Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворимость полимеров и их растворители

    Известны попытки прямо связать не только механические характеристики полимеров в жидких средах, но и эффект микрорастрескивания поверхности с параметром растворимости жидкости [66]. Зависимость минимального напряжения, при котором в пластинке полиметилметакрилата, растягиваемой в жидкой среде, образуются микротрещины, от параметра растворимости жидкости имеет экстремальный характер (рис. 1.29). Минимальное напряжение растрескивания полиметилметакрилата имеет место в жидкостях-растворителях с параметром растворимости, близким к параметру растворимости полимера. Растворители, как было показано выше, хрупко разрушают растягиваемый полимерный образец и не поглощаются полимером. Жидкости, поглощающиеся полимером при вытяжке, как правило, расположены в зоне, примыкающей к зоне растворимости. [c.49]


    При растворении полимеров в низкомолекулярных жидкостях энтальпия смешения АН в большинстве случаев мала в случае эластомеров она, как правило, положительна. Хорошая растворимость полимеров в большом числе растворителей обусловлена необычайно высокими значениями энтропии смешения. Именно с последним обстоятельством связаны и отклонения свойств растворов полимеров от свойств идеальных растворов. Теория растворов полимеров [2—5] позволила рассчитать энтропию смешения полимера с растворителем исходя из определения числа способов, которыми могут разместиться молекулы растворителя среди связанных в длинные гибкие цепи сегментов макромолекул (конфигурационную энтропию смешения). Несмотря на ряд существенных приближений используемой модели, полученные с ее помощью уравнения свободной энергии смешения и, соответственно, парциальных мольных свободных энергий компонентов системы (химических потенциалов полимера н растворителя) позволили объяснить важнейшие особенности поведения растворов полимеров. [c.33]

    Важная проблема растворимости в основе решается для полимеров так же, как и для обычных растворов. Как правило, линейные аморфные полимеры растворимы лучше кристаллических. Большая величина молекул высокомолекулярных веществ и гибкость их цепей, а также малая скорость диффузии приводят к тому, что процесс растворения протекает своеобразно. Первой стадией растворения аморфного полимера является набухание молекулы растворителя проникают в объем полимера и раздвигают полимерные цепи. Одновременно лишь небольшое число полимерных молекул переходит в жидкий растворитель, образуя раствор малой концентрации. Процесс набухания протекает до полного использования растворителя с образованием гомогенного раствора. Это имеет место, однако, лишь при наличии неограниченной взаимной растворимости жидкого растворителя и аморфного полимера. [c.257]

    Полимеризация в растворе происходит в среде, служащей растворителем и для мономера и для образующегося иолимера. Присутствие растворителя способствует быстрому отводу тепла, что облегчает регулирование температурного режима процесса и, следовательно, позволяет повысить скорость полимеризации. Во многих случаях молекулы растворителя принимают участие в реакции передачи цепи, вызывая прекращение роста макромолекул, т. е. снижение среднего молекулярного веса образующегося полимера, "Удаление растворителя из полимера представляет значительные трудности, поэтому полимеризацию в ])астворе проводят преимущественно в тех случаях, когда для последующего использования требуется хороию растворимый полимер. [c.91]


    Создание градиента скорости (напряжения сдвига) перемешиванием и перекачиванием растворов, особенно при повышенной температуре, может приводить к увеличению взаимной растворимости полимеров [168]. Этот эффект аналогичен эффекту удаления от критической температуры растворения в сторону однофазной системы или разбавления системы растворителем. При достаточно большом напряжении сдвига раствор становится однофазным вследствие того, что размер капель в результате дробления становится соизмеримым с размерами межфазного слоя. Чем меньше кон центрация раствора, тем меньше напряжение сдвига. Однако при С > Сг однофазное состояние системы при увеличении напряжения сдвига не достигается, хотя смещение системы в этом направлении имеет место. Таким образом, увеличение взаимной растворимости полимеров, достигаемое изменением температуры, может быть усилено действием сдвига (перемешивание, взбалтывание, перекачивание). При этом отмечается [168], что повышение температуры оказывает большое воздействие на растворы смесей полимеров в плохих растворителях, а увеличение напряжения сдвига - на растворы смесей полимеров в хороших растворителях. Малые добавки веществ, вводимые в количествах, не меняющих качества растворителя в целом, могут привести к изменению предела расслаивания, его предотвращению, замедлению или ускорению. Механизм их действия мо- [c.78]

