса 1730 см . Эта очень сильная полоса точно соответствует частоте валентных колебаний карбонила в нескольких классах органических веществ (см. таблицу характеристических частот в конце книги), но с учетом указанных химических свойств ее следует приписать сложноэфирной группировке (лактоны, имеющие те же частоты валентных колебаний С=0, не образуют летучих веществ при реакции со щелочами ангидриды карбоновых кислот имеюг в этой области две полосы и также не образуют летучих веществ при действии щелочей). Не исключена, однако, возможность одновременного присутствия кетонной группы (второго карбонила) и (или) группировки С—О—С простых эфиров. Таким образом, исследуемое вещество скорее всего является сложным эфиром какой-то кислоты предельного или [c.25]

    Снлы притяжения, возникающие между этими соединениями (особенно нитрилоэфирами) и неполярными и насыщенными органическими соединениями, невелики, тогда как с полярными и ненасыщенными веществами, которые могут образовывать водородные связи, возникает сильное притягивающее взаимодействие. Последнее объясняется тем, что нитрилы при наличии в них цианогрупп сами сильно полярны (дипольный момент алкилциани-дов составляет (х = 3,60 /), а фенилцианида [х = 4,05 О) и легко поляризуются, в связи с чем может проявляться действие ориентационных сил. В то же время нитрилы, будучи полярным , индуцируют в ненасыщенных, поляризуемых молекулах электрическое поле, в результате чего возникает некоторое притяжение и к этим молекулам. Но еще сильнее проявляются силы донорно-акцепторного типа, и это прежде всего водородные связи. Донорно-акцепторные силы возникают вследствие того, что нитрилы благодаря электроотрицательности групп N действуют как акцепторы электронов и больше задерживают в колонке вещества, обладающие системой я-электронов с низкой энергией ионизации (ароматические вещества) (ср. разд. В.1). Образование водородных мостиков происходит между нитрилоэфирами, с одной стороны, и спиртами, фенолами, карбоновыми кислотами (т. е. соединениями, содержащими группы ОН) и первичными (в меньшей степени также вторичными) аминами — с другой. Как уже было указано выше (см. разд. В), удельные объемы удерживания пропанола при применении , 2,2>-трис-(цианэтокси)пропана и менее полярного диоктилсебацината почти одинаковы, так как в обоих случаях водородные связи с этими веществами приводят к взаимодействиям с большей энергией по сравнению с другими типами взаимодействий. [c.207]

    Реакция Курциуса была успешно применена к алифатическим, алици-клическим, ароматическим гетероциклическим кислотам, к насыщенным и ненасыщенным кислотам и кислотам, содержащим различные функциональные группы. Она может быть проведена с почти любой карбоновой кислотой и таким образом является общим способом синтеза эфиров изоциановой кислоты и соединений, которые можно получить из этих эфиров, а именно уретанов, алкильных производных мочевины и аминов. Преимущество этой реакции заключается в том, что она позволяет получать первичные амины, совершенно свободные от примеси вторичных и третичных аминов и обычно содержащие аминогруппу в точно установленном положении. [c.323]

    Большой интерес представляют инвертные эмульсии с повышенным содержанием воды (70—95%). Патенты США предусматривают для этой цели сложные смеси эмульгаторов и активных добавок. В одном из них Р. Вода предлагает двухкомпонентную смесь, в которой компонент А представлен насыщенной или ненасыщенной карбоновой кислотой или двухосновной адипиновой кислотой, ароматической сульфокислотой, а также их смесями. Компонентом В служат ПАВ типа этоксилированного гидроксиэтилацетиленида с углеводородной цепью из 8—22 атомов углерода либо амин с двумя этоксильными цепями. В патенте Реди и К. Бандрента компонентом А является смесь полимерных поликислот (33%), смолообразного аддукта окиси этилена (25%), тяжелой фракции ароматических углеводородов (39%) и таллового масла-сырца (3%). Компонент В состоит из 77% окиси магния, 15% аттапульгита и 7—8% катионоактивного ПАВ. [c.384]

    Пирролы, имидазолы, пиразолы и бензоконденсированные аналоги, обладающие NH-группой, способны депротонироваться (значение рА а лежит в интервале 14-18). Следовательно, эти соединения могут быть полностью превращены в соответствующие анионы при действии сильных оснований, таких, как гидрид натрия или -бутиллитий. Незамещенный пиррол ( рК . 17,5) проявляет кислотные свойства в гораздо большей степени, чем соответствующий насыщенный аналог пирролидин (рА 44). Кислотность индола (рА 16,2) значительно выше, чем кислотность анилина (рА 30,7). Такое различие в кислотности можно объяснить возможностью делокализации отрицательного заряда в анионе ароматического гетероцикла. Введение электроноакцепторных заместителей или дополнительного гетероатома, особенно иминного атома азота, существенно повышает кислотные свойства гетероциклических соединений. Прекрасный иллюстрацией такого влияния может служить тетразол, рА которого (4,8) имеет тот же порядок, что и рК карбоновых кислот [c.47]

    Названия органических кислот имеют окончания -овая кислота или -карбоновая кислота. Многие насыщенные, ненасыщенные, ароматические, гетероциклические, гидро-кси- и аминокислоты, а также некоторые сульфокислоты имеют полутривиальные названия. Некоторые из этих названий возникли еще в XVII столетии. Неполный список таких названий приведен в Правилах ШРАС. [c.410]