    Содержание карбоксильных групп и кислотное число определяют титрованием растворенной навески исследуемого полимера щелочью. В зависимости от применяемого растворителя и растворимости полимера используют спиртовой или водный раствор щелочи. В качестве растворителя можно применять спирт, спир-то-бензольную или спирто-эфирную смесь (1 1), ацетон, диоксан и др. [c.40]

    Задание. I. Определить растворимость полимера в органических растворителях. [c.73]

    Полимеризация в растворе мономеров в различных растворителях получила широкое распространение при синтезе полимеров по ионному механизму. Каталитические системы могут быть растворимы в растворителе или присутствовать в виде суспензии, что существенно влияет на структуру получающегося полимера. Растворитель не должен химически взаимодействовать с катализаторами. Если получаемый полимер нерастворим в растворителе, то он выпадает в осадок и его выделение в этом случае значительно упрощается. Если же полимер растворим в растворителе, то раствор полимера может быть использован непосредственно для нанесения, например, полимерных покрытий на различные подложки с удалением растворителя. Если же в этом нет необходимости, то полимер выделяют из раствора различными приемами его осаждения (добавление осадителя, упаривание растворителя и др.). В этом случае существенное значение имеет глубина полимеризации, так как при неполной конверсии мономер может остаться в полимере. [c.81]

    В гетерогенной среде полимеризация может протекать в жидкой фазе, на поверхности и в объеме частиц твердой фазы полимера. Реакция протекает, по-видимому, одновременно в обеих фазах, но с различной скоростью. Соотношение скоростей этих реакций зависит от степени растворимости полимера в мономере или используемом растворителе, от степени конверсии мономера и соответственно соотношения жидкой и [c.116]

    На диазониевых солях основаны и некоторые процессы, дающие рельефное изображение. Например, фоторазложение соли, содержащейся в растворимом полимере, может быть проведено для уменьшения растворимости экспонированных областей. Последующая обработка растворителем приводит к растворению преимущественно неэкспонированных областей и оставляет негативное рельефное изображение, которое обычно может быть использовано при печати. [c.245]

    Возможны два принципиально различных способа образования студней. Студень можно получить при ограниченном набухании полимера в низкомолекулярном растворителе и в студень можно превратить раствор полимера. Основным условием образования студня из раствора является ограниченная растворимость полимера в растворителе. Поэтому все факторы, определяющие растворимость полимера, [c.266]

    Уже отмечалось, что важнейшая особенность полимеров— способность к пленкообразованию. Это свойство используется в производстве лаков и клеев. Производство синтетических лаков и клеев основано на растворимости полимеров в органических растворителях. Высыхание пленки и образование блестящего эластичного покрытия (лаки) или прочного шва (клеи) происходит либо только в результате испарения растворителя, либо может быть связано с превращением линейной структуры макромолекул в трехмерную. Последние превращения протекают при нагревании, под действием света, кислорода воздуха, а также в присутствии катализаторов. Выбор синтетических смол для покрытия и склеивания различных материалов определяется рядом свойств полимера адгезией (прилипаемость к покрываемому или склеиваемому материалу), эластичностью, механической прочностью, нерастворимостью, термостойкостью и т. д. [c.501]


    ТЕРМОДИНАМИЧЕСКИЙ КРИТЕРИЙ РАСТВОРИМОСТИ ПОЛИМЕРОВ. КАЧЕСТВО РАСТВОРИТЕЛЯ [c.358]

    Полимеры растворяются значительно медленнее низкомолекулярных соединений. В большинстве случаев растворение можно ускорить, умеренно нагревая раствор подогретым воздухом и одновременно перемешивая содержимое сосуда, не допуская закипания и улетучивания растворителя. Растворимость полимеров снижается по мере роста молекулярной массы. Нужно быть полностью уверенным в том, что в выбранных условиях анализа полимер растворяется целиком. Для этого необходимо, чтобы растворимость наиболее высокомолекулярных образцов была как минимум в 2—3 раза выше, чем рабочая концентрация раствора. [c.191]

    Определение молекулярного веса полипропилена любым из перечисленных методов затруднено из-за необходимости проведения исследований ири высоких температурах (при нормальной температуре приготовить даже сильно разбавленные растворы, обычно применяемые ири этих методах, можно только из атактической фракции). Кристаллические полимеры растворимы только ири температурах выше 100° С, что усложняет аппаратурное оформление и создает опасность деструкции полимера при длительном нагревании. По этой причине молекулярный вес полипропилена предпочитают определять более доступными методами, в том числе измерением вязкости раствора или расплава. Вискозиметрическое определение молекулярного веса в настоящее время еще не является, однако, абсолютным методом для любой системы полимер— растворитель. Для определения величины молекулярного веса вискозиметрическим методом требуется провести предварительную калибровку ири помощи какого-либо абсолютного метода, например осмометрии пли светорассеяния. Вискозиметрический метод применим лишь для линейных полимеров. [c.74]