    Получение 7рег-ал кил аминов. При взаимодействии нитрилов ароматических, насыщенных, ненасыщенных и р-алкоксизамещен-ных карбоновых кислот с аллилмагнийбромидом реакция не останавливается на образовании кетимина к нитрильной группе присоединяются две молекулы аллилмагнийбромида. Гидролиз полученного продукта приводит к первичному амину с аминогруппой у третичного атома углерода. Аллилмагиийбромид может присоединяться также к кетимину, полученному из нитрила и другого магнийорганического соединения 58-62. [c.227]

    В отличие от триоксана, полимеризация мономерного формальдегида ускоряется в присутствии веществ как кислого характера (протонные и льюисовские кислоты, карбонилы металлов УЦ1 группы), так и основного (амины, амиды, имиды, четвертичные аммониевые основания, оксиды, гидроксиды и соли щелочных металлов, алкилфосфины и т. д.), а также соли высщих карбоновых кислот, металлы и сплавы. Для получения качественного высокомолекулярного продукта требуется мономер высокой степени чистоты (суммарное содержание примесей не выще 0,05%). Тепловой эффект реакции достаточно велик (63 кДж/моль), что на практике требует системы теплосъема. Полимеризацию мономера проводят, пропуская газообразный продукт через раствор с катализатором, т. е. в системе газ — жидкость. Хотя высокомолекулярный продукт может быть получен и в полярных растворителях (спирты и даже вода), на практике применяют насыщенные углеводороды (парафины, ароматические, алициклические). Чистый гомополимер сравнительно легко подвергается термоокислительной деструкции, например при сушке или при формовании изделий, причем этот процесс начинается с концевых групп. Для придания большей термической и химической устойчивости к макромолекулам в а, -положении присоединяют различные функциональные группы. Повышение предела термической устойчивости в зависимости от природы этих групп растет в ряду [21] гидроксильные <формильные <фенилуретановые <сложноэфирные < С простые эфирные. [c.193]

    Конденсация эфиров насыщенных карбоновых кислот с альдегидами, кетонами и ароматическими альдегидами например, к суспензии 30, 2 г Гидрида натрия в 460 см этилацетата при 0° добавляют по каплям 106 см бензальдегида, продукт реакции подкисляют уксусной кислотой выход этилового эфира коричной кис-гюты 149 г (85% нд бензальдегид) [c.448]

    После количественного выделения [119] кислот из калифорнийской нефти число их возросло за счет терпеновых полицикличе ских насыщенных и полициклических ароматических [120, 121], а также гетероциклических карбоновых кислот, обнаруженных непосредственно в нефти. Применив новейшие методы исследования (хроматографическое разделение, переводы кислот в углеводороды и исследование индивидуального состава сочетанием ГЖХ метода с масс-спектрометрией, а также ЯМР), Зайферт с соавторами идентифицировал свыше 40 классов новых органических кислот (moho- и полициклические нафтеновые смешанные нафтеноароматические и ароматические, имеющие до пяти циклов в молекуле, гетероциклические, содержащие по одному атому iN, S или О, а также по два атома N и по два атома О в молекуле (не считая кислорода карбоксильных групп). [c.98]

    Наиболее важные результаты, достигнутые при применении жидкофазного фторирования, были получены Боккемюллером . Реактор, в котором он проводил фторирование, представлен на рис. 1. Аппарат сделан из чистого никеля фтор, разбавленный двуокисью углерода, вводят по центральной трубке. По выходе из трубки газ задерживается под показанными на рисунке изогнутыми пластинами и очень быстро проходит через отверстия в нижней пластине однако отверстия на следующих двух пластинах расположены так, что обеспечивают длительный контакт между газом и жидкостью. Применяя этот реактор, Боккемюллер фторировал при О—20°С растворенные в четыреххлористом углероде н-гексадекан, некоторые насыщенные и ненасыщенные алифатические карбоновые кислоты (см. ниже) и ароматические соединения, особенно бензойную кислоту. Он также фторировал циклогексан и тетрахлорэтилен (см. стр. 410), растворенные в дихлордифторметане, при —80 °С с. применением обычной стеклянной аппаратуры.  [c.392]

    Сила адсорбции зависит от природы адсорбента и функциональных групп, находящихся в молекуле образца. Для разделения нефтей и нефтепродуктов используют в основном полярные адсорбенты, такие, как силикагель и оксид алюминия. Широкие пределы сил межмолекулярных взаимодействий различных функциональных гр тш е поверхностью полярш.и. адсорбентов приводят к чрезвычайно широкой области энергии адсорбции для различных типов молекул (табл. 1). Например, алкильные группы адсорбируются слабо, так как взаимодействие их с поверхностью адсорбента осуществляется только дисперсионными сипами [1, 8]. Спирты адсорбируются гораздо сильнее за счет индукционных сил и водородных связей [9]. Обычно различные классы соединений десорбируются с полярньгх адсорбентов в следующем порядке [3, 10] насыщенные углеводороды (небольшой. % ) < олеф1Шы < ароматические углеводороды органические галогениды< сульфиды < простьге эфиры < сложные эфиры альдегиды кетоны < спирты < амины < сульфоны < сульфок сиды < амида < карбоновые кислоты (большой к ). [c.13]


Смотреть страницы где упоминается термин Насыщенные и ароматические карбоновые кислоты: [c.367]    [c.109]    [c.272]    [c.110]   
Смотреть главы в:

Органическая химия Том1 -> Насыщенные и ароматические карбоновые кислоты

Органическая химия Том2 -> Насыщенные и ароматические карбоновые кислоты




ПОИСК





Смотрите так же термины и статьи:

Ароматические кислоты

Карбоновые кислоты ароматические

Насыщение кислот



© 2025 chem21.info Реклама на сайте