    Важнейщими методами характеристики ММР являются методы седиментации в ультрацентрифуге (УЦФ) и гель-хроматографии, а также методы фракционирования, основанные на зависимости растворимости полимеров в критической области (соответствующей началу расслоения системы полимер — растворитель) от молекулярной массы. [c.23]

    Математический ана/шз показывает, что наилучшим растворителем для данного полимера является тот, параметр растворимости которого равен или близок параметру растворимости полимера, иначе Говоря, если 8р 6 , то АЯсм = О, и полимер может растворяться в данном растворителе. [c.94]

    Мономер и полимер растворимы в растворителе. В результате полимеризации образуется раствор полимера. Этот вариант процесса называется "лаковой" полимеризацией и является го-мофазным. Так, например, получают волокнообразующие полимеры и сополимеры акрилонитрила. [c.235]

    Физические свойства полисилоксанов зависят от характера и количества радикалов, связанных с атомом кремния, а также от соотношения в полимере углеродных атомов и атомов кремпия. Полимеры с высоким содержанием углерода представляют собой вязкие жидкости или высоксэластичные материалы. По мере уменьшения количества углерода нарастает вязкость и снижается растворимость полимера и он переходит в хрупкое стекловидное состояние. С увеличением размера боковых ответвлений (органических радикалов) в полимере начинают преобладать свойства, характерные для полиуглеводородов возрастает растворимость полимера в неполярных растворителях и его эластичность, но уменьшается механическая прочность, снижается температура размягчения и ухудшается термическая устойчивость. Высшие полиалкилснлоксаны обладают меньшей кислородоустойчивостью по сравнению с низшими. С заменой алкильных радикалов арильными увеличивается межмолекулярное взаимодействие, что выражается в повышении термической устойчивости и кислородо-устойчивости полимеров и возрастании жесткости. [c.485]

    Соотношение атомов титана и кремния может быть изменено в широких пределах в зависимости от соотношения исходных реагентов. Полиорганотитаносилоксаны стеклообразны, растворимы в спирте и ацетоне, образуют твердые пленки после удаления растворителя. Стекловидные аморфные растворимые полимеры образуются и при совместной поликонденсации силандиолов с диалкилгидроксиолсвом  [c.493]

    На основе фундаментальных исследований характеристик и свойств высокомолекулярных составлящих нефтяных остатков Институт химии нефти СО АН СССР совместно с БашНИИНП предложил использовать в качестве стабилизатора полимеров концентрат нефтяных асфальтенов и смол в оцраделенном их соотношении,характеризующийся температурой размягчения по КиШ 120-130°С. Бшш подобраны условия экстрактивного выделения соответствующих концентратов асфальтенов и смол из нефтяны остатков углеводородными растворителями (цроцесс Добен). Метод разделения тяжелых нефтяных остатков на асфальтено-смолистые и масляные компоненты экстракционной обработкой парафиновыми углеводородами основан на их различной растворимости в растворителе. [c.124]

    Высаливатч юш коацервацию можно вызвать не. только ал(зк-тролитами, но и органическими веществами, способнмми связывать растворители (например, воду связывают спирт и ацетон). Уменьшать растворимость полимеров можно также добавляя жидкость, в которой П(злимер не растворяется. Например, если воду добавить к раствору нитроцеллюлозы в ацетоне. [c.70]

    Явлеиие выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливания. К высаливанию неприменимо правило Шульце—Гарди, поэтому нельзя отождествлять высаливание с явлением обычной электролитной коагуляции. Явление в . с 1ливапия высокомолекулярных веществ в отличие от гидрофобных золей не связано с дзета-потенциалом коллоидных мицелл и заключается в нарушении сольватной (гидратной) связи между макромолекулами полимера и растворителем, т. е., иначе, в понижении растворимости полимера. При введении соли часть молекул растворителя, которая была в сольватной связи с макро.молекулами ВМС, сольватирует молекулы введенной соли. Чем больше будет введено соли, тем большее число молекул растворителя покинет макромолекулы полимера и сольватирует соль. Таким образом, высаливающее действие СОЛИ заключается в ее собственной сольватации (гидратации) за счет десольватации (дегидратации) молекул высокомолекулярных веществ. [c.381]

    Взаимная смешиваемость компонентов существенно зависит от температуры. Например, для многих систем область ограниченной растворимости компонентов уменьшается с повышением температуры, и при некоторой температуре То, на рис. 111.4) наблюдается полная смешиваемость. Эта температура и является верхней критической температурой растворения. Соединив плавной кривой точки, отвечающие составам фаз, находящихся в равновесии при разных температурах и ВКТР, получим диаграмму состояния системы полимер — растворитель (так называемую бинодаль). При температуре Тх (см. рис. III. 4) зависимость АО см от состэвз имеет два минимума и один максимум. С повышением температуры все эти точки сближаются, пока не сольются в одну точку, поэтому критической температуре соответствуют равенства  [c.89]

    Растворы. Идеальными растворителями, поглощающими свет в области длин волн ниже 200 нм, являются углеводороды гексан, гептан, циклогексан можно использовать также хлороформ, этил-ацетат, дихлорэтан, которые поглощают свет в области ниже 250 нм. Число подходящих растворителей еще ограничивается и малой растворимостью полимеров. Кроме того, необходимо обратить внимание на возможность искажения спектров вследствие реакций или ассоциации между растворенным веществом и растворителем. С другой стороны, простота уста1Новления точной концентрации и, следовательно, простота количественных расчетов на основании закона Бугера—Ламберта—Бера являются одним из преимуществ работы с растворами. [c.204]

    Ранее отмечалось, что важнейшая особенность полимеров — способность к пленкообразованию. Это свойство используется в производстве лаков и клеев. Производство синтетических лаков и клеев основано на растворимости полимеров в органических растворителях. Высыхание пленки и образование блестящего эластичного покрытия (лаки) или прочного шва (клеи) происходит либо только в результате испарения растворителя, либо может быть связано с превращением линейной структуры макромолекул в трехмерную. Последние превращения протекают при нагревании, поддействием света, кислорода воздуха, а также в присутствии катализаторов. Выбор синтетичес- [c.402]

    Лроцесс застудневания начинается при определенной критической концентрации раствора полимера, характерной для конкретной системы полимер — растворитель. При концентрации ниже критической студень не образуется. Понижение температуры способствует возникновению и упрочнению межмолекулярных контактов вследствие снижения растворимости полимера и уменьшения кинетической энергии макромолекул. Переход раствора полимера в студень при охлаждении осуществляется непрерывно н не характеризуется какой-либо определенной температурой. Растворимость полимера можно уменьшить введением в раствор небольших количеств добавок, ухудшающих растворяющую способность растворителя. У одного и того же полимера лучшим студнеобра-зователем будет высокомолекулярная фракция, так как с увеличением молекулярной массы уменьшается растворимость. [c.267]

    Синтез полимеров проводили как в среде органических растворителей, так и в расплаве. В результате получены растворимые полимеры различной молекулярной массы с функциональными группами, способные в результате термической обработки образовывать сшитые трехмерные продукты с высокой термостойкостью и хорошими механическими свойствами [1-3]. Учитывая большуто ценность таких полимеров, расширен круг используемых реакций и исходных мономеров. Синтезированы новые мономеры, в т.ч. Содержащие пиримидиновый цикл [4]. Возможность протекания реакции полиприсоединения изучалась на модельных реакциях. Найдены оптимальные условия синтеза полимеров. Исследованы строение исходных и модельных соединений, а также строение и свойства полимеров [5]. [c.101]

    В конденсационных полимерах, у которых имеются группы —СО2Н или —МНа, прямое титров/1Нне обычно является эффективные средством определения концевых групп [27, 36, 48. 54].. leтoдики заключаются в использовании подходящего инертного растворителя для ацидиметрического или алкали метрического титрования и, следовательно, применение их зависит от пределов растворимости полимера. Гидроксильные группы в полиэфирах определяются по реакции гидроксильных групп с реагентом, образующим титрующиеся при взаимодействии со спиртами группы, папример уксусный ангидрид [39] или янтарный ангидрид [22]. Гидроксильные группы в полиэфирах могут быть также определены методом инфракрасной спектроскопии [49]. [c.55]

    Растворимость полимеров является одной из наиболее важных характеристик. Из полимеров, не стабильных в расплавлеииом состоянии, изделия часто могут быть получены только из растворов. Определение молекулярного веса по вязкости раствора и другими методами также требует подбора подходящего растворителя. [c.68]

    Внсокоплавкпе полиамиды можно получить из первичных диаминов с короткой углеводородной цепью (2— 6 атомов углерода) и дихлорангидрида терефталевой кислоты [70]. Эти полиамиды лучше образуются из очень разбавленных растворов. Вследствие плохой растворимости этих полиамидов они быстро высаживаются во время поликондеисации и, кроме того, плохо набухают в растворителях, употребляемых при поликонденсацни. Эти обстоятельства обусловливают образование низкомолекулярных полиамидов. Полиамид из терефталевой кислоты и этилендиамина, синтез которого рассматривается ниже, не растворим ни в одном из обычных растворителей для полиамидов (в л(-крезоле, муравьиной кислоте) и растворяется только в сильных кислотах (серной и трифторуксусной). Таким образом, наличие в структуре колец и большого количества водородных связей определяет высокую температуру плавления и [шо-хую растворимость полимера. [c.107]

    Двенадцатая глава посвящена проблеме повышения предсказания растворимости полимеров в органических жидкостях. Показано, что предсказательная способность критерия растворимости, рассчитываемого по химическому строению полимера и растворителя, резко повышается с учетом типа надмо-ле1 лярной структуры полимера и степени его полимеризации. [c.17]

    Экспериментальные методы определения параметра растворимости 5 зак-.гпочаются в следующем. Измеряется величина характеристической вязкости т) полимера в наборе растворителей, которые обладают различными значениями параметра растворимости. Далее строятся зависимости т) полимера от параметра 5 растворимости того растворителя, в котором они были измерены. [c.330]

    Для предсказания растворимости полимеров иногда сравнивают расчетное значение 5п для полимера с экспериментальными значениями 5р растворителей. Если эти величины совпадают, можно надеяться на растворение полимера в данных растворителях. Если же значення 5 для полимера и растворителей различаются сильно, то растворение не гфоисходит. Совпадение параметров растворимости полимера и растворителя, однако, еще не гарантирует растворения полимера в данном растворителе. Как показывает практика, в случае совпадения величин 5 растворение наб.гподается лищь в 50% случаев (см. ниже). [c.330]

    Проблема предсказания растворимости полимеров является актуальной в течение многих лет. Один из способов предварительной оценки растворимости полимера - сопоставление величин параметров растворимости 5 Гильдебранда для полимера 5 и растворителя 5р. При этом часто считается, что если соблюдается условие 5 == 5р, то можно ожидать растворения полимера в данном растворителе. Опыт показывает, однако, что с помощью такого сопоставления можно лишь уверенно отбросить тс растворители, в которых растворение данного полимера происходить не будет Эго системы, дая которых 5 5р или 5 5р. С помощью такой оценки удается значительно сузить круг подаежащих проверке растворителей, в которых полимер может растворяться. Оценки и опьгг показьшают [128], что, например, из 160 растворителей можно таким способом сразу же для каждого полимера исключить из рассмотрения 120-130 органических жидкостей, как явно непригодных для растворения. В оставшихся растворителях, подчиняющихся условию 5 бр, примерно в половине из них полимер будет растворим. [c.333]

    Следовательно, соблюдение условия 5п = 5р не может дать гарантию растворимости полимера. Желательно иметь более точкьп способ предварительной оценки растворимости полимера по отношению к тем растворителям, для которых соблюдается условие 5 5р. Рассмотрим в деталях критерий растворимости, предложенный в работах [32,95], который обладает достаточно высокой предсказательной силой. [c.333]

    Процедура оценки растворимости полимера заданного химического строения в том или ином растворителе, согласно изложенным выше представлениям, заключается в следующем. Для данного полимера и растворителя рассчитываются величины параметра растворимости S по форм ле (331). Затем для полимера рассчитывается величина поверхностной энергии у по формуле (389) или (399, 400). Можно также рассчитать у с помощью парахора по форл1уле (372). Необходимый для этого мольный объем повторяющегося звена полимера определяется как [c.342]


Смотреть страницы где упоминается термин Растворимость полимеров и их растворители: [c.21]    [c.198]    [c.199]    [c.387]    [c.143]    [c.222]    [c.399]    [c.127]    [c.71]    [c.257]    [c.341]   
Смотреть главы в:

Справочник по химии полимеров -> Растворимость полимеров и их растворители

Справочник по химии полимеров -> Растворимость полимеров и их растворители




ПОИСК





Смотрите так же термины и статьи:

Полимер растворители

Полимера растворимости



© 2024 chem21.info Реклама на сайте